第1课时 简单随机抽样 高中数学苏教版必修三课件
- 格式:ppt
- 大小:1.63 MB
- 文档页数:51
【知识梳理】1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.3.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.【常考题型】题型一、简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【类题通法】简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.【对点训练】下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.题型二、抽签法及其应用【例2】(1)下列抽样实验中,适合用抽签法的有()A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.[答案] B(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解]第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.【类题通法】1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.【对点训练】现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.题型三、随机数表法的应用【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.[答案]227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)【类题通法】利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.【对点训练】现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.【练习反馈】1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.2.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。
第九章 统计与成对数据的统计分析第1讲 随机抽样与统计图表1.理解随机抽样的必要性和重要性.2.会用简单随机抽样考试要求方法从总体中抽取样本,了解分层随机抽样方法,掌握分层随机抽样的样本均值和样本方差.3.理解统计图表的含义.01聚焦必备知识知识梳理1.简单随机抽样(1)简单随机抽样:分为放回简单随机抽样和不放回简单随机抽样.(2)简单随机样本:通过简单随机抽样获得的样本称为简单随机样本.(3)简单随机抽样的常用方法:__________和随机数法是比较常用的两种方法.2.分层随机抽样(1)分层随机抽样的概念一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为________________,每一个子总体称为层.3.统计图表(1)常见的统计图表有条形图、扇形图、折线图、频数分布直方图、频率分布直方图等.(2)频率分布表、频率分布直方图的制作步骤及意义.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.分层随机抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.常用结论1.思考辨析(在括号内打“ √”或“×”)(1)简单随机抽样中,每个个体被抽到的机会不一样,与先后有关.( )(2)条形图中,每个条形图的面积表示频率.( )(3)分层随机抽样中,每个个体被抽到的可能性与层数及分层有关.( )(4)频率分布直方图中,小长方形的面积越大,表示样本数据落在该区间的频率越大.( )夯基诊断× × × √ 2.回源教材(1)为了了解某地参加计算机水平测试的5000名学生的成绩,从中抽取了200名学生进行调查分析,在这个问题中,被抽取的200名学生成绩是( )A.总体B.个体C.样本D.样本量C C 由题意可得200名学生成绩是样本.(2)如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格(60分及以上)率是( )A.75%B.25%C.15%D.40%A A (0.015+0.03+0.025+0.005)×10=0.75.(3)某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为________分.答案:9502突破核心命题考 点 一随机抽样考向 1简单随机抽样1.我国古代数学名著《数书九章》中有“米谷粒分”问题:“开仓受纳,有甲户米一千五百三十四石到廊.验得米内夹谷,乃于样内取米一捻,数计二百五十四粒,内有谷二十八颗.今欲知米内杂谷多少.”意思是:官府开仓接受百姓纳粮,甲户交米1534石到廊前,检验出米里夹杂着谷子,于是从米样粒取出一捻,数出共254粒,其中有谷子28颗,则这批米内有谷子约________石(结果四舍五入保留整数).答案:1692.(2024·广州模拟)假设要考查某公司生产的500 g袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个个体的编号是________.(下面摘取了随机数表第7行到第9行)844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954根据随机数表可得,样本的前4个个体的编号依次为331,572,455,068.答案:0683.(多选)某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆.为检验该公司这三种型号轿车的质量,公司质检部要抽取57辆进行检验,则下列说法正确的是( )A.应采用分层随机抽样的方法抽取B.应采用抽签法抽取C.三种型号的轿车依次应抽取9辆,36辆,12辆D.这三种型号的轿车,每一辆被抽到的可能性相等2分层随机抽样ACD 4.某工厂新、旧两条生产线的产量比为7∶3,为了解该工厂生产的一批产品的质量情况,采用比例分配的分层随机抽样的方法从两条生产线抽取样本并计算得:新生产线生产的产品的质量指标的均值为10,方差为1;旧生产线生产的产品的质量指标的均值为9,方差为2,据此估计该批产品的质量指标的均值为________,方差为________.根据两条生产线的产量比为7∶3,且新生产线质量指标的均值为10,方差为1,旧生产线质量指标的均值为9,方差为2,计算该批产品的质量指标的均值为答案:9.7 1.511.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)等可能抽取.反思感悟考 点 二统计图表考向 1扇形图、条形图例1 (多选)某中学组织三个年级的学生进行知识竞赛.经统计,得到前200名学生分布的饼状图(如图)和前200名中高一学生排名分布的频率条形图(如图),则下列选项正确的是( )前200名学生分布的饼状图前200名中高一学生排名分布的频率条形图A.成绩前200名的200人中,高一人数比高二人数多30B.成绩第1~100名的100人中,高一人数不超过一半C.成绩第1~50名的50人中,高三最多有32人D.成绩第51~100名的50人中,高二人数比高一的多ABC 由饼状图知,成绩前200名的200人中,高一人数比高二人数多200×(45%-30%)=30,A正确;由条形图知高一学生在前200名中,前100和后100人数相等,因此成绩第1~100名的100人中,高一人数为200×45%×0.5=45<50,B正确;成绩第1~50名的50人中,高一人数为200×45%×0.2=18,因此高三最多有32人,C正确;第51~100名的50人中,高一人数为200×45%×0.3=27,高二最多有23人,因此高二人数比高一少,D错误.例2 已知全国农产品批发价格200指数月度变化情况如图所示,下列选项正确的是( )2折线图A.全国农产品夏季价格比冬季低B.全国农产品批发价格200指数2022年每个月逐渐增加C.2022年“菜篮子”产品批发价格指数与农产品批发价格200指数趋势基本保持一致D.2022年6月农产品批发价格200指数大于126C 图中给的是批发价格200指数,所以并不能确定农产品的价格变化,故A错误;全国农产品批发价格200指数2022年4~6月呈下降趋势,并未增加,故B错误;根据图中曲线的变化趋势可发现2022年“菜篮子”产品批发价格指数与农产品批发价格200指数趋势基本保持一致,故C正确;2022年6月农产品批发价格200指数在115附近,故D错误.例3 随机抽取100名学生,测得他们的身高(单位:cm),按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图如图所示.3频率分布直方图(1)求频率分布直方图中x 的值及身高在170 cm 及以上的学生人数;(2)将身高在[170,175),[175,180),[180,185]区间内的学生依次记为A ,B ,C三个组,用分层随机抽样的方法从这三个组中抽取6人,求这三个组分别抽取的学生人数.解:(1)由频率分布直方图可知5×(0.07+x+0.04+0.02+0.01)=1,解得x=0.06,身高在170 cm及以上的学生人数为100×5×(0.06+0.04+0.02)=60.(2)A组人数为100×5×0.06=30,B组人数为100×5×0.04=20,C组人数为100×5×0.02=10,1.通过扇形图可以很清楚地表示出各部分数量同总数之间的关系.2.折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据变化的趋势.3.频率分布直方图的数据特点(1)频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆.(2)频率分布直方图中各小长方形的面积之和为1,这是解题的关键,常利用频率分布直方图估计总体分布.反思感悟训练1 (多选)新式茶饮是指以上等茶叶通过萃取浓缩液,再根据消费者偏好,添加牛奶、坚果、柠檬等小料调制而成的饮料.如图为2022年我国消费者购买新式茶饮的频次扇形图及月均消费新式茶饮金额的条形图.2022年消费者购买新式茶饮的频次2022年消费者月均消费新式茶饮的金额根据所给统计图,下列结论中正确的是( )A.每周都消费新式茶饮的消费者占比不到90%B.每天都消费新式茶饮的消费者占比超过20%C.月均消费新式茶饮50~200元的消费者占比超过50%D.月均消费新式茶饮超过100元的消费者占比超过60%BC BC 每周都消费新式茶饮的消费者占比1-9.1%>90%,A 错误;每天都消费新式茶饮的消费者占比5.4%+16.4%>20%,B 正确;月均消费新式茶饮50~200元的消费者占比30.5%+25.6%>50%,C 正确;月均消费新式茶饮超过100元的消费者占比1-14.5%-30.5%<60%,D 错误.训练2 (2024·南昌调研)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图.(1)直方图中x的值为________;(2)在这些用户中,月用电量落在区间[100,250)内的户数为______.(1)由频率分布直方图知数据落在[200,250)内的频率为1-(0.0024+0.0036+0.0060+0.0024+0.0012)×50=0.22,(2)因为数据落在[100,250)内的频率为(0.0036+0.0060+0.0044)×50=0.7,所以所求户数为0.7×100=70.答案:(1)0.0044 (2)7003限时规范训练(六十九)A 级 基础落实练1.下列情况中,适合用全面调查的是( )A.检查某人血液中的血脂含量B.调查某地区的空气质量状况C.乘客上飞机前的安检D.调查某市市民对垃圾分类处理的意识C C 乘客上飞机前的安检适合用全面调查,只有确认每一名乘客所携带的物品都安全才能保证航班安全.2.已知某地区中小学生人数和近视情况分别如图1,图2所示.为了解该地区中小学生近视形成的原因,用分层随机抽样的方法抽取2%的学生进行调查,则样本量和抽取的高中生近视人数分别为( )A.100,10B.200,10C.100,20D.200,20D 图1 图2D 易知样本量为(3500+4500+2000)×2%=200.抽取的高中生人数为2000×2%=40,由于其近视率为50%,所以近视的人数为40×50%=20.3.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况.应采取B 的抽样方法是( )A.(1)(2)都用简单随机抽样法B.(1)用分层随机抽样法,(2)用简单随机抽样法C.(1)用简单随机抽样法,(2)用分层随机抽样法D.(1)(2)都用分层随机抽样法B (1)中收入差距较大,采用分层随机抽样法较合适;(2)中总体容量较小,采用简单随机抽样法较合适.4.(2024·新乡多校联考)在2022年某地销售的汽车中随机选取1000台,对销售价格与销售数量进行统计,这1000台车辆的销售价格都不低于5万元,且都低于30万元,将销售价格分为[5,10),[10,15),[15,20),[20,25),[25,30)(单位:万元)五组.统计后制成的频率分布直方图如图所示.在选取的1000台汽车中,销售价格在[10,20)内的车辆台数为( )A.800B.600C.700D.750C C 由频率分布直方图知,销售价格在[10,20)内的频率是1-(0.015+0.025+0.020)×5=0.7,所以在选取的1000台汽车中,销售价格在[10,20)内的车辆台数为0.7×1000=700.故选C.5.(多选)(2024·湖北九师联盟模拟)某企业2022年12个月的收入与支出数据的折线图如图.已知:利润=收入-支出,根据该折线图,下列说法正确的是ABC ( )A.该企业2022年1月至6月的总利润低于2022年7月至12月的总利润B.该企业2022年1月至6月的平均收入低于2022年7月至12月的平均收入C.该企业2022年8月至12月的支出持续增长D.该企业2022年11月份的月利润最大ABC 因为图中的实线与虚线的相对高度表示当月利润.由折线统计图可知1月至6月的相对高度的总量要比7月至12月的相对高度总量少,故A正确;由折线统计图可知1月至6月的收入都普遍低于7月至12月的收入,故B正确;由折线统计图可知2022年8月至12月的虚线是上升的,所以支出持续增长,故C正确;由折线统计图可知11月的相对高度比7月、8月都要小,故D错误.6.(多选)(2023·茂名模拟)某大学通过专业化、精细化、信息化和国际化的就业指导工作,引导学生把个人职业生涯发展同国家社会需要紧密结合,鼓励学生到祖国最需要的毕业生签三方就业单位所在省(区、市)公布地方建功立业.2022年该校毕业生中,有本科生2971人,硕士生2527人,博士生1467人,毕业生总体充分实现就业,就业地域分布更趋均匀合理,实现毕业生就业率保持高位和就业质量稳步提升.如图,下列说法正确的是( )A.博士生有超过一半的毕业生选择在北京就业B.毕业生总人数超半数选择在北京以外的单位就业C.到四川省就业的硕士毕业生人数比到该省就业的博士毕业生人数多D.到浙江省就业的毕业生人数占毕业生总人数的12.8%。