离散数学第十章基本图类及算法习题答案
- 格式:ppt
- 大小:281.50 KB
- 文档页数:13
离散数学习题答案习题一1. 判断下列句子是否为命题?若是命题说明是真命题还是假命题。
(1)3是正数吗?(2)x+1=0。
(3)请穿上外衣。
(4)2+1=0。
(5)任一个实数的平方都是正实数。
(6)不存在最大素数。
(7)明天我去看电影。
(8)9+5≤12。
(9)实践出真知。
(10)如果我掌握了英语、法语,那么学习其他欧洲语言就容易多了。
解:(1)、(2)、(3)不是命题。
(4)、(8)是假命题。
(5)、(6)、(9)、(10)是真命题。
(7)是命题,只是现在无法确定真值。
2. 设P表示命题“天下雪”,Q表示命题“我将去书店”,R表示命题“我有时间”,以符号形式写出下列命题。
(1)如果天不下雪并且我有时间,那么我将去书店。
(2)我将去书店,仅当我有时间。
(3)天不下雪。
(4)天下雪,我将不去书店。
解:(1)(┐P∧R)→Q。
(2)Q→R。
(3)┐P。
(4)P→┐Q。
3. 将下列命题符号化。
(1)王皓球打得好,歌也唱得好。
(2)我一边看书,一边听音乐。
(3)老张和老李都是球迷。
(4)只要努力学习,成绩会好的。
(5)只有休息好,才能工作好。
(6)如果a和b是偶数,那么a+b也是偶数。
(7)我们不能既游泳又跑步。
(8)我反悔,仅当太阳从西边出来。
(9)如果f(x)在点x0处可导,则f(x)在点x0处可微。
反之亦然。
(10)如果张老师和李老师都不讲这门课,那么王老师就讲这门课。
(11)四边形ABCD是平行四边形,当且仅当ABCD的对边平行。
(12)或者你没有给我写信,或者信在途中丢失了。
解:(1)P:王皓球打得好,Q:王皓歌唱得好。
原命题可符号化:P∧Q。
(2)P:我看书,Q:我听音乐。
原命题可符号化:P∧Q。
(3)P:老张是球迷,Q:老李是球迷。
原命题可符号化:P∧Q。
(4)P:努力学习,Q:成绩会好。
原命题可符号化:P→Q。
(5)P:休息好,Q:工作好。
原命题可符号化:Q→P。
(6)P:a是偶数,Q:b是偶数,R:a+b是偶数。
作业答案:集合论部分P90:习题六5、确定下列命题是否为真。
(2)ÆÎÆ(4){}ÆÎÆ(6){,}{,,,{,}}a b a b c a b Î解答:(2)假(4)真(6)真8、求下列集合的幂集。
(5){{1,2},{2,1,1},{2,1,1,2}}(6){{,2},{2}}Æ解答:(5)集合的元素彼此互不相同,所以{2,1,1,2}{1,2}=,所以该题的结论应该为{,{{1,2}},{{2,1,2}},{{2,1,1,1}},{{1,2},{2,1,2},{2,1,1,1}}}Æ(6){,{{,2}},2,{{,2},{2}}}ÆÆÆ9、设{1,2,3,4,5,6}E =,{1,4}A =,{1,2,5}B =,{2,4}C =,求下列集合。
(1)A B(2)()A B 解答:(1){1,4}{3,4,6}{4}A B ==(2)(){1}{2,3,4,5,6}A B ==31、设A,B,C 为任意集合,证明()()()()A B B A A B A B --=-证明:()(){|}{|()()}{|()()()()}{|()()}{|()()}{|()()}{|()()}{|()(A B B A x x A B x B A x x A x B x B x A x x A x B x B x B x A x A x B x A x x A x B x B x A x x A B x A x B x x A B x A x B x x A B x A B x x AB x A--=Î-ÚÎ-=ÎÙÏÚÎÙÏ=ÎÚÎÙÏÚÎÙÎÚÏÙÏÚÏ=ÎÚÎÙÏÚÏ=ÎÙÏÚÏ=ÎÙÎÚÎ=ÎÙÎ=ÎÙÎ)}B A B AB=-34、设A,B 为集合,证明:如果()()A B B A AB --=,则AB =Æ。
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。
《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。
在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(完整版)洪帆《离散数学基础》(第三版)课后习题答案第1章集合1、列举下列集合的元素 (1) ⼩于20的素数的集合 (2) ⼩于5的⾮负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、⽤描述法表⽰下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下⾯哪些式⼦是错误的? (1) {}{{}}a a ∈答:正确 (2) {}{{}}a a ? 答:错误 (3) {}{{},}a a a ∈答:正确 (4) {}{{},}a a a ? 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下⾯哪些论断是正确的?哪些是错误的? (1) {}a S ∈错误(2) {}a R ∈正确 (3) {,4,{3}}a S ? 正确 (4) {{},1,3,4}a R ? 正确 (5)R S = 错误 (6) {}a S ? 正确 (7) {}a R ?错误 (8) R φ?正确 (9) {{}}a R φ?? 正确 (10) {}S φ?错误 (11) R φ∈错误 (12) {{3},4}φ?正确5、列举出集合,,A B C 的例⼦,使其满⾜A B ∈,B C ∈且A C ?答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ?。
6、给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、设128{,,,}A a a a =L 由17B 和31B 所表⽰的A 的⼦集各是什么?应如何表⽰⼦集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '? (2) ()A B C '?? (3) ()A B C ?? (4)()()A B A C (5) ()A B '? (6) A B ''? (7) ()B C '? (8)B C ''? (9) 22A C - (10)22A C ? 答:(1) {3,4}B '=,{4}A B '?=(2) {1}A B ?=,{1,3,5}C '=,(){1,3,5}A B C '??= (3) {2}B C ?=,(){1,2,4}A B C ??=(4) {1,2,4,5}A B ?=,{1,2,4}A C ?=,()(){1,2,4}A B A C = (5) (){2,3,4,5}A B '?= (6) {2,3,5}A '=,{2,3,4,5}A B ''?= (7){1,2,4,5}B C ?=,(){3}B C '?= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''?=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ?=10、给定⾃然数集N 的下列⼦集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B C D = (2) (())A B C D φ=(3) ()B A C -?解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ?=,(){4,5}B A C -?= (4) ()A B D '??解:{3,4,5,6}A B B A '?=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '??=11、给定⾃然数集N 的下列⼦集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表⽰为由,,,,A B C D E 产⽣的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =? {3,6,9}=A D ? {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}??L{3,6,9,10,11,12,}()A D B '==??L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-?--?-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ?12、判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。
习题十1.证明:若G 是简单图,则()()q p p G 2/22-≥χ.分析:()G χ指G 的点色数,显然如果()G χ=k ,则G 的顶点集可以划分为k 个独立集。
设每个独立集的顶点数为p i ,则∑=ki i p 1=p ,由柯西-施瓦丝不等式有: 且由于每个独立集中的任意两个点不邻接,所以第i 个独立集中任何一点的度不会大于p-p i ,本题的关键是利用这两个结论。
2.()k G =χ的临界图G 称为k 临界图. 证明:唯一的1临界图是1K ,唯一的2临界图是2K ,仅有的3临界图是长度为奇数3≥k 的回路.分析:若G 的每个点都是临界点,则G 称为临界图。
由于1-色图是零图,因此1-临界图仅能是1K ,2-色图是2部图,因此2-临界图仅能是2K ,3-色图恒含奇圈,且奇圈至少是3-色才能正常着色,因此3-临界图仅能是长度为奇数3≥k 的回路.证明:(1)()11=K χ,且()01=-v K χ<1,故K1是1临界图;反之,G 是1-临界图,若|V(G)|>1,则G 是零图,()1=-v G χ,所以|V(G)|=1,从而G 是平凡图K1。
(2)()22=K χ,且()1),(22=-∈∀v K K V v χ,故K2是2临界图;反之,G 是2-临界图,即()2=G χ,于是G 的顶点可划分为两个极大独立集V1和V2,若|V1|>1,则())(2),(1G v G G V V v χχ==-⊆∈∀,与G 是临界图矛盾,因此|V1|=1,同理|V2|=1。
因此G=K2。
(3)因为不含奇回路的图是二分图)2)((=G χ。
故3-色图必含奇回路。
显然,奇回路必是3-临界图。
设G 是含奇回路的3-临界图。
若G 不是奇回路,则可分两种情况讨论:)2/()( 2 2 )()(2 ,,1,| | ,, ,)( 2222221222211112221121q p p G x q p p k k p q p k p p p p p p p p p p v d q p p V k p k p p k i p V V V k G k G x ki i p i k i k i k i i i i i i i i k i i k i i i i k -≥-≥≥--≤-=-=-≤=-=⎪⎭⎫ ⎝⎛≥===∑∑∑∑∑∑∑=======故,即从而而个顶点相邻,每个顶点最多与其它且),(柯西-施瓦丝不等式因为。
离散数学及其应用(课后习题)习题1.12. 指出下列命题是原子命题还是复合命题。
(3)大雁北回,春天来了。
(4)不是东风压倒西风,就是西风压倒东风。
(5)张三和李四在吵架。
解:(3)和(4)是复合命题,(5)是原子命题。
习题1.21. 指出下列命题的真值:(1)若224+>,则太阳从西方升起。
解:该命题真值为T (因为命题的前件为假)。
(3)胎生动物当且仅当是哺乳动物。
解:该命题真值为F (如鸭嘴兽虽是哺乳动物,但不是胎生动物)。
2. 令P :天气好。
Q :我去公园。
请将下列命题符号化。
(2)只要天气好,我就去公园。
(3)只有天气好,我才去公园。
(6)天气好,我去公园。
解:(2)P Q →。
(3)Q P →。
(6)P Q ↔。
习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示): (1)我去新华书店(P ),仅当我有时间(Q )。
(3)只要努力学习(P ),成绩就会好的(Q )。
(6)我今天进城(P ),除非下雨(Q )。
(10)人不犯我(P ),我不犯人(Q );人若犯我,我必犯人。
解:(1)P Q →。
(3)P Q →。
(6)Q P ⌝→。
(10)()()P Q P Q ⌝→⌝∧→。
习题1.41. 写出下列公式的真值表: (2)()P Q R ∨→。
解:该公式的真值表如下表:2. 证明下列等价公式:(2)()()()P Q P Q P Q ∨∧⌝∧⇔⌝↔。
证明:()(()()) ()()) ()() ()()P Q P Q P Q P Q P Q P Q P Q P Q P Q ⌝↔⇔⌝∧∨⌝∧⌝⇔⌝∧∧⌝⌝∧⌝⇔⌝∧∧∨⇔∨∧⌝∧(4)()()()P Q P R P Q R →∧→⇔→∧。
证明:()()()() () ()P Q P R P Q P R P Q R P Q R →∧→⇔⌝∨∧⌝∨⇔⌝∨∧⇔→∧3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。
第10章习题答案1.解 (1)设G 有m 条边,由握手定理得2m =∑∈Vv v d )(=2+2+3+3+4=14,所以G 的边数7条。
(2)由于这两个序列中有奇数个是奇数,由握手定理的推论知,它们都不能成为图的度数列。
(3) 由握手定理得∑∈Vv v d )(=2m =24,度数为3的结点有6个占去18度,还有6度由其它结点占有,其余结点的度数可为0、1、2,当均为2时所用结点数最少,所以应由3个结点占有这6度,即图G 中至多有9个结点。
2.证明 设1v 、2v 、…、n v 表示任给的n 个人,以1v 、2v 、…、n v 为结点,当且仅当两人为朋友时其对应的结点之间连一条边,这样得到一个简单图G 。
由握手定理知∑=nk kv d 1)(=3n 必为偶数,从而n 必为偶数。
3. 解 由于非负整数列d =(d 1,d 2,…,d n )是可图化的当且仅当∑=ni i d 1≡0(mod 2),所以(1)、(2)、(3)、(5)能构成无向图的度数列。
(1)、(2)、(3)是可简单图化的。
其对应的无向简单图如图所示。
(5)是不可简单图化的。
若不然,存在无向图G 以为1,3,3,3度数列,不妨设G 中结点为1v 、2v 、3v 、4v ,且d(1v )=1,d(2v )=d(3v )=d(4v )=3。
而1v 只能与2v 、3v 、4v 之一相邻,设1v 与2v 相邻,于是d(3v )=d(4v )=3不成立,矛盾。
4.证明 因为两图中都有4个3度结点,左图中每个3度结点均与2个2度结点邻接,而右图中每个3度结点均只与1个2度结点邻接,所以这两个无向图是不同构的。
5. 解 具有三个结点的所有非同构的简单有向图共16个,如图所示,其中(8)~(16)为其生成子图。
6. 解 (1)G 的所有子图如图所示。
(1)(3)(5)(6)(9)(10)(13)(14)(2)图(8)~(18)是G 的所有生成子图。
一、填空题1、集合的表示方法有两种: 法和 法。
请把“奇整数集合”表示出来{ }。
1、列举;描述;}12|{Z k k x x ∈+=,2、无向连通图G 含有欧拉回路的充分必要条件是不含有奇数度结点.2*、连通有向图D 含有欧拉回路的充分必要条件是D 中每个结点的入度=出度. 3、设R 是集合A 上的等价关系,则R 所具有的关系的三个特性是 、自反性、对称性、传递性.4、有限图G 是树的一个等价定义是:连通无回路(或任一等价定义).5、设N (x ):x 是自然数,Z (y );y 是整数,则命题“自然数都是整数,而有的整数不是自然数”符号化为∀x (N (x )→Z (x ))∧∃x (Z (x )∧⌝N (x ))6、在有向图的邻接矩阵中,第i 行元素之和,第j 列元素之和分别为 、结点v i 的出度和结点v j 的入度. 7、设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么命题B A ↔是重言式的真值是 1 .8、命题公式)(Q P →⌝的主析取范式为P ∧⌝Q .9、 设图G =<V ,E >和G '=<V ',E '>,若 ,则G '是G 的真子图,若V '=V ,E '⊆E ,则G '是G 的生成子图. E E V V E E V V ⊆'='⊂'⊂',;或 10、在平面图>=<E V G ,中,则∑=ri ir 1)deg(=2∣E ∣,其中r i(i =1,2,…,r )是G 的面.11、设}2,1{},,{==B b a A ,则从A 到B 的所有映射是11、σ1={(a ,1),(b ,1)};σ2={(a ,2),(b ,2)};σ3={(a ,1),(b ,2)};σ4={(a ,2),(b ,1)}12、表达式∀x ∃yL (x ,y )中谓词的定义域是{a ,b ,c },将其中的量词消除,写成与之等价的命题公式为 12、(L (a ,a )∨L (a ,b )∨L (a ,c ))∧(L (b ,a )∨L (b ,b )∨L (b ,c ))∧(L (c ,a )∨L (c ,b )∨L (c ,c )) 12*、设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为 (G (a )→(H (a ,a )∨H (a ,b )))∧ (G (b )→(H (b ,a )∨H (b ,b )))13、含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 14、设R ,S 都是集合A 上的等价关系,则对称闭包s (R ⋂S )= R ⋂S15、设G 是连通平面图,v ,e ,r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式是2=-+e r v16、设G 是n 个结点的简单图,若G 中每对结点的度数之和≥n ,则G 一定是哈密顿图. 17、一个有向树T 称为根树,若 ,其中 ,称为树根,称为树叶. 若有向图T 恰有一个结点的入度为0,其余结点入度为1;入度为0的结点;出度为0的结点.18、图的通路中边的数目称为 . 结点不重复的通路是 通路. 边不重复的通路是 通路. 通路长度;初级;简单. 19、设A 和B 为有限集,|A|=m ,|B|=n ,则有 个从A 到B 的关系,有 个从A 到B 的函数,其中当m ≤n 时有 个入射,当m=n 时,有 个双射。