第四章 设计计算
- 格式:doc
- 大小:33.00 KB
- 文档页数:4
第四章框架结构计算分析与设计框架结构布置主要是确定柱在平面上的罗列方式(柱网布置)和选择结构承重方案,这些均必须满足建造平面及使用要求,同时也须使结构受力合理,施工简单。
1、柱网和层高工业建造柱网尺寸和层高根据生产工艺要求确定。
常用的柱网有内廊式和等跨式两种。
内廊式的边跨跨度普通为 6~8m,中间跨跨度为 2~4m。
等跨式的跨度普通为 6~12m。
柱距通常为 6m,层高为 3.6m~5.4m。
民用建造柱网和层高根据建造使用功能确定。
目前,住宅、宾馆和办公楼柱网可划分为小柱网和大柱网两类。
小柱网指一个开间为一个柱距,柱距普通为 3.3m,3.6m,4.0m 等;大柱网指两个开间为一个柱距,柱距通常为 6.0m,6.6m,7.2m,7.5m 等。
常用的跨度(房屋进深)有: 4.8m,5.4m,6.0m,6.6m,7.2m,7.5m 等。
办公楼常采用三跨内廊式、两跨不等跨或者多跨等跨框架,如图2.1.1(a),(b),(c)。
采用不等跨时,大跨内宜布置一道纵梁,以承托走道纵墙。
近年来,由于建造体型的多样化,浮现了一些非矩形的平面形状,如图 2.1.1(d),(e),(f)所示。
这使柱网布置更复杂一些。
1、横向框架承重。
主梁沿房屋横向布置,板和连系梁沿房屋纵向布置。
由于竖向荷载主要由横向框架承受,横梁截面高度较大,于是有利于增加房屋的横向刚度。
这种承重方案在实际结构中应用较多。
2、纵向框架承重。
主梁沿房屋纵向布置,板和连系梁沿房屋横向布置[图 5.1.2(b)]。
这种方案对于地基较差的狭长房屋较为有利,且因横向只设置截面高度较小的连系梁,有利于楼层净高的有效利用。
但房屋横向刚度较差,实际结构中应用较少。
3、纵、横向框架承重。
房屋的纵、横向都布置承重框架,楼盖常采用现浇双向板或者井字梁楼盖。
当柱网平面为正方形或者接近正方形、或者当楼盖上有较大活荷载时,多采用这种承重方案。
以上是将框架结构视为竖向承重结构(verticalload- reitingtructure)来讨论其承重方案的。
《混凝土结构设计原理》第四章受弯构件正截面承载力计算课堂笔记◆知识点掌握:受弯构件是土木工程中用得最普遍的构件。
与构件计算轴线垂直的截面称为正截面,受弯构件正截面承载力计算就是满足要求:M≤Mu。
这里M为受弯构件正截面的设计弯矩,Mu为受弯构件正截面受弯承载力,是由正截面上的材料所产生的抗力,其计算及应用是本章的中心问题。
◆主要内容受弯构件的一般构造要求受弯构件正截面承载力的试验研究受弯构件正截面承载力的计算理论单筋矩形戴面受弯承载力计算双筋矩形截面受弯承载力计算T形截面受弯承载力计算◆学习要求1.深入理解适筋梁的三个受力阶段,配筋率对梁正截面破坏形态的影响及正截面抗弯承载力的截面应力计算图形。
2.熟练掌握单筋矩形、双筋矩形和T形截面受弯构件正截面设计和复核的握法,包括适用条件的验算。
重点难点◆本章的重点:1.适筋梁的受力阶段,配筋率对正截面破坏形态的影响及正截面抗弯承载力的截面应力计算图形。
2.单筋矩形、双筋矩形和T形截面受弯构件正截面抗弯承载力的计算。
本章的难点:重点1也是本章的难点。
一、受弯构件的一般构造(一)受弯构件常见截面形式结构中常用的梁、板是典型的受弯构件:受弯构件的常见截面形式的有矩形、T形、工字形、箱形、预制板常见的有空心板、槽型板等;为施工方便和结构整体性,也可采用预制和现浇结合,形成叠合梁和叠合板。
(二)受弯构件的截面尺寸为统一模板尺寸,方便施工,宜按下述采用:截面宽度b=120, 150 , 180、200、220、250、300以上级差为50mm。
截面高度h=250, 300,…、750、800mm,每次级差为50mm,800mm以上级差为100mm。
板的厚度与使用要求有关,板厚以10mm为模数。
但板的厚度不应过小。
(三)受弯构件材料选择与一般构造1.受弯构件的混凝土等级提高砼等级对增大正截面承载力的作用不显著。
受弯构件常用的混凝土等级是C20~C40。
2.受弯构件的混凝土保护层厚度纵向受力钢筋的外表面到截面边缘的最小垂直距离,称为混凝土保护层厚度,用c表示。
-食品工程原理课程设计说明书题目:日产量72吨浓缩橙汁的初步设计年级:2014级学院:农学院专业:食品1404班指导老师: 苑博华成员:吴悠目录第一章前言1.1 选题的意义 (4)1.2 立题的意义 (4)1.3厂址的选择 (4)第二章设计方案简介2.1 选题 (5)2.2 设计拟定工作容 (5)第三章工艺设计3.1工艺流程图 (6)3.2工艺操作要求 (7)第四章设计计算4.1 物料衡算 (8)4.1.1 各流程物料衡算 (8)4.1.2 调配衡算 (9)4.1.3 设备选型 (10)4.2 管路设计计算及泵的选型4.2.1选管 (11)4.2.2选泵 (11)第五章设计评述 (13)第六章参考文献 (14)第一章前言1 . 1选题的意义橙子是世界上栽培最广、经济价值最高的橙子类水果,成熟后变成黄色果肉酸甜适度,汁多,富有香气,是生产饮料的重要原料。
橙子营养丰富,含有丰富的维生素C、钙、磷、钾、β-胡萝卜素、柠檬酸、皮甙以及醛、醇、烯等物质,常常食用可以强化免疫系统,抑制肿瘤细胞生长,明显减少胆结石的发生,增强毛细管韧性,减少人体体的胆固醇吸收,降低血脂,深受人们喜爱。
由于橙子出汁率高,有良好的风味,营养丰富,经过加工可制成酸甜可口的橙子饮料,既可以保留其大部分的营养成分和风味物质,又可以增加其附加价值,为农民的创收提供帮助。
1 . 2立题的意义作为食品专业的学生,通过本次果蔬汁加工工艺学设计,我们已初步通过学习掌握果汁加工原料的质构与加工特性、果汁加工工艺、果汁加工设备、果汁在加工生产过程中常见的质量问题、果汁加工中物料衡算及管路设计等相关基本知识。
参考果蔬汁现代生产加工相关文献,我们设计日产72吨橙子生产线,在设计过程中选择橙汁加工中合理的工艺流程,选择合适的加工设备,为实际生产加工橙子提供一定的用途。
1 . 3厂址的选择橙汁工厂的选择一般倾向于设在原材料产地附近,厂址在城市外围,原材料产地附近的郊区,有利于销售,便于辅助材料和包装材料的获得,同时还可以减少运输费用。
第四章 简支梁(板)桥设计计算第一节 简支梁(板)桥主梁内力计算对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。
对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为:)(42maxx l x lM M x -=(4-1) 式中:x M —主梁距离支点x 处的截面弯矩值;m ax M —主梁跨中最大设计弯矩值;l —主梁的计算跨径。
对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。
如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。
一 永久作用效应计算钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。
因此,设计人员要准确地计算出作用于桥梁上的永久作用。
如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。
在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。
因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。
如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。
对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。
对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。
中华人民共和国国家标准卤代烷1211灭火系统设计规范GBJ 110-87主编部门:中华人民共和国公安部批准部门:中华人民共和国国家计划委会施行日期:1988年5月1日第一章总则第1.0.1条为了合理地设计卤代烷1211灭火系统,保护公共财产和个人生命财产的安全,特制定本规范。
第1.0.2条卤代烷1211灭火系统的设计,应遵循国家基本建设的有关方针政策,针对防护区的具体情况,做到安全可靠、技术先进、经济合理。
第1.0.3条本规范适用于工业和民用建筑中设置的卤代烷1211全淹没灭火系统,不适用于卤代烷1211抑制系统的设计。
第1.0.4条卤代烷1211灭火系统可用于扑救下列物质的火灾:一、可燃气体火灾;二、甲、乙、丙类液体火灾;三、可燃固体的表面火灾;四、电气火灾。
第1.0.5条卤代烷1211灭火系统不得用于扑救下列物质的火灾:一、无空气仍能迅速氧化的化学物质,如硝酸纤维、火药等;二、活泼金属,如钾、钠、镁、钛、锆、铀、钚等;三、金属的氢化物,如氢化钾、氢化钠等;四、能自行分解的化学物质,如某些过氧化物、联氨等;五、能自燃的物质,如磷等;六、强氧化剂,如氧化氮、氟等。
第1.0.6条卤代烷1211灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关标准、规范的要求。
第二章防护区设置第2.0.1条防护区的划分,应符合下列规定:一、防护区应以固定的封闭空间来划分;二、当采用管网灭火系统时,一个防护区的面积不宜大于500m2,容积不宜大于2000m3;三、当采用无管网灭火装置时,一个防护区的面积不宜大于100m2,容积不宜大于300m3;且设置的无管网灭火装置数不应超过8个。
第2.0.2条防护区的最低环境温度不应低于0℃。
第2.0.3条防护区的隔墙和门的耐火极限均不应低于0.06h;吊顶的耐火极限不应低于0.25h。
第2.0.4条防护区的门窗及围护构件的允许压强,均不宜低于1200Pa。
第2.0.5条防护区不宜开口。
第四章润滑系统和集中润滑系统的设计计算第一节稀油集中润滑系统一、概述随着生产的发展,机械化、自动化程度不断提高,润滑技术也一样由简单到复杂,不断更新发展,形成了目前集中润滑系统。
集中润滑系统具有明显的长处,因为压力供油有足够的供油量,因此可保证数量众多、散布较广的润滑点及时取得润滑,同时将摩擦副产生的摩擦热带走;随着油的流动和循环将摩擦表面的金属磨粒等机械杂质带走并冲洗干净,达到润滑良好、减轻摩擦、降低磨损和减少易损件的消耗、减少功率消耗、延长设备利用寿命的目的。
一、润滑系统控制在整个润滑系统中,安装了各类润滑设备及装置,各类控制装置和仪表,以调节和控制润滑系统中的流量、压力、温度、杂质滤清等,使设备润滑更为合理。
为了使整个系统的工作安全靠得住,应有以下的自动控制和信号装置。
1).主机启动控制在主机启动前必需先开动润滑油泵,向主机供油。
当油压正常后才能启动主机。
一般常采用在压油管路上安装油压继电器,控制主机操作的电气回路。
2).自动启动油泵在润滑系统中,若是系统油压下降到低于工作压力(0.05MPa),这时备用油泵启动,并在启动的同时发出示警信号,红灯亮、电笛鸣,3).强迫停止主机运行当备用油泵启动后,若是系统油压仍继续下降(低于工作压力)(0.08~1.2MPa)、则油泵自动停止运行并发出信号;强迫主机也停止运行,同时发出事故警报信号,红灯亮、电笛鸣。
4).高压信号当系统的工作压力超过正常的工作压力0.05MPa时,就要发出高压信号,绿灯亮、电笛鸣。
值班人员应当即检查并消除故障。
启动备用油泵、强迫主机停转等,常采用电接触压力计及压力继电器来进行控制。
5).油箱的油位控制油箱的油位控制常采用液位控制器。
当油箱油位面不断地下降,降到最低允许油位时,液位控制器触点闭合,发出低液位示警信号,红灯亮、电笛鸣,同时强迫油泵和主机停止运行。
当油箱油位面不断升高(可能是水或其他介质进入油箱内),达到最高油液位面时,则发出高液位示警信号,红灯亮、电笛鸣,应当即检查,采取办法,消除故障。
第四章 齿轮设计4.1 齿轮参数的选择[8]齿轮模数值取值为m=10,主动齿轮齿数为z=6,压力角取α=20°,齿轮螺旋角为β=12°,齿条齿数应根据转向轮达到的值来确定。
齿轮的转速为n=10r/min ,齿轮传动力矩2221Nm ⋅,转向器每天工作8小时,使用期限不低于5年. 主动小齿轮选用20MnCr5材料制造并经渗碳淬火,而齿条常采用45号钢或41Cr4制造并经高频淬火,表面硬度均应在56HRC 以上。
为减轻质量,壳体用铝合金压铸。
4.2 齿轮几何尺寸确定[2] 齿顶高 ha =()()mmh m n an n 25.47.015.2=+⨯=+*χ,ha=17齿根高 hf()()mmc h m n n an n 375.17.025.015.2=-+⨯=-+=**χ,hf=5.5齿高 h = ha+ hf =17+5.5=22.5分度圆直径 d =mz/cos β=mm337.1512cos 65.2=⨯d=61.348齿顶圆直径 da =d+2ha =61.348+2×17=95.348齿根圆直径 df =d-2hf =61.348-2×11基圆直径mmd d b 412.1420cos 337.15cos =⨯== α db=57.648法向齿厚为 5.2364.07.022tan 22⨯⎪⎭⎫⎝⎛⨯⨯+=⎪⎭⎫ ⎝⎛+=παχπn n n n m smm 593.4=×4=18.372端面齿厚为 5253.2367.0cos 7.022tan 222⨯⎪⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎭⎫⎝⎛+=βπαχπt t t t m smm 275.5=×4=21.1分度圆直径与齿条运动速度的关系 d=60000v/πn1=⇒v 0.001m/s齿距 p=πm=3.14×10=31.4齿轮中心到齿条基准线距离 H=d/2+xm=37.674(7.0)4.3 齿根弯曲疲劳强度计算[11]4.3.1齿轮精度等级、材料及参数的选择(1) 由于转向器齿轮转速低,是一般的机械,故选择8级精度。
第四章设计计算
4.1 原始设计参数
原水水温Q=1000m3/d=41.67 m3/d (4-1)
取流量总变化系数为 Kz=2.0 (因为废水排放的时间和流量不同。
在生产时
候流量大,所以选择流量系数为2.0。
其实也是为了后面计算格栅,这个理论的
东西,流量太小。
格栅间隙系数就很少。
不合实际的)
设计流量Qmax= Kz.Q=2.0×0.01157=0.023m/s (4-2)
4.2 格栅
4.2.1设计说明
格栅(见图4-1)一般斜置在进水泵之前,主要对水泵起保护作用,截去废水中
较大的悬浮物和漂浮物,格栅按形状可分为平面格栅和曲面格栅两种,按格栅栅
条间隙可分为粗格栅(50~100mm),中格栅(10~40mm)细格栅(3~10mm)三种。
本设计采用中格栅,栅条间隙取20mm。
4.2.2中格栅计算
(1)栅条的间隙数
设栅前水深h=0.3m,栅前水深雨栅前流速v
1之间关系v
1=
Qmax/Bh(B为渠道宽
度),过栅流速v= 0.5m/s,栅条间隙宽度b=0.010m,格栅倾角α=60°。
n=Qmax(sinα)0.5/bhv=0.023×(sin60°)0.5/(0.010×0.3×0.5)=14.3≈15个(2)栅槽宽度
设栅条宽度S=0.01
B=S(n-1)+bn=0.01×(15-1)+0.01×15=0.29m
(3)进水渠道渐宽部分的长度
设进水宽度B=0.20m,其渐宽部分展开角度α=20°,进水渠道内的流速为0.45m/s。
l 1=(B-B
1
)/2tgα
1
(4)栅槽与出水渠道连接处的渐窄部分长度
(5)通过格栅的水头损失
设栅条断面为锐边矩形断面
(6)栅后槽总高度
设栅前渠道超高,则有
(7)栅槽的总长度
(8)每日栅渣量
在格栅间隙时,设栅渣量为每污水,有采用机械清渣。
4.2.3格栅选型
选型回转式格栅除污机,电动机功率,栅条间距。
隔单栅倾斜角度为:。
该格栅结构紧凑、体积小、重量轻、运行平稳、维护方便,可实行手动间断运行、自动连续运行,对工作时间和停车时间等运行周期可自动调节,具有紧急停车和过载保护装置。
4.3细格栅
4.3.1设计说明
在沉砂池前设置细格栅主要作用是减少浮渣,避免污水中含大量杂物堵塞管道,为污水处理厂提供良好的运行条件。
计算过程与中格栅相同。
设栅前水深,过栅流速,栅条间隙栅渣量为污水。
4.3.2计算结果
(1)栅条的间隙数
(2)栅槽宽度
(3)进水渠道渐宽部分长度:进水宽度取
(4)栅槽与出水渠道连接处的渐宽部分长度
(5)通过格栅的水头损失:
(6)栅后槽总高度:取栅前渠道超高
(7)栅槽总长度
(8)每日栅渣量
(9)采用机械除渣
排水期
活性污泥大部分为下周期回流使用,过剩污泥进行排放,一般这部分污泥仅占总污泥的30%左右,污水排出,进入下道工序。
闲置期
作用是通过搅拌,曝气或静止使其中微生物恢复其活性,并起反硝化作用而进行脱水。
4.8.2SBR反应池容积计算
由于SBR为间歇进水,所以采用两个反应器。
设计处理流量,根据上面预测,污水进入SBR池的COD ,
(3)排水时间(T
D
)
取排出时间为0.5h和闲置时间一共为0.97h,一个周期所需的时间为T
C =T
A
(4)进水时间(T
F
)
2、单个曝气池尺寸
(1)体积有效V
式中:Q—每个周期进水量,每个池子每周期进水量为
(2)曝气池面积A
(3)曝气池尺寸
反应池宜采用矩形池,水深宜为4.0~6.0m;反应池长宽比;间隙进水宜为,连续进水宜为
4.8.3SBR反应池运行时间
SBR池排水结束时水位
基准水位
警报溢流水位
污泥界面为保护水深,保护水深的设置是为避免排水时对沉淀及棑泥的影响。
进水开始于结束由水位控制,曝气开始由水位和时间控制,曝气结束由时间控制,沉淀开始与结束由时间控制,排水开始由时间控制,排水结束由水位控制。
4.8.4排泥量及棑泥系统
(1)SBR产泥量
SBR的剩余污泥主要来自微生物代谢的增值污泥,还有很少部分由进水悬浮物沉淀形成。
SBR生物代谢产泥量为
根据污泥性质,参考类似经验数据
悬浮物泥量为
总污泥量为
假定棑泥含水率为99%,则排泥量为
(2)排泥系统
剩余污泥在重力作用下通过污泥管路排入集泥井。
4.8.5需氧量及曝气系统设计计算
(1)需氧量计算
计算式为
SBR反应池需氧量O
2
每个周期曝气时间4.13h,一天每池各2个周期,共4个周期
曝气时间为
则需氧量为
(2)供气量计算
设计采用型号 215的微孔曝气器,设SBR反应池池底向上0.3m处,淹没深度H=3.7m。
215型空气扩散器的氧转移效率为
空气离开曝气池时,氧的百分比为
曝气池中溶氧平均饱和度为:(按最不利温度条件计算)水温20℃时曝气池中溶氧平均饱和度为:
(3)布气系统计算。