一次函数知识点总结
- 格式:docx
- 大小:399.11 KB
- 文档页数:19
数学一次函数知识点总结一次函数也叫线性函数,是指函数的最高次数为1的函数。
一次函数的一般形式为:f(x) = kx + b,其中k和b为常数。
1. 斜率:斜率是一次函数的一个重要属性,表示函数曲线的倾斜程度。
对于一次函数f(x) = kx + b,k即为斜率。
当k大于0时,函数递增;当k小于0时,函数递减;当k等于0时,函数水平。
2. 截距:截距是一次函数的另一个重要属性,表示函数曲线与坐标轴的交点。
对于一次函数f(x) = kx + b,b即为y轴截距,也是函数曲线与y轴的交点的纵坐标。
3. 零点:一次函数的零点是指函数曲线与x轴的交点。
对于一次函数f(x) = kx + b,可以通过x = -b/k计算出零点。
4. 图像特征:一次函数的图像是一条直线。
当斜率k大于0时,图像从左下方向右上方倾斜;当斜率k小于0时,图像从左上方向右下方倾斜;当斜率k等于0时,图像为一条水平直线。
5. 平行与垂直性:如果两个一次函数的斜率相等,则它们是平行的;如果两个一次函数的斜率互为倒数(即乘积等于-1),则它们是垂直的。
6. 函数的增减性:一次函数的增减性由斜率决定。
当斜率k大于0时,函数递增;当斜率k小于0时,函数递减;当斜率k等于0时,函数保持不变。
7. 解一次方程:一次函数可以用来解决一次方程的问题。
例如,给定一个一次函数f(x) = kx + b,若要求出f(x) = 0的解,则可将f(x) = kx + b = 0转化为kx = -b,再求出x的值。
总结起来,一次函数的关键是斜率和截距,通过它们可以确定函数的图像和特征。
一次函数可用于解决一次方程的问题,并能与其他一次函数进行比较和判断相互关系。
一次函数所有知识点
一次函数是数学中一个重要的函数类型,它只包含一个自变量,并且函数值只与自变量的取值有关。
在一次函数中,函数值与自变量的取值之间是线性关系。
以下是一次函数的所有知识点:
1. 一次函数的定义:一次函数是一次方程的特解,它表示一个
自变量只对应一个函数值。
2. 一次函数的符号特征:一次函数的导数为零,即
$frac{d}{dx}(f(x))=0$,同时自变量的取值范围是使得函数值不为
零的取值。
3. 一次函数的性质:一次函数是线性函数,因此它具有以下几
个性质:
- 一次函数的斜率为零,即 $frac{dy}{dx}=0$。
- 一次函数的截距为零,即 $y=x$ 是一个一次函数的特解。
- 一次函数的图像是一条直线。
- 一次函数的导数为零,即 $frac{d}{dx}(f(x))=0$。
4. 一次函数的求解:一次函数可以通过求解一次方程来求解。
一次方程的特解是 $x=0$ 或 $x=infty$。
5. 一次函数的应用:一次函数在数学中有许多应用,例如在几
何中可以用来求解三角形的面积,在代数中可以用来求解方程的解等。
6. 一次函数的拓展:一次函数是数学中一个重要的函数类型,
它在物理、工程、经济等领域中都有广泛的应用。
在物理学中,一次函数可以用来描述物理量之间的关系,例如在电路中可以用来描述电
流和电压之间的关系。
在工程中,一次函数可以用来描述材料的应力和应变之间的关系。
在经济中,一次函数可以用来描述商品价格和需求量之间的关系。
一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。
二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。
当k < 0时,函数图像从左到右下降,即函数是减函数。
斜率k表示函数图像与x轴正方向的夹角大小。
2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。
3、图象:一次函数的图象是一条直线。
当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。
三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。
2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。
3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。
四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。
2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。
五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。
3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。
4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。
一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。
一次函数知识点总结一、概述一次函数是数学中常见且重要的函数类型之一。
它的表达式形式为y = ax + b,其中 a 和 b 是常数,x 是自变量,y 是因变量。
一次函数具有线性关系,其图象为直线。
本文将对一次函数的相关概念、性质以及应用进行总结。
二、定义和性质1. 定义:一次函数是指其表达式为 y = ax + b 的函数,其中 a 和 b 是常数,且a ≠ 0。
2. 斜率和截距:在一次函数的表达式中,a 表示直线的斜率,b 表示直线与纵轴的交点,即 y 轴上的截距。
3. 直线的方向:当 a > 0 时,直线呈现上升趋势;当 a < 0 时,直线呈现下降趋势。
4. 直线的平行和垂直:两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积等于 -1。
5. 零点和方程:一次函数的零点是指满足 y = 0 的 x 值,可以通过解一次方程 ax + b = 0 求得。
三、图像与性质1. 图像的特征:一次函数的图像为一条直线,在直角坐标系中呈现线性关系。
根据斜率和截距的不同取值,直线的方向、位置和倾斜程度会有所变化。
2. x 轴和 y 轴的交点:当 x = -b/a 时,直线与 x 轴的交点为横坐标为 -b/a 的点;当 y = 0 时,直线与 y 轴的交点为纵坐标为 b 的点。
3. 斜率的意义:斜率表示了直线上的两个点之间的变化率。
斜率越大,直线越陡峭;斜率为正值时,直线上升;斜率为负值时,直线下降。
4. 点斜式方程:一次函数的点斜式方程为 y - y1 = a(x - x1),其中(x1, y1) 是直线上的任意一点坐标。
5. 一般式方程:一次函数的一般式方程为 ax - y + b = 0,在其中 a,b 均为整数,且 a, b 不同时为 0。
四、应用1. 实际问题建模和解答:一次函数可以用来模拟许多实际问题,如物体的运动轨迹、收入与支出的关系等。
通过确定函数表达式中的参数,可以对问题进行数学建模和求解。
一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
一次函数知识点大全一、一次函数和正比例函数的概念1.概念:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y 是x的正比例函数.(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,k≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.★判断一个等式是否是一次函数先要化简(3)当b=0,k≠0时,y= kx仍是一次函数.(正比例函数)(4)当b=0,k=0时,它不是一次函数.二、函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.三、一次函数性质1. 一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正、负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.2. 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.y=kx (k>0)y=kx (k<0)3.点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P 必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.四、一次函数与方程1. 一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;•直线y=ax+b在x轴的上方,也就是函数的值大于零,x 的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解.2. 坐标轴的函数表达式函数关系式x=0的图像是y轴,反之,y轴可以用函数关系式x=0表示;•函数关系式y=0的图像是x轴,反之,x轴可以用函数关系式y=0表示.3. 一次函数与二元一次方程组的关系一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系.4. 两条直线的位置关系与二元一次方程组的解(1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2.(3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.5. 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值;(4)将k、b的之带入y=kx+b,得到函数表达式。
一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量. 常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。
在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。
斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。
从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。
一次函数的定义域为实数集R,值域也为实数集R。
它的图象可以延伸到整个坐标平面上。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。
而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。
2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。
一次函数的函数值可以用来描述一根直线上的点的位置。
3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。
这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。
4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。
递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。
三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。
它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。
1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。
2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。
初二数学一次函数知识点总结_会计基础知识点总结一、一次函数的定义一次函数是指数为1的函数,通常写成y=kx+b的形式,其中k和b是常数,而x和y分别是自变量和因变量。
一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,而截距b决定了直线和y轴的交点。
二、一次函数的斜率一次函数的斜率k表示了函数图像的倾斜程度,斜率的计算公式为k=(y₂-y₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)是直线上的两个点。
斜率为正表示函数图像向上倾斜,而斜率为负表示函数图像向下倾斜,斜率为零表示函数图像是水平的。
三、一次函数的截距一次函数的截距b表示了函数图像和y轴的交点,截距通常是函数的常数项。
如果截距大于零,函数图像和y轴交于正半轴上方,如果截距小于零,函数图像和y轴交于负半轴上方。
六、一次函数的应用一次函数是数学中非常常见的一种函数,它在生活中有很多应用,比如描述直线运动的速度、工作时间和产量的关系等等。
了解一次函数的性质和特点对我们深入理解各种现象的规律非常有帮助。
会计基础知识点总结:一、资产资产是指企业拥有并且能够为企业带来经济利益的资源,包括货币、存货、固定资产、应收账款等。
资产按照其流动性可以分为流动资产和非流动资产。
二、负债负债是指企业需要向外部支付的经济利益,包括应付账款、借款、应交税费等。
负债按照到期时间可以分为流动负债和非流动负债。
三、所有者权益所有者权益是指企业资产扣除负债后属于所有者的剩余部分。
所有者权益包括股本、资本公积、盈余公积、留存收益等。
四、会计等式会计等式是指资产等于负债加所有者权益,反映了企业资产的来源和运用的关系。
通过会计等式可以清晰地了解企业的财务状况。
五、会计账户会计账户是记录企业经济业务的工具,包括资产负债表、利润表、现金流量表等。
会计账户对企业的财务状况和经营业绩进行了详细的记录和分类。
六、会计核算方法会计核算方法包括现金制度和权责发生制度,分别反映了企业结算货币的时间点和经济业务发生的时间点。
一次函数知识点总结变量和函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。
例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。
对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是13、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义函数的表示方法1、三种表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
公式法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。
用函数解析式表示函数关系的方法就是公式法。
4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
一次函数性质、图像1、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 k(称为斜率)表示直线y=kx+b (k≠0)的倾斜程度,b 称为截距一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到. (1)解析式:y=kx+b(k 、b 是常数,k 0) 必过点:(0,b )和(-k b ,0) (3)走向: 依据k 、b 的值分类判断,见下图(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.(上加下减,左加右减)(7)b 的正、负决定直线与y 轴交点的位置①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数2、正比例函数性质:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx (k不为零) ①k不为零②x指数为1 ③b取零(1)解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)(2)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(3)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(4)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.k>0k<04一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移,).上加下减,左加右减5、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y轴上同一点: b1=b2用待定系数法确定一次函数解析式1、一般步骤(一设二代三解四还原):(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.2、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.3、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.4、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c x b a +-和y=2222b c x b a +-的图象交点. 5、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -;若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y6、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(k b -,0).直线(b ≠0)与两坐标轴围成的三角形面积为s =k b b k b 2212=⨯⨯ 7、对称性:若直线与直线y k x b =+关于(1)x 轴对称,则直线l 的解析式为b kx y--= (2)y 轴对称,则直线l 的解析式为b kx y +-=(3)直线y =x 对称,则直线l 的解析式为k b x k y -=1 (4)直线y x =-对称,则直线l 的解析式为y k x b k =+1(5)原点对称,则直线l 的解析式为b kx y-=基础篇一、填空题1、在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______.在圆的周长公式C=2πr 中,变量是________,常量是_________.2、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个3、下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .4、函数y =x 的取值范围是___________.5、已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y 6、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.7、若23y x b =+-是正比例函数,则b 的值是 ( ) A.0 B.23 C.23- D.32- 8、若关于x 的函数1(1)m y n x -=+是一次函数,则m= ,n= .9、当k_____________时,()2323y k x x =-++-是一次函数;10、若函数1)1(2-++=k x k y 是正比例函数,则k 的值为_______.11、已知32)12(--=m x m y 是正比例函数,且y 随x 的增大而减小,则m 的值为_______.12、当m=_______时,函数54)3(12-++=-x x m y m 是一次函数.13、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为_______.14、东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______.15、平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是_______.16、某商店出售货物时,要在进价的基础上增加一定的利润,下表体现了其数量x (个)与售价y (元)的对应关系,根据表中提供的信息可知y 与x 之间的关系式是_______________。
二、选择题1、下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)2、下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3x C .y=2x 2 D .y=-2x+1 3、一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四4、若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<35、已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-16、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )7、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车 耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )8、一次函数y=kx+b的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为()A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-39、一次函数y=kx+b满足kb>0且y随x的增大而减小,则此函数的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限10、一次函数y=ax+b,若a+b=1,则它的图象必经过点()A、(-1,-1)B、(-1, 1)C、(1, -1)D、(1, 1)三、解答题1、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。