3.第二章 水分生理
- 格式:ppt
- 大小:3.40 MB
- 文档页数:67
第 2 章 植物的水分生理自测题:一、名词解释:1水分代谢 2.水势 3.渗透势 4.压力势 5. 衬质势 6.重力势 7.自由水 8.束缚水 9.渗透作用10.吸胀作用 11.代谢性吸水 12.水的偏摩尔体积 13.化学势 14.水通道蛋白 15.吐水 16.伤流 17.根压18.蒸腾拉力 19.蒸腾作用 20.蒸腾速率 21.蒸腾比率 22.蒸腾系数 23.小孔扩散律 24 .永久萎蔫25.临界水势 26.水分临界期 27.生理干旱 28.内聚力学说 29.节水农业二、 缩写符号翻译:1. atm2.bar3.MPa4.Pa5.PMA6.RH7.RWC8.μw9.V w 10.Wact11.Ws 12.WUE 13.ψw 14.ψp 15.ψs 16.ψm 17.ψπ 18.AQP 19.RDI 20.SPAC三、 填空题:1.植物细胞吸水方式有 、 和 。
2.植物调节蒸腾的方式有 、 和 。
3.植物散失水分的方式有 和 。
4.植物细胞内水分存在的状态有 和 。
5.水孔蛋白存在于细胞的 和 上。
水孔蛋白活化依靠 作用调节。
6.细胞质壁分离现象可以解决下列问题: 、 和 。
7.自由水/束缚水比值越大,则代谢 ;其比值越小,则植物的抗逆性 。
8.一个典型细胞的水势等于 ;具有液泡的细胞的水势等于 ;干种子细胞的水势等于 。
9.形成液泡后,细胞主要靠 吸水。
10.风干种子的萌发吸水主要靠 。
11.溶液的水势就是溶液的 。
12.溶液的渗透势决定于溶液中 。
13.在细胞初始质壁分离时,细胞的水势等于 ,压力势等于 。
14.当细胞吸水达到饱和时,细胞的水势等于 ,渗透势与压力势绝对值 。
15.将一个ψp=-ψs 的细胞放入纯水中,则细胞的体积 。
16.相邻两细胞间水分的移动方向,决定于两细胞间的 。
17.植物可利用水的土壤水势范围为 。
18.植物根系吸水方式有: 和 。
前者的动力是__ ,后者的动力是 。
第一章植物细胞的亚显微结构和功能一、名词解释流动镶嵌模型与单位膜模型一样,膜脂也呈双分子排列,疏水性尾部向内,亲水性头部朝外。
但是,膜蛋白并非均匀地排列在膜脂两侧,而是有的在外边与膜脂外表面相连,称为外在蛋白,有的嵌入膜脂之间甚至穿过膜的内外表面,称为内在蛋白。
由于膜脂和膜蛋白分布的不对称,致使膜的结构不对称。
膜具有流动性,故称之为流动镶嵌模型。
共质体也叫内部空间,是指相邻活细胞的细胞质借助胞间连丝联成的整体。
质外体又叫外部空间或自由空间,是指由原生质体以外的非生命部分组成的体系,主要包括胞间层、细胞壁、细胞间隙和导管等部分。
二简答题1.原核细胞和真核细胞的主要区别是什么?原核细胞低等生物(细菌、蓝藻)所特有的,无明显的细胞核,无核膜,由几条 DNA 构成拟核体,缺少细胞器,只有核糖体,细胞进行二分体分裂,细胞体积小,直径为1~10μm 。
真核细胞具有明显的细胞核,有两层核膜,有各种细胞器,细胞进行有丝分裂,细胞体积较大,直径 10 ~100μm 。
高等动、植物细胞属真核细胞。
2、流动镶嵌模型的基本要点,如何评价。
膜的流动镶嵌模型有两个基本特征:(1)膜的不对称性。
这主要表现在膜脂和膜蛋白分布的不对称性。
①膜脂在膜脂的双分子层中外半层以磷脂酰胆碱为主,而内半层则以磷脂酰丝氨酸和磷脂酰乙醇胺为主;同时不饱和脂肪酸主要存在于外半层。
②膜蛋白膜脂内外两半层所含的内在蛋白与膜两侧的外在蛋白其种类及数量不同,膜蛋白分布不对称性是膜功能具有方向性的物质基础。
③膜糖糖蛋白与糖脂只存在于膜的外半层,而且糖基暴露于膜外,呈现出分布上的绝对不对称性。
(2)膜的流动性①膜蛋白可以在膜脂中自由侧向移动。
②膜脂膜内磷脂的凝固点较低,通常呈液态,因此具有流动性,且比蛋白质移动速度大得多。
膜脂流动性大小决定于脂肪酸不饱和程度,不饱和程度愈高,流动性愈强。
3、细胞壁的主要生理功能(1)稳定细胞形态和保护作用(2)控制细胞生长扩大(3)参与胞内外信息的传递(4)防御功能(5)识别功能(6)参与物质运输4、“细胞壁是细胞中非生命组成部分”是否正确?为什么?不是。
第⼆章植物的⽔分⽣理复习思考题与答案第⼀章植物的⽔分⽣理复习思考题与答案(⼀)名词解释1、束缚⽔(bound water)与细胞组分紧密结合不能⾃由移动、不易蒸发散失的⽔。
2、⾃由⽔(free water)与细胞组分之间吸附⼒较弱,可以⾃由移动的⽔。
3、化学势(chemical potential)偏摩尔⾃由能被称为化学势,以希腊字母µ表⽰,组分j的化学势(µj)为:µj=( G/ nj)t.p. ni.ni≠nj,在⼀个庞⼤的体系中,在等温等压以及保持其他各组分浓度不变时,加⼊1摩尔j物质所引起体系⾃由能的增量。
4、⽔势(water potential)每偏摩尔体积的⽔的化学势差称为⽔势,⽤ψw表⽰。
Ψw= (µw-µow)/ Vw,m,即⽔势为体系中⽔的化学势与处于等温、等压条件下纯⽔的化学势之差,再除以⽔的偏摩尔体积的商。
⽤两地间的⽔势差可判别它们间⽔流的⽅向和限度,即⽔分总是从⽔势⾼处流向⽔势低处,直到两处⽔势差为O为⽌。
5、溶质势ψs(solute potential,ψs)由于溶质颗粒的存在⽽引起体系⽔势降低的数值。
溶质势表⽰溶液中⽔分潜在的渗透能⼒的⼤⼩,因此,溶质势⼜可称为渗透势(osmotic potential,ψπ)。
溶质势可⽤ψs=RTlnNw/Vw.m公式计算,也可按范特霍夫公式ψπ=-π=-iCRT计算。
6、衬质势(matrix potential,ψm)由于衬质(表⾯能吸附⽔分的物质,如纤维素、蛋⽩质、淀粉等)的存在⽽使体系⽔势降低的数值。
7、压⼒势(pressure potential,ψp)由于压⼒的存在⽽使体系⽔势改变的数值。
若加正压⼒,使体系⽔势增加,加负压⼒,使体系⽔势下降。
8、重⼒势(gravity potential,ψg)由于重⼒的存在⽽使体系⽔势增加的数值。
集流(mass flow或bulk flow) 指液体中成群的原⼦或分⼦(例如组成⽔溶液的各种物质的分⼦)在压⼒梯度(⽔势梯度)作⽤下共同移动的现象。
第一章植物的水分生理名词解释水势:每偏摩尔体积水的化学势差。
渗透压:恰好能够使从半透膜一侧通过到另一侧的水分子数目平衡的在较高浓度溶液的液面上施加的额外压强称为渗透压。
质外体:由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。
渗透作用:指两种不同浓度的溶液隔以半透膜(允许溶剂分子通过,不允许溶质分子通过的膜),水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。
思考题4.水分是如何进入根部导管?水分优势如何运输到叶片?答:进入根部导管有三种途径:①质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。
②跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。
③共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
这三条途径共同作用,使根部吸收水分。
根系吸水的动力是根压和蒸腾拉力。
运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。
造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。
5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?答:气孔运动主要受保卫细胞的液泡水势的调节。
调节保卫细胞水势的渗透调节物有下列几种。
因为光照时保卫细胞内的叶绿体进行光合作用,水势降低,周围的水分流向保卫细胞,气孔就开(1)K+:在保卫细胞质膜上有ATP质子泵,分解由氧化磷酸化或光合磷酸化产生的ATP,将H+分泌到保卫细胞外,使得保卫细胞的pH升高。
质膜内侧的电势变得更负,驱动K+从表皮细胞经过保卫细胞质膜上的钾通道进入保卫细胞,再进入液泡。
在K+进入细胞内时,还伴随着少量氯离子的进入,以保持保卫细胞的电中性。
保卫细胞中积累较多的钾离子和氯离子,水势降低,水分进入保卫细胞,气孔就张开。
(2)苹果酸:照光下,保卫细胞内的二氧化碳用于光合碳循环,pH升高,导致淀粉分解生成PEP与二氧化碳反应,形成草酰乙酸转变成苹果酸,苹果酸和氯离子共同平衡钾离子。