计量经济学3多元线性回归模型
- 格式:pptx
- 大小:1.29 MB
- 文档页数:67
§5.1 多元线性回归模型及其假设条件 1.多元线性回归模型 多元线性回归模型:εi pi p iiix b xb x b b y +++++= 2211,n i ,,2,1 =2.多元线性回归模型的方程组形式 3.多元线性回归模型的矩阵形式4.回归模型必须满足如下的假设条件:第一、有正确的期望函数。
即在线性回归模型中没有遗漏任何重要的解释变量,也没有包含任何多余的解释变量。
第二、被解释变量等于期望函数与随机干扰项之和。
第三、随机干扰项独立于期望函数。
即回归模型中的所有解释变量Xj与随机干扰项u 不相关。
第四、解释变量矩阵X 是非随机矩阵,且其秩为列满秩的,即:n k k X rank 〈=,)(。
式中k 是解释变量的个数,n 为观测次数。
第五、随机干扰项服从正态分布。
第六、随机干扰项的期望值为零。
()0=u E 第七、随机干扰项具有方差齐性。
()σσ22=u i(常数)第八、随机干扰项相互独立,即无序列相关。
()()u u u u jiji,cov ,=σ=0§5.2 多元回归模型参数的估计建立回归模型的基本任务是:求出参数bb b p,,,,1σ的估计值,并进行统计检验。
残差:yy e iiiˆ-=;残差平方和:Q=()∑-∑==y y e i i ni iˆ212矩阵求解:X=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡x xxx x x x x x pn nnp p212221212111111,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=b b b b p B ˆˆˆˆ210ˆ ,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=-y y y y n n Y 121 ,()YB X X X ττ1ˆ-=1ˆ2--=p n Qσ要通过四个检验:经济意义检验、统计检验、计量经济学检验、模型预测检验。
§5.4 多元线性回归模型的检验一、R 2检验1.R 2检验定义R 2检验又称复相关系数检验法。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.83272.下列样本模型中,哪一个模型通常是无效的() A. i C (消费)=500+0.8i I (收入) B. d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C. s i Q (商品供给)=20+0.75i P (价格)D. i Y (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( ) A. )30(05.0t B. )28(025.0t C. )27(025.0t D. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数与多重判定系数 之间有如下关系( ) A.2211n R R n k −=−− B. 22111n R R n k −=−−− C. 2211(1)1n R R n k −=−+−− D. 2211(1)1n R R n k −=−−−− 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( )。
§5.1 多元线性回归模型及其假设条件 1.多元线性回归模型 多元线性回归模型:εi pi p iiix b xb x b b y +++++= 2211,n i ,,2,1 =2.多元线性回归模型的方程组形式 3.多元线性回归模型的矩阵形式4.回归模型必须满足如下的假设条件:第一、有正确的期望函数。
即在线性回归模型中没有遗漏任何重要的解释变量,也没有包含任何多余的解释变量。
第二、被解释变量等于期望函数与随机干扰项之和。
第三、随机干扰项独立于期望函数。
即回归模型中的所有解释变量Xj与随机干扰项u 不相关。
第四、解释变量矩阵X 是非随机矩阵,且其秩为列满秩的,即:n k k X rank 〈=,)(。
式中k 是解释变量的个数,n 为观测次数。
第五、随机干扰项服从正态分布。
第六、随机干扰项的期望值为零。
()0=u E 第七、随机干扰项具有方差齐性。
()σσ22=u i(常数)第八、随机干扰项相互独立,即无序列相关。
()()u u u u jiji,cov ,=σ=0§5.2 多元回归模型参数的估计建立回归模型的基本任务是:求出参数bb b p,,,,1σ的估计值,并进行统计检验。
残差:yy e iiiˆ-=;残差平方和:Q=()∑-∑==y y e i i ni iˆ212矩阵求解:X=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡x xxx x x x x x pn nnp p212221212111111,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=b b b b p B ˆˆˆˆ210ˆ ,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=-y y y y n n Y 121 ,()YB X X X ττ1ˆ-=1ˆ2--=p n Qσ要通过四个检验:经济意义检验、统计检验、计量经济学检验、模型预测检验。
§5.4 多元线性回归模型的检验一、R2检验1.R2检验定义R2检验又称复相关系数检验法。
是通过复相关系数检验一组自变量xx x m,,,21与因变量y 之间的线性相关程度的方法。
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
多元线性回归模型案例分析报告多元线性回归模型案例分析——中国人口自然增长分析一·讨论目的要求中国从1971年开头全面开展了方案生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,临近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的进展等各方面的因素相联系,与经济生活息息相关,为了讨论此后影响中国人口自然增长的主要缘由,分析全国人口增长逻辑,与猜想中国将来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有无数,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的凹凸可能会间接影响人口增长率。
(3)文化程度,因为教导年限的凹凸,相应会改变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,挑选人口增长率作为被解释变量,以反映中国人口的增长;挑选“国名收入”及“人均GDP”作为经济整体增长的代表;挑选“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估量参数利用EViews 估量模型的参数,办法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中挑选“Annual ” (年度),并在“Start date ”中输入开头时光“1988”,在“end date ”中输入最后时光“2022”,点击“ok ”,浮现“Workfile UNTITLED ”工作框。
多元线性回归模型(习题与解答)第三章多元线性回归模型一、习题(一)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规方程组4)无偏性5)一致性6)参数估计量的置信区间7)被解释变量预测值的置信区间8)受约束回归9)无约束回归10)参数稳定性检验3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)i i i X Yεββ++=3102)i i i X Yεββ++=log103)i i i X Yεββ++=log log104)i i i X Yεβββ++=)(2105)i ii X Yεββ+=106)i i i X Yεββ+−+=)1(1107)i i i i X X Yεβββ+++=10221103-3.多元线性回归模型与一元线性回归模型有哪些区别?3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3-6.请说明区间估计的含义。
(二)基本证明与问答类题型3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:i ki k i i i u x x x y+++++=ββββL22110,n i,,2,1L =的正规方程组,及其推导过程。
3-8.对于多元线性回归模型,证明:(1)∑=0i e(2)0)ˆˆˆ(ˆ110=+++=∑∑iki k i i i e x x e yβββL3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么?3-10.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?3-11.设有模型:u x x y+++=22110βββ,试在下列条件下:(1)121=+ββ(2)21ββ=分别求出1β和2β的最小二乘估计量。