电源设计规范
- 格式:doc
- 大小:252.00 KB
- 文档页数:8
供配电系统设计规范(电源及供电系统)
1符合下列情况之一时,用电单位宜设置自备电源:
a.需要设置自备电源作为一级负荷中特别重要负荷的应急电源时或第二电源不能满足一级负荷的条件时。
b.设置自备电源较从电力系统取得第二电源经济合理时。
c.有常年稳定余热、压差、废气可供发电,技术可靠、经济合理时。
d.所在地区偏僻,远离电力系统,设置自备电源经济合理时。
2应急电源与正常电源之间必须采取防止并列运行的措施。
3供配电系统的设计,除一级负荷中特别重要负荷外,不应按一个电源系统检修或故障的同时另一电源又发生故障进行设计。
4需要两回电源线路的用电单位,宜采用同级电压供电。
但根据各级负荷的不同需要及地区供电条件,亦可采用不同电压供电。
5有一级负荷的用电单位难以从地区电力网取得两个电源而有可能从邻近单位取得第二电源时,宜从该单位取得第二电源。
6同时供电的两回及以上供配电线路中一回路中断供电时,其余线路应能满足全部一级负荷及二级负荷。
7供电系统应简单可靠,同一电压供电系统的变配电级数不宜多于两级。
8高压配电系统宜采用放射式。
根据变压器的容量、分布及地理环境等情况,亦可采用树干式或环式。
9据负荷的容量和分布,配变电所宜靠近负荷中心。
当配电电压为35KV时亦可采用直降至220~380V配电电压。
10在用电单位内部邻近的变电所之间宜设置低压联络线。
11小负荷的用电单位宜接入地区低压电网。
电源安规标准电源安规标准是指在电源设备的设计、生产、使用过程中需要遵循的一系列规范和标准。
这些标准的制定旨在保障电源设备的安全性和稳定性,确保用户在使用电源设备时不会受到电击、火灾等安全隐患的威胁。
在各个国家和地区,都有相应的电源安规标准,以保障电源设备在全球范围内的安全性和兼容性。
首先,电源设备在设计和生产过程中需要符合相关的电气安全标准,如IEC60950、IEC62368等。
这些标准规定了电源设备在设计和生产过程中需要满足的电气安全要求,包括绝缘电阻、耐压强度、接地连接等方面的要求。
通过符合这些标准,可以有效地降低电源设备在使用过程中发生电击、火灾等安全事故的风险。
其次,电源设备在使用过程中需要符合相关的电磁兼容标准,如EN55032、EN55024等。
这些标准规定了电源设备在使用过程中需要满足的电磁兼容要求,包括电磁辐射、抗干扰能力等方面的要求。
通过符合这些标准,可以有效地降低电源设备对周围电子设备和通讯设备的干扰,确保其在复杂电磁环境下的稳定性和可靠性。
另外,电源设备在设计和生产过程中还需要符合相关的环保标准,如RoHS指令、REACH法规等。
这些标准规定了电源设备在设计和生产过程中需要遵循的环保要求,包括有害物质限制、废弃电子产品回收等方面的要求。
通过符合这些标准,可以有效地降低电源设备对环境的污染,减少有害物质对人体健康和环境的影响。
总的来说,电源安规标准是保障电源设备安全性和稳定性的重要依据,对于电源设备的设计、生产和使用都具有重要意义。
只有严格遵循相关的电源安规标准,才能够确保电源设备在使用过程中不会对用户和环境造成安全隐患,同时也能够提高电源设备的质量和可靠性,为用户提供更加安全和稳定的电源供应。
因此,制定和遵守电源安规标准是电源设备行业发展的重要保障,也是保障用户权益的重要举措。
直流电源系统设计规范直流电源系统设计规范版本号:V1.0(试行版)拟制:审核:批准:石家庄通合电子有限公司目录第一部分电气设计规范 (4)1. 目的 (4)2. 范围 (4)3. 规范性引用文件 (4)4. 术语 (4)5. 系统接线相关规定 (6)5.1 直流电源 (6)5.2 系统电压 (6)5.3 蓄电池组 (6)5.4 充电装置 (7)5.5 接线方式 (8)5.6 网络设计 (8)6. 直流负荷的分类与统计 (9)6.1 直流负荷分类 (9)6.2 直流负荷统计 (9)7. 保护和监控相关规定 (12)7.1 保护 (12)7.2 测量 (12)7.3 信号 (13)7.4 自动化要求 (13)8. 直流电源系统的设计与选型 (14)8.1 蓄电池组 (14)8.2 充电装置 (15)8.3 电线电缆 (18)8.4 蓄电池试验放电装置 (22)8.5 直流断路器 (22)8.6 熔断器 (22)8.7 刀开关 (23)8.8 降压装置 (23)8.9 直流柜体 (23)8.10 蓄电池组出口回路设计 (24)8.11 其它设计规定 (25)9. 电气图纸设计标准 (27)9.1 设计内容 (27)9.1.1 封面设计 (27)9.1.2 图纸目录设计 (27)9.1.3 屏面布置图设计 (28)9.1.4 系统原理图设计 (28)9.1.5 材料清单设计 (28)9.1.6 接线图设计 (29)9.1.7 端子图设计 (29)9.1.8 电池连接图设计 (29)9.1.9 标题栏的填写 (29)9.1.10 其它要求 (29)9.2 图纸的更改 (30)10. 产品图号命名规则 (30)10.1 文件夹命名规则 (30)10.2 材料清单和电气图纸命名规则 (30)10.3 CAD图号命名规则 (30)10.4 型号名称命名规则 (30)11. 材料清单的标准格式 (31)第二部分结构设计规范 (33)1. 目的 (33)2. 适用范围 (33)3. 规范 (33)4. 图号编制或编码的几点原则 (33)5. 常见工程图纸图号构成的方法 (34)6. 图号采用的字符 (34)7. 产品图号编制原则方案 (34)7.1 文件夹命名规则 (34)7.2 CAD机柜型号和图纸名称命名规则 (35)7.3 CAD图纸编号命名规则 (36)8. 与机械制造业的机械工程图纸的编号或编码相关的其它说明37第一部分:电气设计规范1.目的使石家庄通合电子有限公司直流电源系统设计规范化、标准化、系列化,从而达到保证产品质量和提高生产效率的目的。
1.目的以提高产品的可靠性为目的,为DC/DC电源模块的技术设计和改进提供需要遵循的原则,指导技术研发的模式进行。
2.适用范围DC/DC电源模块的设计与改进。
不包括定电压系列。
3.定义3.1技术设计规范的分类3.1.1强制性规范电源模块设计必须遵守的技术设计规范。
在评审、验证和确认的各环节都必须得到严格的检查与确认。
3.1.2推荐性规范尽量遵守的设计规范。
当评审、验证或确认时明确评价符合该规范存在难度或不适宜时,可以违反此规范。
3.2术语定义3.2.1性能参数3.2.1.1系统振荡:输出纹波与噪声中存在低于开关频率的成分超过5mV或实际纹波的10%(不包括工频部分),或开关管波形有发虚、不能同步等现象。
3.2.1.2最小负载电流:在指定输入电压时最小的能保证系统不振荡的负载电流。
3.2.1.3负载瞬态响应恢复时间:电压过冲后恢复到输出电压的负载调整率范围之内的时间。
3.2.2条件与状态3.2.2.1正常稳态工作状态:输入电压和输出负载在允许变化范围之内时,模块的工作状态。
3.2.2.2负载动态:输入电压在允许范围之内,输出负载在25%阶跃变化,重复频率1KHz,电流变化速率为2.5A/μs。
此时不考虑容性负载。
3.2.2.3开关机:输入电压在为允许范围的任意值,输出负载在允许变化范围内打开关闭串联和输入的开关(为防止开关噪声,可以在模块端口加一个10~47μF左右的铝电解电容),保证输入电压上升速率小于5V/ms。
4.2.2.4遥控开关机:输入电压和负载在允许变化范围内,遥控开关机。
4.2.2.5输出短路:短路时输出负载阻抗应小于或等于10mΩ(低电压大电流的产品除外)。
对于多路输出的,应该分别短路每一路,对于共地的对称输出,需要做跨接短路。
4.2.2.6输出过流:输出负载超过模块规定的过流保护点并负载阻抗大于100mΩ(低电压大电流的产品除外)。
对于多路输出的,应该分别过流每一路,对于共地的对称输出,需要做跨接过流。
通信电源规范标准最新通信电源作为通信系统的重要组成部分,其规范标准对于确保通信网络的稳定性和可靠性至关重要。
以下是通信电源规范标准的最新概述:引言随着通信技术的快速发展,通信电源系统也在不断演进,以满足日益增长的通信需求。
最新的通信电源规范标准旨在提高电源系统的效率、可靠性和智能化水平,同时降低能耗和维护成本。
1. 电源系统的基本要求通信电源系统应具备以下基本特性:- 高可靠性:确保在各种环境条件下都能稳定运行。
- 高效率:减少能源损耗,降低运营成本。
- 智能化管理:通过智能监控和控制提高系统管理的便捷性和准确性。
- 环境适应性:能够适应不同的气候和地理条件。
2. 电源系统的分类通信电源系统可分为:- 直流电源系统:适用于大多数通信设备。
- 交流电源系统:适用于需要交流电的设备或场合。
- 混合电源系统:结合直流和交流电源系统,以满足不同设备的需求。
3. 电源设备的技术规范- 电源模块:应具备过载保护、短路保护和过热保护功能。
- 电池系统:应选用高能量密度、长寿命的电池,并具备电池管理系统(BMS)。
- 配电设备:应确保电气安全,具备防雷、过载和短路保护功能。
- 监控系统:应能实时监控电源状态,及时发现并报警异常情况。
4. 安装与布线规范- 安装环境:应选择干燥、通风良好的场所,避免高温和潮湿。
- 布线要求:电缆应按规定路径布设,避免交叉干扰,并符合防火、防鼠等安全要求。
5. 维护与测试标准- 定期维护:制定电源系统的定期检查和维护计划,确保设备处于良好状态。
- 性能测试:定期对电源系统进行性能测试,包括负载测试、效率测试等。
6. 安全与环保要求- 电源系统设计应符合国家和国际的安全标准,如CE、UL等。
- 应采用环保材料,减少有害物质的使用,符合RoHS等环保规定。
7. 智能化与网络化发展- 推动电源系统的智能化发展,实现远程监控、故障预警和自动故障排除。
- 电源系统应支持网络化管理,便于集成到更广泛的通信网络管理系统中。
湖南铁塔电源系统设计和配置规范(V2.0)中国铁塔股份有限公司湖南省分公司2015年10月目录1总则 (1)2系统配置 (1)3市电引入 (2)4交流配电 (3)5开关电源 (5)6蓄电池组 (6)7发电机组 (7)8电力电缆 (7)9防雷接地 (8)10电源系统配置详表 (9)1总则1.1 以满足基站设备不间断供电为原则,为保证系统易维护、易扩展,同时合理控制建设成本,规范电源系统配置和统一设计标准,特制定本规范。
1.2 本规范中,室内站指的是土建机房、轻质板房、租赁机房等机房站点室外站指的是户外一体化机柜站点,包含RRU拉远站点。
1.3本规范在总部《新建基站配套设施总技术要求(试行)》(Q/ZTT 1005-2014)基础上,经反复测算,明确了65种典型场景的电源系统详细配置,适用于省内新建基站的建设。
改造及搬迁基站亦可参照执行。
1.4 本规范给出了65种场景下电源系统的详细设计图纸,包括设计分工界面、交流配电箱接线图、机房(机柜)内设备布局图和线缆布线图。
1.5各市州分公司应严格遵照执行本规范,规范未涉及的内容,应执行工业和信息化部、中国铁塔股份有限公司的相关标准和规范。
1.6本规范由中国铁塔股份有限公司湖南省分公司负责解释。
2系统配置2.1新建基站原则上均应配置交直流供电系统,分别由交流配电箱(单元)、开关电源和蓄电池组(或蓄电池组+固定发电机组)组成。
2.2交流配电箱(单元)容量应按基站远期规划容量配置。
2.3开关电源机架容量按基站远期规划容量配置,整流模块容量按本期负荷配置,1年以内需求均计为本期。
2.4蓄电池组应按中期规划通信负荷配置,3年内需求均应计为中期。
2.5基站内电力电缆均应采用ZA-RVV铜芯阻燃聚氯乙稀绝缘护套软电缆。
2.6 室内站空调全部按照2台2P单相单冷挂机配置,室外站空调全部配置单冷压缩机空调,设备柜制冷量不小于2000w,电池柜制冷量不小于1000w。
3市电引入3.1尽量避免新建变压器和转供电方式,优选从公共电网引入一路380V 或220V交流市电。
联络函联络函内容摘要:关于UPS电源相关国家规范关于设置UPS电源的充分条件、容量大小、储能时间,国家有相应的规范标准(民用建筑电气设计规范JGJ-T16-2008、安全防范工程技术规范及GB50348-2004、出入口控制系统工程设计规范GB50396-2007)分别进行了相应的规定,其全文会以电邮方式发给相关人员,请注意查收。
现摘抄如下(引用的规范原文相关部分见附件):1、设置UPS电源的充分条件A.民用建筑电气设计规范JGJ-T16-2008,其中第3.3.4款,第1条规定:快速自动启动的应急发电机组,适用于允许中断供电时间为15~30s的供电。
B.民用建筑电气设计规范JGJ-T16-2008,其中第3.3.4款,第3条规定:不间断电源装置(UPS),适用于要求连续供电或允许中断供电时间为毫秒级的供电。
C.民用建筑电气设计规范JGJ-T16-2008,其中第3.3.4款,第4条应急电源装置(EPS),适用于允许中断供电时问为毫秒级的应急照明供电。
D.民用建筑电气设计规范JGJ-T16-2008,其中第20.2.9款,第2条对程控用户交换机房的供电如下规定:当机房内通信设备有交流不问断和无瞬变供电要求时,应采用UPS不间断电源供电,其蓄电池组可设一组。
E.民用建筑电气设计规范JGJ-T16-2008,其中第20.4.10款,第2条对会议电视系统供电、照明、防雷、接地及环境做了如下规定:1系统电源的负荷等级与配置以及供电电源质量应符合本规范第3.2节及3.4节的有关规定;2系统中设备需要有交流不问断和无瞬变要求的供电时,应采用UPS不问断电源供电;3音视频设备应采用同相电源集中供电;F.民用建筑电气设计规范JGJ-T16-2008,其中第20.5.2款,第25条对移动通信信号室内覆盖系统系统的供电、防雷和接地做了如下规定:1) 系统基站设备机房的主电源不应低于本建筑物的最高供电等级;通信用的设备当有不间断和无瞬变供电要求时,电源宜采用UPS不问断电源供电方式;G.民用建筑电气设计规范JGJ-T16-2008,其中第20.5.2款,第8条对卫星通信系统的供电、防雷和接地做了如下规定:1) 系统地面端站机房主电源不应低于本建筑物的最高供电等级;通信设备电源应采用UPS不间断电源供电;H.安全防范工程技术规范GB50348-2004,其中第3.12.5款,对电源质量做了如下规定:1 稳态电压偏移不大于±2%;2 稳态频率偏移不大于±0.2Hz;3 电压波形畸变率不大于5%;4 允许断电持续时间为0~4ms;5 当不能满足上述要求时,应采用稳频稳压、不间断电源供电或备用发电等措施。
电源应用规范标准最新1. 引言随着电子设备的多样化和复杂化,电源系统的设计和应用需要满足更高的要求。
本规范旨在为电源系统的设计、安装、维护和使用提供指导,确保其符合当前的技术标准和安全要求。
2. 电源系统设计原则电源系统设计应遵循以下原则:- 确保电源的稳定性和可靠性。
- 满足设备所需的电压和电流规格。
- 考虑系统的能效,减少能耗。
- 确保系统在各种环境条件下都能正常工作。
3. 安全标准电源系统必须遵守以下安全标准:- 符合国际电工委员会(IEC)和国家电气安全标准。
- 电源设备应具备过载保护、短路保护和过热保护功能。
- 设备应有清晰的警告标签和使用说明。
4. 环境适应性电源系统应能适应不同的环境条件,包括:- 温度:电源系统应能在规定的温度范围内稳定工作。
- 湿度:电源系统应能抵抗潮湿环境的影响。
- 振动和冲击:电源系统应能承受运输和使用过程中的振动和冲击。
5. 电磁兼容性电源系统应满足电磁兼容性(EMC)要求,以减少电磁干扰(EMI)和提高系统的抗干扰能力。
6. 电源转换效率电源转换效率是衡量电源系统性能的重要指标。
系统设计应追求高效率,以减少能量损失和提高系统性能。
7. 可维护性电源系统应设计成易于维护和升级,以便在系统出现问题时能够快速修复。
8. 测试和认证电源系统在投入使用前应经过严格的测试,包括:- 性能测试:确保电源系统满足设计规格。
- 安全测试:确保电源系统符合安全标准。
- 环境测试:确保电源系统能在各种环境条件下正常工作。
9. 维护和保养电源系统的维护和保养是确保其长期稳定运行的关键。
维护工作应包括:- 定期检查电源系统的状态。
- 清洁电源设备,防止灰尘和污垢的积累。
- 检查和更换磨损或损坏的部件。
10. 结语随着技术的发展,电源应用规范标准也在不断更新。
本规范旨在为电源系统的设计、安装和维护提供指导,以确保其安全、稳定和高效运行。
请注意,以上内容为示例性文本,具体的电源应用规范标准应根据实际应用场景、技术要求和相关法规进行制定。
EPS12VPower Supply Design GuideA Server System Infrastructure (SSI) SpecificationFor Entry Chassis Power SuppliesVersion 2.92Orig./Rev. Description of Changes2.1Posted design guide 2.8 Remove references to common and split 12V planes.Added higher power levels up to 800W.Reduced holdup time requirements to 75% of max load.Added cross loading plots.Added option for tighter 12V regulation.Add new SSI efficiency requirements (recommended level & loading conditions).Increase 12V rail currents.Tpwok_on max time reduced to 500msec.Change 5VSB to 3.0A for higher power levels.Added reference to PSMI spec.Modified SMBus section (FRU and PSMI) to 3.3V with 5V tolerance.Modified 240VA section; removed common plane, change to <20A for all 12V outputs.Updated sound power & airflow requirementsAdd SATA and PCI-Express GFX connectorsUpdated efficiency testing method2.9 Increase 5V current to 30A and combined3.3V/5V power to 160W for the 650-800W power levels.Increase 12V1/2 current for 550W-600W power levels. Relax require regulation limits. Addedoptional regulation limits.2.91Fixed error in 3.3V and 5V loading at higher power levels. Increased 3.3V/5V combined loading to 170W. 2.92 Higher power levels; 850W, 900W, 950W for dual GFX and 16xDIMMs. Increase 5VSB capabilityfor 4A and 6A options. Add 12V5 and associated connectors. New efficiency specs. Update crossloading requirements; lower 12V min loading.Disclaimer:THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION ORSAMPLE. WITHOUT LIMITATION, THE PROMOTERS (Intel Corporation, NEC Corporation, Dell Computer Corporation, Data General a division of EMC Corporation,Compaq Computer Corporation, Silicon Graphics Inc., and International BusinessMachines Corporation) DISCLAIM ALL LIABILITY FOR COST OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OFDATA OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIALAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE,ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THIS SPECIFICATION ORANY INFORMATION HEREIN.The Promoters disclaim all liability, including liability for infringement of any proprietaryrights, relating to use of information in this specification. No license, express or implied,by estoppel or otherwise, to any intellectual property rights is granted herein.This specification and the information herein is the confidential and trade secretinformation of the Promoters. Use, reproduction and disclosure of this specification andthe information herein are subject to the terms of the S.S.I. Specification Adopter's Agreement.Copyright © Intel Corporation, Dell Computer Corporation, Hewlett Packard Company, Silicon Graphics Inc., International Business Machines Corporation, 2002 – 2004.Contents1Purpose (7)2Conceptual Overview (7)3Definitions/Terms/Acronyms (8)4Mechanical Overview (9)4.1Acoustic Requirements (10)4.2Airflow Requirements (10)4.3Temperature Requirements (11)5AC Input Requirements (12)5.1AC Inlet Connector (12)5.2AC Input Voltage Specification (12)5.3Input Under Voltage (12)5.4Efficiency (12)5.5AC Line Dropout (13)5.6AC Line Fuse (13)5.7AC Inrush (13)5.8AC Line Transient Specification (14)5.9AC Line Fast Transient Specification (14)6DC Output Specification (15)6.1Output Connectors (15)6.1.1Baseboard power connector (15)6.1.2Processor Power Connector (15)6.1.3+12V4 and +12V5 Baseboard Power Connector (16)6.1.4Peripheral Power Connectors (16)6.1.5Floppy Power Connector (17)6.1.6Serial ATA Power Connector (18)6.1.7Server Signal Connector (19)6.1.8Workstation Power Connector for High Power Graphics Cards (19)6.2Grounding (20)6.3Remote Sense (20)6.4Output Power/Currents (20)6.4.1Standby Outputs (29)6.5Voltage Regulation (29)6.6Dynamic Loading (30)6.7Capacitive Loading (30)6.8Ripple / Noise (30)6.9Timing Requirements (31)7Protection Circuits (35)7.1Current Limit (35)7.2240VA Protection (35)7.3Over Voltage Protection (36)7.4Over Temperature Protection (36)8Control and Indicator Functions (36)8.1PSON# (37)8.2PWOK (Power OK) (37)8.3SMBus Communication (38)8.4Power Supply Management Interface (38)8.5Field Replacement Unit (FRU) Signals (38)8.5.1FRU Data (39)8.5.2FRU Data Format (39)9MTBF (40)10Agency Requirements (41)FiguresFigure 1: Enclosure Drawing (9)Figure 2 System Airflow Impedance (10)Figure 3 Cross Loading Graph for 550W Configuration (21)Figure 4 Cross Loading Graph for 600W Configuration (22)Figure 5 Cross Loading Graph for 650W Configuration (23)Figure 6 Cross Loading Graph for 700W Configuration (24)Figure 7 750W Cross loading graph (25)Figure 8 Cross Loading Graph for 800W Configuration (26)Figure 9 Cross Loading Graph for 850W Configuration (27)Figure 10 Cross Loading Graph for 950W Configuration (28)Figure 11: Output Voltage Timing (32)Figure 12: Turn On/Off Timing (Single Power Supply) (34)Figure 13: PSON# Signal Characteristics (37)TablesTable 1 Recommended Acoustic Sound Power Levels (10)Table 2: Thermal Requirements (11)Table 3: AC Input Rating (12)Table 4: Efficiency (13)Table 5: AC Line Sag Transient Performance (14)Table 6: AC Line Surge Transient Performance (14)Table 7: P1 Baseboard Power Connector (15)Table 8: Processor Power Connector (16)Table 9 12V4 and 12V5 Power Connectors (16)Table 10: Peripheral Power Connectors (17)Table 11: Floppy Power Connector (17)Table 12: Floppy Power Connector (18)Table 13: Server Signal Connector (19)Table 14 PCI Express Graphic Card Power Connector(s) (19)Table 15: 550 W Load Ratings (21)Table 16: 600 W Load Ratings (22)Table 17: 650 W Load Ratings (23)Table 18: 700 W Load Ratings (24)Table 19: 750W Load Ratings (25)Table 20: 800 W Load Ratings (26)Table 21: 850 W Load Ratings (27)Table 22: 950 W Load Ratings (28)Table 23: Voltage Regulation Limits (29)Table 24: Optional Regulation Limits (29)Table 25: Transient Load Requirements (30)Table 26: Capacitive Loading Conditions (30)Table 27: Ripple and Noise (31)Table 28: Output Voltage Timing (32)Table 29: Turn On/Off Timing (33)Table 30: Over Current Protection (35)Table 31: Over Current Limits (36)Table 32: Over Voltage Limits (36)Table 33: PSON# Signal Characteristic (37)Table 34: PWOK Signal Characteristics (38)Table 35: FRU Device Information (39)Table 36: FRU Device Product Information Area (39)Table 37: MultiRecord information Area (40)1 2 PurposeThis specification defines a non-redundant power supply that supports entry server computer systems. Recommendations for 550 W, 600 W, 650 W, 700W, 750W, 800W, 850W, and 950W power supplies with up to 9 outputs (3.3 V, 5 V, 12V1, 12V2, 12V3, 12V4, 12V5, -12 V, and 5 VSB) are provided. The form factor is based on the PS/2 power supply, with three enclosure lengths defined to support various output power levels.Connector/cable assemblies are required for the motherboard power, remote sensing, control functions, and peripheral power. Because of its connector leads, the entry-level power supply is not intended to be a hot swap type of power supply. The cooling fan should meet the acoustical requirements for the system, while providing system cooling.The parameters of this supply are defined in this specification for open industry use.Conceptual OverviewIn the Entry server market, the bulk power system must source power on several output rails.These rails are typically as follows:• +3.3 V• +5 V• +12 V• –12 V•+5 V standbyNOTESLocal DC-DC converters shall be utilized for processor power, and will ideally convert power from the +12 V rail, however, they may also convert power from other rails.The +12V rail may be separated into three +12V rails to meet regulatory requirements for energy hazards (240VA).3 Definitions/Terms/AcronymsRequired The status given to items within this design guide, which are required tomeet SSI guidelines and a large majority of system applicationsRecommended The status given to items within this design guide which are not required tomeet SSI guidelines, however, are required by many system applicationsOptional The status given to items within this design guide, which are not required tomeet SSI guidelines, however, some system applications may optionallyuse these featuresAutoranging A power supply that automatically senses and adjusts itself to the properinput voltage range (110 VAC or 220 VAC). No manual switches ormanual adjustments are neededCFM Cubic Feet per Minute (airflow)Dropout A condition that allows the line voltage input to the power supply to drop tobelow the minimum operating voltageLatch Off A power supply, after detecting a fault condition, shuts itself off. Even if thefault condition disappears the supply does not restart unless manual orelectronic intervention occurs. Manual intervention commonly includesbriefly removing and then reconnecting the supply, or it could be donethrough a switch. Electronic intervention could be done by electronicsignals in the Server SystemMonotonically A waveform changes from one level to another in a steady fashion, withoutintermediate retracement or oscillationNoise The periodic or random signals over frequency band of 0 Hz to 20 MHzOvercurrent A condition in which a supply attempts to provide more output current thanthe amount for which it is rated. This commonly occurs if there is a "shortcircuit" condition in the load attached to the supplyPFC Power Factor CorrectedRipple The periodic or random signals over a frequency band of 0 Hz to 20 MHzRise Time Rise time is defined as the time it takes any output voltage to rise from10% to 95% of its nominal voltageSag The condition where the AC line voltage drops below the nominal voltageconditionsSurge The condition where the AC line voltage rises above nominal voltageVSB or Standby Voltage An output voltage that is present whenever AC power is applied to the ACinputs of the supplyMTBF Mean time between failurePWOK A typical logic level output signal provided by the supply that signals theServer System that all DC output voltages are within their specified range4 Mechanical OverviewSTATUSRequiredThree enclosure size options are defined to accommodate various power levels. Recommended power levels for each enclosure length are shown below. Refer to Figure 1 for details. The two rear mounting tabs on the enclosure are OPTIONAL and may not be required for many systems.Length Recommended power levels450W140mm <180mm 450W to 750W800W230mm >Top ViewFigure 1: Enclosure Drawing4.1 Acoustic RequirementsSTATUSRecommendedIt is recommended the power supply have a variable speed fan based on temperature and loading conditions. There are three different acoustic sound power levels defined at different ambient temperatures and loading conditions.Table 1 Recommended Acoustic Sound Power LevelsMaxTypicalIdle35ºC 40ºC 45ºCTemperatureAmbientLoading 40% 60% 100%%Sound Power (BA) 4.0 4.7 6.04.2 Airflow RequirementsSTATUSRecommendedIt is recommended the power supply have no less than 14 CFM of airflow to provide proper airflow to system components. The air shall exit the power supply on the AC inlet face. The power supply shall meet all requirements with the below system airflow impedance presented to the power supplies airflow path.Figure 2 System Airflow Impedance4.3 Temperature RequirementsSTATUSRecommendedThe power supply shall operate within all specified limits over the T op temperature range. The average air temperature difference (ΔT ps ) from the inlet to the outlet of the power supply shall not exceed the values shown below in Table 2. All airflow shall pass through the power supply and not over the exterior surfaces of the power supply.Table 2: Thermal RequirementsITEM DESCRIPTION MIN MAX UNITS T op Operating temperature range. 0 45 °CT non-op Non-operating temperature range. -40 70 °CThe power supply must meet UL enclosure requirements for temperature rise limits. All sides of the power supply with exception of the air exhaust side, must be classified as “Handle, knobs, grips, etc. held for short periods of time only”.5 AC Input RequirementsSTATUSRequiredThe power supply shall incorporate universal power input with active power factor correction, which shall reduce line harmonics in accordance with the EN61000-3-2 and JEIDA MITI standards.5.1 AC Inlet ConnectorSTATUSRequiredThe AC input connector shall be an IEC 320 C-14 power inlet. This inlet is rated for 15 A/250 VAC.5.2 AC Input Voltage SpecificationSTATUSRequiredThe power supply must operate within all specified limits over the following input voltage range. Harmonic distortion of up to 10% THD must not cause the power supply to go out of specified limits. The power supply shall operate properly at 85 VAC input voltage to guarantee proper design margins.Table 3: AC Input RatingPARAMETER MIN RATED MAXVoltage (110) 90 V rms100-127 V rms140 V rmsVoltage (220) 180 V rms200-240 V rms264 V rmsFrequency 47 Hz 63 Hz5.3 Input Under VoltageSTATUSRequiredThe power supply shall contain protection circuitry such that application of an input voltage below the minimum specified in Section 5.2 shall not cause damage to the power supply.5.4 EfficiencySTATUSRecommended / RequiredThe following table provides recommended and required minimum efficiency levels. These are provided at three different load levels; 100%, 50% and 20%. The “required” minimum efficiency levels are for the purpose of proper power supply cooling when installed in the system. The “recommended” minimum efficiency levels are for thepurpose of reducing the system’s AC power consumption. The efficiency is specified at 50% and 20% loading conditions to help reduce system power consumption at typical system loading conditions.Efficiency shall be tested at AC input voltages of 115VAC and 230VAC. Refer to for details on proper efficiency testing methods.Table 4: EfficiencyLoading 100% of maximum 50% of maximum 20% of maximum70% 72% 65% minimumRequired80% 80% 80% Recommendedminimum5.5 AC Line DropoutSTATUSRequiredAn AC line dropout is defined to be when the AC input drops to 0 VAC at any phase of the AC line for any lengthof time. During an AC dropout of one cycle or less the power supply must meet dynamic voltage regulation requirements over the rated load. An AC line dropout of one cycle or less shall not cause any tripping of control signals or protection circuits. If the AC dropout lasts longer than one cycle, the power supply should recover and meet all turn on requirements. The power supply must meet the AC dropout requirement over rated AC voltages, frequencies, and 75% or less of the rated output loading conditions. Any dropout of the AC line shall not cause damage to the power supply.5.6 AC Line FuseSTATUSRequiredThe power supply shall incorporate one input fuse on the LINE side for input over-current protection to prevent damage to the power supply and meet product safety requirements. Fuses should be slow blow type or equivalent to prevent nuisance trips. AC inrush current shall not cause the AC line fuse to blow under any conditions. All protection circuits in the power supply shall not cause the AC fuse to blow unless a component in the power supply has failed. This includes DC output load short conditions.5.7 AC InrushSTATUSRequiredThe power supply must meet inrush requirements for any rated AC voltage, during turn on at any phase of AC voltage, during a single cycle AC dropout condition, during repetitive ON/OFF cycling of AC, and over thespecified temperature range (T op). The peak inrush current shall be less than the ratings of its critical components (including input fuse, bulk rectifiers, and surge limiting device).STATUSRecommendedAn additional inrush current limit is recommended for some system applications that require multiple systems on a single AC circuit. AC line inrush current shall not exceed 50 A peak for one-quarter of the AC cycle, after which, the input current should be no more than the specified maximum input current from Table 3.5.8 AC Line Transient SpecificationSTATUSRecommendedAC line transient conditions shall be defined as “sag” and “surge” conditions. Sag conditions (also referred to as “brownout” conditions) will be defined as the AC line voltage dropping below nominal voltage. Surge will be defined as the AC line voltage rising above nominal voltage.The power supply shall meet the requirements under the following AC line sag and surge conditions.Table 5: AC Line Sag Transient PerformanceAC Line SagDuration Sag Operating AC Voltage Line Frequency Performance CriteriaContinuous 10% Nominal AC Voltage ranges 50/60 Hz No loss of function or performance0 to 1 ACcycle100% Nominal AC Voltage ranges 50/60 Hz No loss of function or performance>1 AC cycle >10% Nominal AC Voltage ranges 50/60 Hz Loss of function acceptable, selfrecoverableTable 6: AC Line Surge Transient PerformanceAC Line SurgeDuration Surge Operating AC Voltage Line Frequency Performance CriteriaContinuous 10% Nominal AC Voltages 50/60 Hz No loss of function or performance0 to ½ AC cycle 30% Mid-point of nominal ACVoltages50/60 Hz No loss of function or performance5.9 AC Line Fast Transient SpecificationSTATUSRecommendedThe power supply shall meet the EN61000-4-5 directive and any additional requirements in IEC1000-4-5:1995 and the Level 3 requirements for surge-withstand capability, with the following conditions and exceptions:•These input transients must not cause any out-of-regulation conditions, such as overshoot and undershoot, nor must it cause any nuisance trips of any of the power supply protection circuits.•The surge-withstand test must not produce damage to the power supply.•The supply must meet surge-withstand test conditions under maximum and minimum DC-output load conditions.6 DC Output Specification6.1 Output ConnectorsThe power supply shall have the following output connectors.6.1.1 Baseboard power connectorSTATUSRequiredConnector housing: 24-Pin Molex39-01-2240 or equivalentContact: Molex44476-1111 or equivalentTable 7: P1 Baseboard Power ConnectorPin Signal 18 AWG Color Pin Signal 18 AWG Color1+3.3 VDC1Orange 13 +3.3VDC Orange2 +3.3 VDC Orange 14 -12 VDC Blue3 COM Black 15COM Black4 +5VDC Red 16PS_ON Green5 COM Black 17COM Black6 +5VDC Red 18COM Black7 COM Black 19COM Black8 PWR OK Gray 20 Reserved (-5 V inATX)N.C.9 5 VSB Purple 21 +5 VDC Red10 +12V32Yellow/Blue Stripe 22 +5 VDC Red11 +12V32Yellow/Blue Stripe 23 +5 VDC Red12 +3.3VDCOrange 24 COM Black1. 3.3V remote sense signal double crimped with 3.3V contact.2. If 240VA limiting is not a requirement for the power supply then all +12V outputs are common and may have the samewire color (yellow).6.1.2 ProcessorPowerConnectorSTATUSRequiredConnector housing: 8-Pin Molex 39-01-2080 or equivalentContact: Molex44476-1111 or equivalentTable 8: Processor Power ConnectorPin Signal 18 AWG color Pin Signal 18 AWG Color1 COM Black 5 +12 V1 Yellow/Black Stripe2 COM Black 6 +12 V1 Yellow/Black StripeV2 Yellow3 COM Black 7 +12V2 Yellow4 COM Black 8 +12If 240VA limiting is not a requirement for the power supply then all +12V outputs are common and may have the same wirecolor (yellow).6.1.3 +12V4 and +12V5 Baseboard Power ConnectorSTATUS+12V4 Required for 700W, 750W, and 800W power levels+12V5 Required for 850W and 950W power levelsSystems that require more then 16A of +12V current to the baseboard will require this additional 2x2 power connector. This is due to the limited +12V capability of the 2x12 baseboard power connector. +12V4 will power the 2x2 connector.Systems with 16xDIMMs and/or dual graphic cards will require the +12V5 output and added +12V5 2x2 connector.Connector housing: 4-Pin Molex 39-01-2040 or equivalentContact: Molex44476-1111 or equivalentTable 9 12V4 and 12V5 Power ConnectorsPin Signal 18 AWG color Pin Signal 18 AWG Color1 COM Black 3 +12 V4 / +12 V5 Yellow/Green Stripe2 COM Black 4 +12 V4 / +12 V5 Yellow/Green StripeIf 240VA limiting is not a requirement for the power supply then all +12V outputs are common and may have the same wirecolor (yellow).PowerConnectors6.1.4 PeripheralSTATUSRequiredConnector housing: Amp 1-480424-0 or equivalentContact: Amp 61314-1 contact or equivalentTable 10: Peripheral Power ConnectorsPin Signal 18 AWG Colorstripe1 +12V4 Yellow/Green2 COM Black3 COM BlackVDC Red4 +51. The +12V power to peripherals may be split between the second, third, or fourth +12V channel for the purpose oflimiting power to less than 240VA.2. If 240VA limiting is not a requirement, all +12V outputs are common and may have the same wire color.6.1.5 Floppy Power ConnectorSTATUSRequiredConnector housing: Amp 171822-4 or equivalentTable 11: Floppy Power ConnectorPin Signal 22 AWG Color1 +5VDC Red2 COM Black3 COM BlackStripe4 +12V4 Yellow/Green1. The +12V power to peripherals may be split between the second, third, or fourth +12V channel for the purpose oflimiting power to less than 240VA.2. If 240VA limiting is not a requirement for the power supply then all +12V outputs are common and may have the samewire color.6.1.6 Serial ATA Power ConnectorSTATUSOptionalThis is a required connector for systems with serial ATA devices.The detailed requirements for the serial ATA connector can be found in the “Serial ATA : High Speed Serialized AT Attachment “ specification at .Molex Housing #675820000Molex Terminal #67510000Table 12: Floppy Power ConnectorPin Signal 18 AWG Color5 +3.3VDC Orange4 COM Black3 +5VDC Red2 COM BlackStripe1 +12V4 Yellow/Green543216.1.7 Server Signal ConnectorSTATUSOptionalFor server systems with SMBus features, the power supply may have an additional connector, which provides serial SMBus for FRU data and remote sense on 3.3V and Return.If the optional server signal connector is not used on the power supply or the connector is unplugged, the power supply shall utilize the 3.3RS on the baseboard connector (Pin 1).Connector housing: 5-pin Molex 50-57-9405 or equivalentContacts: Molex 16-02-0088 or equivalentTable 13: Server Signal ConnectorPin Signal 24 AWG Color1 SMBus Clock White/Green Stripe2 SMBus Data White/Yellow Stripe3 SMBAlert White4 ReturnS Black/WhiteStripe5 3.3RS Orange/WhiteStripe6.1.8 Workstation Power Connector for High Power Graphics CardsSTATUSOptionalFor workstation systems with high-power graphics cards additional power connectors will be needed. The +12V4 connector is needed for powering a system with a single 150W graphics card. +12V4 and +12V5 connectors are needed for powering a system with dual 150W graphics cards.Connector housing: 6-pin Molex 45559-0002 or equivalentContacts: Molex 39-00-0207 or equivalentTable 14 PCI Express Graphic Card Power Connector(s)PIN SIGNAL 18 AWG Colors PIN SIGNAL 18 AWG Colors1 +12V4 / +12V5 Yellow/GreenS 4 COM Black2 +12V4 / +12V5 Yellow/Green 5 COM Black3 +12V4 / +12V5 Yellow/Green6 COM Black6.2 GroundingSTATUSRequiredThe ground of the pins of the power supply wire harness provides the power return path. The wire harness ground pins shall be connected to safety ground (power supply enclosure).6.3 Remote SenseSTATUSOptionalThe power supply may have remote sense for the +3.3V (3.3VS) and return (ReturnS) if the Optional Server Signal connector is implemented. The remote sense return (ReturnS) is used to regulate out ground drops for all output voltages; +3.3V, +5 V, +12V1, +12V2, +12V3, -12 V, and 5 VSB. The 3.3V remote sense (3.3VS) is used to regulate out drops in the system for the +3.3 V output. The remote sense input impedance to the power supply must be greater than 200 W on 3.3 VS and ReturnS. This is the value of the resistor connecting the remote sense to the output voltage internal to the power supply. Remote sense must be able to regulate out a minimum of 200 mV drop on the +3.3 V output. The remote sense return (ReturnS) must be able to regulate out a minimum of 200 mV drop in the power ground return. The current in any remote sense line shall be less than 5 mA to prevent voltage sensing errors. The power supply must operate within specification over the full range of voltage drops from the power supply’s output connector to the remote sense points.6.4 Output Power/CurrentsSTATUSRecommendedThe following tables define power and current ratings for four recommended power levels selected to cover different types of systems and configurations.The combined output power of all outputs shall not exceed the rated output power. Load ranges are provided for each output level. The power supply must meet both static and dynamic voltage regulation requirements for the minimum loading conditions.Table 15: 550 W Load RatingsVoltage Minimum Continuous Maximum Continuous Peak +3.3 V 1.5 A 24 A+5 V 1.0 A 24 A+12V1 0 A 16 A 18 A +12V2 0 A 16 A 18 A +12V3 0.1 A 14 A+12V4 0 A 8.0 A 13 A -12 V 0 A 0.5 A+5 VSB 0.1 A 3.0 A 3.5 A1. Maximum continuous total DC output power should not exceed 550 W.2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 140 W.3. Maximum peak total DC output power should not exceed 660 W.4. Peak power and current loading shall be supported for a minimum of 12 second.5. Maximum combined current for the 12 V outputs shall be 41 A.6. Peak current for the combined 12 V outputs shall be 50 A.Figure 3 Cross Loading Graph for 550W ConfigurationTable 16: 600 W Load RatingsVoltageMinimum ContinuousMaximum ContinuousPeak+3.3 V 1.5 A 24 A +5 V 1.0 A 24 A +12V1 0 A 16 A 18 A +12V2 0 A 16 A 18 A +12V3 0.1 A 16 A 18 A +12V4 0 A 16 A 18 A -12 V 0 A 0.5 A +5 VSB0.1 A3.0 A3.5 A1. Maximum continuous total DC output power should not exceed 600 W.2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 140 W. 3. Maximum peak total DC output power should not exceed 680 W.4. Peak power and current loading shall be supported for a minimum of 12 second.5. Maximum combined current for the 12 V outputs shall be 48 A.6.Peak current for the combined 12 V outputs shall be 54 A.Figure 4 Cross Loading Graph for 600W Configuration。
最新范本,供参考!
整车电负荷设计规范
编制
校对
审核
批准
北汽福田汽车股份有限公司
汽车工程研究院
电子电器中心
最新范本,供参考!
BJ ⅩⅩⅩ系列车型整车电负荷设计规范
编号
共 3 页 第 1 页
一、发动机、发电机基本状态
发动机型号
发动机和发电机皮带轮传动速比
发动机怠速(rpm)
发电机对应怠速(rpm)
发动机最大扭矩点(rpm)
发电机对应最大扭矩点(rpm)
发电机初始临界转速(rpm)
蓄电池容量(A.h)
蓄电池补充充电电流(A) 蓄电池标称电荷量的10%
发电机输出电压(V)
ⅩⅩ
发动机匹配额定电流时发电机特性曲线(见下图一、根据具体的发动机匹配的
发电机的特性曲线):
图一(发电机特性曲线)
最新范本,供参考!
BJ ⅩⅩⅩ系列车型整车电负荷设计规范
编号
共 3 页 第 2 页
二、发电机的功率确定
按以下两个方面确定发电机的功率:
1、发电机对应发动机怠速输出电流最低限度应超过永久及长期耗电器的耗电电流的
1.1~1.3倍。考虑倍乘因子后,即使短途行驶、发动机空转也可保证蓄电池充分充电;
2、发电机额定电流应大于永久及长期耗电器、短期耗电器耗电电流之和。
三、整车电气设备功率与发电机的功率平衡计算
1、按用电器耗电功率加权计算(参考Robert Bosch公司的倍数规则)
永久及长期耗电器 短期耗电器
部件 功率(W) 部件 功率(W) 计算值(W)
远光灯 转向灯 ×0.1
小灯 制动灯 ×0.1
牌照灯 室内灯 ×0
发动机控制 冷凝风机 ×0.1
蓄电池充电 前鼓风机 ×0.5
仪表 后蒸发器风机 ×0.5
继电器 后暖风机 ×0.5
收放机 洗涤泵电机 ×0
压缩机离合器 点烟器 ×0
电动燃油泵 中控门锁 ×0
电器附件 喇叭 ×0
CAN总线的网关、控制器 电动天窗
分动器TOD和自动变速
箱的控制器
电动窗 ×0
胎压监测系统(TPMS) 雨刮器电机 ×0.25
……… 雾灯
×0.1
后除雾 ×0.5
ABS
×0.5
………
合计 合计
折合电流(A) 折合电流(A)
1.3倍折合电流(A)
发动机怠速输出(A)
折合总电流(A)
发电机额定输出(A)
结论:(按用电器耗电功率加权计算,确认发电机的功率是否满足要求。)
最新范本,供参考!
BJ ⅩⅩⅩ系列车型整车电负荷设计规范
编号
共 3 页 第 3 页
2、按爬长坡极限工况下用电器耗电功率计算(整车最大连续用电组合)
永久及长期耗电器 短期耗电器
部件 功率(W) 部件 功率(W) 计算值(W)
远光灯 转向灯
小灯 制动灯
牌照灯 室内灯
发动机控制 冷凝风机
蓄电池充电 前鼓风机
仪表 后蒸发器风机
继电器 后暖风机
收放机 洗涤泵电机
压缩机离合器 点烟器
电动燃油泵 中控门锁
电器附件 喇叭
CAN总线的网关、控制
器
电动窗
电动天窗
分动器TOD和自动变速
箱的控制器
雨刮器电机
胎压监测系统(TPMS) 雾灯
……. 后除雾
ABS
…….
合计 合计
折合电流(A) 折合电流(A)
1.3倍折合电流(A)
发动机怠速输出(A)
折合总电流(A)
发电机额定输出(A)
结论:(按用电器耗电功率加权计算,确认发电机的功率是否满足要求。)
具体实例见下页:
最新范本,供参考!
实例:
BJ6486系列轻型客车整车电负荷设计规范
编号
共 3 页 第 1 页
一、发动机、发电机基本状态
发动机型号
4G64
发电机皮带轮外径
62
发动机曲轴皮带轮外径
149
发电机皮带轮传动速比
2.4
发动机怠速(rpm) 750±30
发电机对应怠速(rpm)
1800
发动机最大扭矩点(rpm)
2400~2800
发电机对应最大扭矩点(rpm)
5760
发电机初始临界转速(rpm)
1300
蓄电池容量(A.h)
65
蓄电池补充充电电流(A) 6.5 蓄电池标称电荷量的10%
发电机输出电压(V) 13.5 折合充电功率88W
4G64发动机配额定电流120A发电机特性:
最新范本,供参考!
BJ6486系列轻型客车整车电负荷设计规范
编号
共 3 页 第 2 页
二、发电机的功率确定
按以下两条确定发电机的功率:
1、发电机对应发动机怠速输出电流最低限度应超过永久及长期耗电器的耗电电流的
1.1~1.3倍。考虑倍乘因子后,即使短途行驶、发动机空转也可保证蓄电池充分充电;
2、发电机额定电流应大于永久及长期耗电器、短期耗电器耗电电流之和。
三、整车耗电功率与发电机的功率平衡计算
1、按用电器耗电功率加权计算(参考Robert Bosch公司的倍数规则)
永久及长期耗电器 短期耗电器
部件 功率(W) 部件 功率(W) 计算值(W)
远光灯 67.5×2 转向灯 24×4+5.6×2 10.7 ×0.1
小灯 5.6×6 制动灯 24×2+5.6 5.4 ×0.1
牌照灯 5.6×2 室内灯 (11+3.3)×2+15+3.3 0 ×0
发动机控制 100 冷凝风机 400 40 ×0.1
蓄电池充电 88 前鼓风机 280 140 ×0.5
仪表 10 后蒸发器风机 70×2 70 ×0.5
继电器 15 后暖风机 154 77 ×0.5
收放机 100 洗涤泵电机 34×2 0 ×0
压缩机离合器 50 点烟器 120 0 ×0
电动燃油泵 70 中控门锁 300 0 ×0
电器附件 10 喇叭 90 0 ×0
电动窗 240 0 ×0
雨刮器电机 56+34 22.5 ×0.25
雾灯 (62+24)×2 17.2 ×0.1
后除雾 100 50 ×0.5
ABS 400 200
×0.5
合计 622.8 合计
632.8
折合电流(A) 46 折合电流(A)
47
1.3倍折合电流(A)
60
发动机怠速输出(A)
62
折合总电流(A)
93
发电机额定输出(A)
120
按用电器耗电功率加权计算,发电机的功率满足要求。
最新范本,供参考!
BJ6486系列轻型客车整车电负荷设计规范
编号
共 3 页 第 3 页
2、按爬长坡极限工况下用电器耗电功率计算(整车最大连续用电组合)
永久及长期耗电器 短期耗电器
部件 功率(W) 部件 功率(W) 计算值(W)
远光灯 67.5×2 转向灯 24×4+5.6×2
0
小灯 5.6×6 制动灯 24×2+5.6
0
牌照灯 5.6×2 室内灯 (11+3.3)×2+15+3.3
0
发动机控制 100 冷凝风机
400 400
蓄电池充电 88 前鼓风机
280 280
仪表 10 后蒸发器风机 70×2
140
继电器 15 后暖风机
154 0
收放机 100 洗涤泵电机 34×2
0
压缩机离合器 50 点烟器
120 0
电动燃油泵 70 中控门锁
300 0
电器附件 10 喇叭
90 0
电动窗
240 0
雨刮器电机
56+34 56
雾灯 (62+24)×2
172
后除雾
100 0
ABS 400 0
合计 622.8 合计
1048
折合电流(A) 46 折合电流(A)
78
1.3倍折合电流(A)
60
发动机怠速输出(A)
62
折合总电流(A)
124
发电机额定输出(A)
120
按爬长坡极限工况下用电器耗电功率计算,发电机仅有4A的输出不足,可由蓄电池输
出补充。发电机的功率满足要求。
最新范本,供参考!
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好
评和关注,我们将会做得更好】