专题1 基因工程
- 格式:ppt
- 大小:2.59 MB
- 文档页数:49
专题1 基因工程 1。
5 蛋白质工程的崛起一、选择题1.蛋白质工程的实质是()A.改造蛋白质B.改造mRNAC.改造基因D.改变氨基酸解析:蛋白质工程的目标是根据人们对蛋白质功能的特殊要求,对蛋白质的结构进行分子设计,由于基因决定蛋白质,因此要对蛋白质结构进行设计改造,必须从基因入手。
答案:C2.葡萄糖异构酶(GⅠ)在工业上应用广泛,为提高其热稳定性,科学家对GⅠ基因进行体外定点诱变,以脯氨酸(Prol38)替代Gly138,含突变体的重组质粒在大肠杆菌中表达,结果最适反应温度提高10~12 ℃。
这属于生物工程中的()A.基因工程B.蛋白质工程C.发酵工程D.酶工程解析:酶工程的重点在于对已存在的酶合理充分利用(如:加酶洗衣粉、嫩肉粉等),而蛋白质工程的重点则在于对已存在的蛋白质分子的改造。
通常所说的酶工程是用工程菌生产酶制剂,而没有经过由酶的功能来设计酶的分子结构,然后由酶的分子结构来确定相应基因的碱基序列等步骤。
答案:B3.下列哪项不是蛋白质工程中的蛋白质分子设计()A.对已知结构的蛋白质进行少数氨基酸的替换B.对不同来源的蛋白质分子进行拼接组装C.从氨基酸的排列顺序开始设计全新蛋白质D.设计控制蛋白质合成的基因中的核苷酸序列解析:蛋白质工程的重要方面是蛋白质的分子设计,它可以分为三类:一是对已知蛋白质进行少数氨基酸的替换,二是对不同来源的蛋白质进行拼接组装,三是设计制造自然界中全新的蛋白质。
D项中的内容是合成基因,属于基因工程.答案:D4.下列不属于蛋白质工程成果的是()A.改造酶的结构,提高酶的热稳定性B.生产出鼠—人嵌合抗体C.将t。
PA分子中的天冬酰胺替换为谷氨酰胺D.蛋白酶洗衣粉容易洗掉奶渍、血渍解析:A、B、C三项所述都是对现存的蛋白质分子进行改造,属于蛋白质工程的成果。
而加酶洗衣粉属于酶制剂的应用,属于酶工程的成果.答案:D5.下列关于蛋白质工程应用的叙述错误的是()A.蛋白质工程可以改造酶的结构,提高酶的热稳定性B.通过蛋白质工程可以改变蛋白质的活性C.利用蛋白质工程可以在大肠杆菌细胞中得到人的胰岛素D.蛋白质工程可以对胰岛素进行改造和修饰,合成速效型胰岛素制剂解析:蛋白质工程是依据人们设计的蛋白质分子结构来改造基因,进而控制合成或改变自然界中的蛋白质,而在大肠杆菌中生产人胰岛素利用基因工程技术便可达到。
专题 1 基因工程基因工程是指按照人们的愿望,进行严格的设计,并通过___基因拼接_和_DNA重组_等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在_DNA 分子_水平上进行设计和施工的,因此又叫做_转基因技术_。
科技探索之路基础理论和技术的发展催生了基因工程。
20 世纪中叶,基础理论取得了重大突破●DNA 是遗传物质的证明1944 年,艾弗里等人通过不同类型肺炎双球菌的转化实验,不仅证明了生物的遗传物质是DNA,还证明了___DNA是主要遗传物质_。
●DNA 双螺旋结构和中心法则的确立1953 年,沃森和克里克建立了___DNA双螺旋结构___模型。
1958 年,梅塞尔松和斯塔尔用实验证明_DNA复制的方式-----半保留复制原则。
随后不久确立的中心法则,解开了 DNA 复制、转录和翻译过程之谜,阐明了遗传信息流动的方向。
●遗传密码的破译1963 年,尼伦伯格和马太破译编码氨基酸的遗传密码。
1966 年,霍拉纳用实验证实了尼伦伯格提出的遗传密码的存在。
这些成果不仅使人们认识到,自然界中从微生物到人类共用一套遗传密码_,而且为基因的分离和合成等提供了理论依据。
技术发明使基因工程的实施成为可能。
●基因转移载体的发现1967 年,罗思和赫林斯基发现细菌拟核 DNA 之外的质粒有_自我复制_能力,并可以在_细菌细胞间转移,这一发现为基因转移找到了一种运载工具。
●工具酶的发现1970 年,阿尔伯、内森斯,史密斯在细菌中发现了第一个限制性内切酶(简称限制酶)后,20 世纪 70 年代初相继发现了多种限制酶和连接酶,以及逆转录酶,这些发现为 DNA 的切割、连接以及功能基因的获得创造了条件。
●DNA 合成和测序技术的发明自 1965 年,桑格发明氨基酸序列分析技术后,1977 年,科学家又发明了 DNA 序列分析的方法,为基因序列图的绘制提供了可能,之后,DNA 合成仪的问世又为引物、探针和小分子DNA基因的获得提供了方便。
选修3易考知识点背诵专题1 基因工程基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
(3)其它载体:噬菌体的衍生物、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。
2.原核基因采取直接分离获得,真核基因是人工合成。
人工合成目的基因的常用方法有反转录法_和化学合成法_。
3.PCR技术扩增目的基因(1)原理:DNA双链复制(2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。
照对市爱民阳光实验学校高一生物专题1 基因工程【本讲信息】一. 教学内容:专题1 基因工程DNA重组技术的根本工具〔一〕教学内容理解DNA重组技术所需三种根本工具的作用,认同基因工程的诞生和开展离不开理论研究和技术创〔二〕教学:DNA重组技术所需的三种根本工具的作用〔三〕教学难点:基因工程载体需要具备的条件〔四〕教学过程:来源:主要从原核生物中分离功能:能够识别双链DNA分子的某种特定核苷酸序列,限制性内切酶并使每一条链中特定部位的两个核苷酸之间的磷(分子手术刀)酸二酯键断开。
切割后的DNA末端:黏性末端平末端功能:将切下来的DNA片段拼接成新的DNA分子DNA连接酶T4 DNA连接酶:能“缝合”双链DNA片段互补的黏性末端,(分子缝合针)种类也能“缝合”双链DNA的平末端E·coli DNA连接酶:只能将双链片段互补的黏性末端连接能在宿主细胞中保存下来并大量复制条件:有一个至多个限制酶切割点,基因进入受体细胞的载体有特殊的遗传标记基因,便于筛选。
(分子运输车)质粒(常用)种类:λ噬菌体的衍生物动植物病毒1. 基因工程的原理基因工程是指按照人们的愿望,进行严格的设计,通过体外和,赋予生物以的遗传特性,创造出更符合人们需要的的生物类型和生物产品。
由于基因工程是在水平上进行设计和施工的,因此又叫做。
2. 限制性核酸内切酶限制酶——“分子手术刀〞掌握限制酶的作用,切割后产生的结果,关注限制酶从哪里寻找?噬菌体侵染细菌的——单细胞生物容易受到自然界外源DNA的入侵。
那么这类原核生物之所以长期进化而不绝灭,有何保护机制?在生物体内有一类酶,它们能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。
由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶〔简称限制酶〕。
限制酶是基因工程中所用的重要切割工具。
家已从原核生物中别离出了许多种限制酶。