化工热力学答案[3章]
- 格式:doc
- 大小:643.50 KB
- 文档页数:8
习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。
V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。
3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。
需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。
化工热力学第3章解答第3章均相封闭体系热力学原理及其应用一、是否题1. 体系经过一绝热可逆过程,其熵没有变化。
(对。
dS Q 0 rev)(错。
如一个吸热的循环,熵2. 吸热过程一定使体系熵增,反之,熵增过程也是吸热的。
变为零)(错。
不需要可逆条件,适用于只 3. 热力学基本关系式dH=TdS+VdP只适用于可逆过程。
有体积功存在的封闭体系)(错。
能于任4. 象dU=TdS-PdV等热力学基本方程只能用于气体,而不能用于液体或固相。
何相态)5. 当压力趋于零时,M T,P Mig。
=V时,不恒T,P 0(M是摩尔性质)6.S Sig7. G G0RTln8. 程。
9. 当P10. 因为(错。
从积分0。
RTP T TB(对)11. 逸度与压力的单位是相同的。
ig(错G(T,P) G(T, 12. 吉氏函数与逸度系数的关系是G T,P G T,P 1 RTln 。
igP 1) RTlnf)故不可能用偏离函数来计算性质随着温度的13. 由于偏离函数是两个等温状态的性质之差,变化。
(错。
因为:M T2,P2 M T1,P1 M T2,P2 MigT2,P0 M T1,P1 M T1,P0 M T2,P0 M T1,P0igigig)故我们不能用偏离函数来计算汽化过程的热14. 由于偏离函数是在均相体系中引出的概念,力学性质的变化。
(错。
可以解决组成不变的相变过程的性质变化)(错。
还15. 由一个优秀的状态方程,就可以计算所有的均相热力学性质随着状态的变化。
ig需要CP T 模型)二、选择题1. 对于一均匀的物质,其H和U的关系为(B。
因H=U+PV)A. H UB. HUC. H=UD. 不能确定2. 一气体符合P=RT/(V-b)的状态方程从V1等温可逆膨胀至V2,则体系的S为(C。
V2SV1SdV V TV2V1PdV T VV2V1VR bRlnV2 bV1 b )A.RTlnV2 bB. 0C. RlnV2 b3.P VT T V P4.)A.V TB.T VC.T SD.PT Vigx5. 吉氏函数变化与P-V-T关系为G T,P G RTlnP,则Gx的状态应该为(C。
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,H =1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
作者:旧在几作品编号:2254487796631145587263GF24000022 时间:2020.12.13化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
第三章 例题一、空题一、空题1. 状态方程P V b RT ()-=的偏离焓和偏离熵分别是bP dP P R T b P RT dP T V T V H H P PP ig =úûùêëé-+=úûùêëé÷øöçèæ¶¶-=-òò00和0ln 0000=úûùêëé-=úûùêëé÷øöçèæ¶¶-=+-òòdP P R P R dP T V P R P P R S S P P P ig;若要计算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?ig P C ;其计算式分别是()()1122,,P T H P T H -()()[]()()[]()()[]()dTC P P b dT C bP bP T H T H T H P T H T H P T H T T igP T T igP igig ig ig òò+-=+-=-+---=2121121212111222,,和()()1122,,P T S P T S -()()[]()()[]()()[]dT TC P P R dT T C P P R P P R P T S P T S P T S P T S P T S P T S T T ig P T T ig P igigigigòò+-=++-=-+---=2121120102010201110222ln ln ln ,,,,,,。
思考题3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态?答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。
3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。
3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物?答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。
3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。
热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随着温度的变化”,这种说法是否正确?答:不正确。
剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。
3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零?答:不是。
只有理想气体在定温过程中的热力学内能和焓的变化为零。
3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否交叉使用这些图表求解蒸气的热力过程?答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。
不能够交叉使用这些图表求解蒸气的热力过程。
3-8 氨蒸气在进入绝热透平机前,压力为2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某人提出只要控制出口压力就可以了。
你认为这意见对吗?为什么?请画出T -S 图示意说明。
答:可以。
因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。
3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。
假设1kg 已被冷至-5℃的液体。
现在,把一很小的冰晶(质量可以忽略)投入此过冷液体内作为晶种。
第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的以V 表示)(以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211PC RigPP P R V P R C ,∆H =1121T P P C igPC R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
化工热力学课后谜底(填空、判断、画图)令狐采学第1章 绪言一、是否题1.封闭体系的体积为一常数。
(错) 2.封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相关闭体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3.理想气体的焓和热容仅是温度的函数。
(对)4.理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5.封闭体系的1mol 气体进行了某一过程,其体积总是变更着的,可是初态和终态的体积相等,初态和终态的温度辨别为T1和T2,则该过程的⎰=21T T V dT C U ∆;同样,对初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变更仅决定于初、终态与途径无关。
)二、填空题1.状态函数的特点是:状态函数的变更与途径无关,仅决定于初、终态 。
2.封闭体系中,温度是T 的1mol 理想气体从(Pi ,Vi)等温可逆地膨胀到(Pf ,Vf),则所做的功为()f i rev V V RT W ln =(以V 暗示)或()i f rev P P RT W ln = (以P 暗示)。
3.封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T1、P1和V1可逆地变更至P2,则A 等容过程的 W= 0 ,Q=()1121T P P R C ig P⎪⎪⎭⎫ ⎝⎛--,∆U=()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H=1121T PP C ig P ⎪⎪⎭⎫⎝⎛-。
B 等温过程的 W=21ln P P RT -,Q=21ln P P RT ,∆U= 0 ,∆H= 0 。
第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽酿成液体,必须经过冷凝的相变更过程。
(错。
可以通过超临界流体区。
)2.当压力年夜于临界压力时,纯物质就以液态存在。
(错。
若温度也年夜于临界温度时,则是超临界流体。
)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
化工热力学课后习题答案第1章绪言一、是否题3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)第2章P-V-T关系和状态方程一、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle温度时,Z>1。
)7. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。
(错。
它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。
(错。
)11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
)12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适用于任何流体,一般能用于正常流体normal fluid)14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指一类非极性的球形流,如Ar等,与所处的状态无关。
)二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。
3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:1PV V T β∂⎛⎫=⎪∂⎝⎭,1TV k V P ∂⎛⎫=- ⎪∂⎝⎭。
试导出服从 状态方程的β和k 的表达式。
解: 方程2RT aP V b V=-- 由()的性质1y xz z x y x y z ⎛⎫∂∂∂⎛⎫⎛⎫⋅⋅=- ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭得 1T P VP V T V T P ∂∂∂⎛⎫⎛⎫⎛⎫⋅⋅=- ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 又 ()232TP a RTV V V b ∂⎛⎫=-⎪∂⎝⎭- VP R T V b∂⎛⎫=⎪∂-⎝⎭所以 ()2321P a RTV V b VT R V b ⎡⎤∂-⎛⎫-⋅⋅=-⎢⎥⎪∂⎝⎭-⎢⎥⎣⎦()()3232P RV V b V T RTV a V b -∂⎛⎫= ⎪∂⎝⎭-- 故 ()()22312PRV V b V V T RTV a V b β-∂⎛⎫==⎪∂⎝⎭--()()222312T V V b V k V P RTV a V b -∂⎛⎫=-= ⎪∂⎝⎭-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45,温度为93℃,反抗一恒定的外压力3.45 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ∆、H ∆、S ∆、A ∆、G ∆、TdS ⎰、pdV ⎰、Q 和W 。
解:理想气体等温过程,U ∆=0、H ∆=0 ∴ 21112ln 2V V V VRTpdV pdV dV RT V===⎰⎰⎰2109.2 ∴ 2109.2 又 P PdTV dS C dP T T ∂⎛⎫=- ⎪∂⎝⎭ 理想气体等温膨胀过程0、P V R T P∂⎛⎫= ⎪∂⎝⎭∴ R dS dP P=-∴ 222111ln ln ln2S P P P SP S dS R d P R PR ∆==-=-=⎰⎰=5.763(·K)A U T S ∆=∆-∆366×5.7632109.26 (·K)G H T S A ∆=∆-∆=∆2109.26 (·K)TdS T S A =∆=∆⎰2109.26 (·K)21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 3-3. 试求算1氮气在压力为10.13、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)2. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
化工热力学(第三版)习题解答集朱自强、吴有庭、李勉编著前言理论联系实际是工程科学的核心。
化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。
特别使他们感到困惑的是难以和实际问题进行联系。
为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。
凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。
《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。
《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。
为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。
在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。
使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。
参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。
在此深表感谢。
由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c ccR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.15 2.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
第1章绪言一、是否题3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)第2章P-V-T关系和状态方程一、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle温度时,Z>1。
)7. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。
(错。
它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。
(错。
)11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
)12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适用于任何流体,一般能用于正常流体normal fluid)14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指一类非极性的球形流,如Ar等,与所处的状态无关。
)二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。
3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:1P V V T β∂⎛⎫=⎪∂⎝⎭,1TV k V P ∂⎛⎫=- ⎪∂⎝⎭。
试导出服从Vander Waals 状态方程的β和k 的表达式。
解:Van der waals 方程2RT a P V b V=--由Z=f(x,y)的性质1y x z z x y x y z ⎛⎫∂∂∂⎛⎫⎛⎫⋅⋅=- ⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭得 1T P VP V T V T P ∂∂∂⎛⎫⎛⎫⎛⎫⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 又 ()232TP a RTV VV b ∂⎛⎫=-⎪∂⎝⎭- VP R T V b∂⎛⎫= ⎪∂-⎝⎭所以 ()2321P a RT V V b V T RV b ⎡⎤∂-⎛⎫-⋅⋅=-⎢⎥⎪∂⎝⎭-⎢⎥⎣⎦()()3232P RV V b V T RTV a V b -∂⎛⎫= ⎪∂⎝⎭-- 故 ()()22312PRV V b V V T RTV a V b β-∂⎛⎫==⎪∂⎝⎭--()()222312T V V b V k V P RTV a V b -∂⎛⎫=-= ⎪∂⎝⎭-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa ,温度为93℃,反抗一恒定的外压力3.45 MPa 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ∆、H ∆、S ∆、A ∆、G ∆、TdS ⎰、pdV ⎰、Q 和W 。
解:理想气体等温过程,U ∆=0、H ∆=0 ∴ Q =-W =21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 J/mol ∴ W =-2109.2 J/mol 又PP dT V dS C dP T T ∂⎛⎫=- ⎪∂⎝⎭ 理想气体等温膨胀过程dT =0、PV R T P ∂⎛⎫= ⎪∂⎝⎭ ∴Rd S d P P=-∴ 222111ln ln ln2S P P P S P S dS R d P R PR ∆==-=-=⎰⎰=5.763J/(mol·K)A U T S ∆=∆-∆=-366×5.763=-2109.26 J/(mol·K) G H T S A ∆=∆-∆=∆=-2109.26 J/(mol·K) TdS T S A =∆=∆⎰=-2109.26 J/(mol·K) 21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 J/mol 3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
假设氮气服从理想气体定律。
已知:(1)在0.1013 MPa 时氮的p C 与温度的关系为()27.220.004187J /mol K p C T =+⋅;(2)假定在0℃及0.1013 MPa 时氮的焓为零;(3)在298K 及0.1013 MPa 时氮的熵为191.76J/(mol·K)。
3-4. 设氯在27℃、0.1 MPa 下的焓、熵值为零,试求227℃、10 MPa 下氯的焓、熵值。
已知氯在理想气体状态下的定压摩尔热容为()36231.69610.14410 4.03810J /mol K ig p C T T --=+⨯-⨯⋅解:分析热力学过程300K 0.1 MPa H=0S=0, 真实气体,H S∆∆−−−−→、 500K 10 MPa ,真实气体-H 1R H 2R -S 1R S 2R300K 0.1 MPa , 理想气体11H S ∆∆−−−−→、500K 10 MPa , 理想气体查附录二得氯的临界参数为:T c =417K 、P c =7.701MPa 、ω=0.073 ∴(1)300K 、0.1MPa 的真实气体转换为理想气体的剩余焓和剩余熵T r = T 1/ T c =300/417=0.719 P r = P 1/ P c =0.1/7.701=0.013—利用普维法计算1.60.4220.0830.6324rB T =-=-2.60.675 1.592r rdB T dT == 14.20.1720.1390.5485rB T =-=-15.20.722 4.014r rdB T dT ==又 0101R r r r c r r H dB dB P B T B T RT dT dT ω⎡⎤⎛⎫=-+-⎢⎥⎪⎝⎭⎣⎦ 01R r r r S dB dB P R dT dT ω⎛⎫=-+ ⎪⎝⎭代入数据计算得1RH =-91.41J/mol 、1RS =-0.2037 J/( mol ·K )(2)理想气体由300K 、0.1MPa 到500K 、10MPa 过程的焓变和熵变21500362130031.69610.14410 4.03810T ig p T H C dT T T dT--∆==+⨯-⨯⎰⎰=7.02kJ/mol215003621300110ln31.69610.14410 4.03810ln 0.1ig T p T C P S dT R T TdT R TP --∆=-=+⨯-⨯-⎰⎰ =-20.39 J/( mol ·K )(3) 500K 、10MPa 的理想气体转换为真实气体的剩余焓和剩余熵T r = T 2/ T c =500/417=1.199 P r = P 2/ P c =10/7.701=1.299—利用普维法计算1.60.4220.0830.2326r B T =-=- 02.60.6750.4211r rdB dT ==14.20.1720.1390.05874r B T =-=- 15.20.7220.281r rdB T dT ==又0101R r r r c r r H dB dB P B T B T RT dT dT ω⎡⎤⎛⎫=-+-⎢⎥⎪⎝⎭⎣⎦ 01R r r r S dB dB P R dT dT ω⎛⎫=-+ ⎪⎝⎭ 代入数据计算得2RH =-3.41K J/mol 、2RS =-4.768 J/( mol ·K )∴H ∆=H 2-H 1= H 2=-1RH +1H ∆+2RH=91.41+7020-3410=3.701KJ/molS ∆= S 2-S 1= S 2=-1R S +1S ∆+2RS =0.2037-20.39-4.768=-24.95 J/( mol ·K )3-5. 试用普遍化方法计算二氧化碳在473.2K 、30 MPa 下的焓与熵。
已知在相同条件下,二氧化碳处于理想状态的焓为8377 J/mol ,熵为-25.86 J/(mol·K).解:查附录二得二氧化碳的临界参数为:T c =304.2K 、P c =7.376MPa 、ω=0.225 ∴ T r = T/ T c =473.2/304.2=1.556 P r = P/ P c =30/7.376=4.067—利用普压法计算 查表,由线性内插法计算得出:()1.741R cH RT =-()10.04662R cH RT =()0.8517R S R=-()10.296R S R=-∴由()()1R R Rc c cH H HRT RT RT ω=+、()()1R R RS S SR RRω=+计算得:H R =-4.377 KJ/mol S R =-7.635 J/( mol ·K )∴H= H R + H ig =-4.377+8.377=4 KJ/mol S= S R + S ig =-7.635-25.86=-33.5 J/( mol ·K )3-8. 试估算纯苯由0.1013 MPa 、80℃的饱和液体变为1.013 MPa 、180℃的饱和蒸汽时该过程的V ∆、H ∆和S ∆。
已知纯苯在正常沸点时的汽化潜热为3.733 J/mol ;饱和液体在正常沸点下的体积为95.7 cm 3/mol ;定压摩尔热容()16.0360.2357J /mol K igpC T =+⋅;第二维里系数 2.4310/mol ⎛⎫⨯⎪⎝⎭31B=-78cm T。
解:1.查苯的物性参数:T c =562.1K 、P c =4.894MPa 、ω=0.2712.求ΔV 由两项维里方程2.4321117810PV BP P Z RT RT RT T ⎡⎤⎛⎫==+=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2.46361.013101178100.85978.31410453453⎡⎤⨯⎛⎫=+-⨯=⎢⎥⎪⨯⨯⎝⎭⎢⎥⎣⎦3.计算每一过程焓变和熵变(1)饱和液体(恒T 、P 汽化)→饱和蒸汽 ΔH V =30733KJ/KmolΔS V =ΔH V /T=30733/353=87.1 KJ/Kmol·K (2)饱和蒸汽(353K 、0.1013MPa )→理想气体 ∵点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。
由式(3-61)、(3-62)计算()R2R1)(-H H H H H H id Tid P V +∆+∆++∆=∆()RR21)(S S S S S S id Tid P V +∆+∆+-+∆=∆21V V V -=∆molcm P ZRT V 3216.3196013.1453314.88597.0=⨯⨯==cmV V V 3125.31007.9516.3196=-=-=∆628.01.562353===Cr T T T 0207.0894.41013.0===C r P P P 00111r c -T Rr r r r r H dB B dB B P RT dT T dT T ω⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦()()-0.02070.628 2.2626 1.28240.2718.1124 1.7112=⨯⨯+++⎡⎤⎣⎦=-0.0807∴ ∴ (3)理想气体(353K 、0.1013MPa )→理想气体(453K 、1.013MPa )()212145335316.036 1.0130.23578.3140.101345316.0360.235745335319.13538.47idT idP T C P S dT Rln T P dT ln T ln KJ Kmol K∆=-⎛⎫=+- ⎪⎝⎭=+--=∙⎰⎰(4)理想气体(453K 、1.013MPa )→真实气体(453K 、1.013MPa )点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。