小学四年级第一学期奥数培训第十讲相遇问题
- 格式:doc
- 大小:22.00 KB
- 文档页数:2
行程问题之两大基本问题:相遇和追击相遇问题(一)相遇问题是研究相向运动中的速度、时间和路程三者之间关系的问题,解答这类问题,要求大家理解和掌握下面的基本数量关系:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间例1 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?分析:从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。
解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米。
【边学边练】AB两地间有一条公路长2800米,甲车从A地出发5分钟后,乙车从B地出发,又经过10分钟两车相遇。
已知乙车每分钟行100米,甲车每分钟行多少米?例2 兄妹二人同时从家里出发到学校去,家与学校相距1400米。
哥哥骑自行车每分钟行200米,妹妹每分钟走80米。
哥哥刚到学校就立即返回来在途中与妹妹相遇。
从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?分析:从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。
因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了。
解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。
小学奥数趣味学习《相遇问题》两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。
一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。
两车行驶路程之和,就是两地距离。
56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。
例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。
例3 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
(适于五年级程度)解:两车相遇时,两车的路程差是20千米。
出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。
四年级数学之相遇问题第十讲相遇问题知识要点与学法指导:相遇问题是行程问题中的一种情况。
两个运动着的物体从两个地方出发,相向运动,越行越近,到一定的时候两者可以相遇。
两个运动的物体同时出发时,相遇时所用的时间相同。
我们已经研究过速度、时间和路程这一组数量关系,在相遇问题中也存在着这样的数量关系,两个运动着的物体都各自有速度、时间和所行驶的路程。
在研究相向运动时,两个物体一小时一共所行驶路程又叫做速度和。
解答相遇问题的基本数量关系是:速度和×相遇时间=总路程总路程÷相遇时间=速度和总路程÷速度和=相遇时间例如:两人同时从两地对面走来,XXX每分钟走70米,XXX每分钟走60米,两人每分钟一共走多少米?走了3分钟,两人一共走了多少米?要求两人每分钟一共走多少米,就是求两人的速度和。
70+60=130(米)要求走了3分钟两人一共多少米,我们可以在前面速度和,也就是每分钟两人所走的路程的基础上解决。
即:70+60=130(米)130×3=390(米)我们还可以这样理解,两人走了3分钟,每一个人都走了3分钟,可以先分别计算每一个人3分钟所走的路程,最后再求和。
70×3=210(米)60×3=180(米)210+180=390(米)答:两人每分钟一共走130米。
两人一共走了390米。
例如1:两人同时从两地对面走来,XXX每分钟走70米,XXX每分钟走60米,9分钟后两人相遇,求两地距离。
分析与解】观察下面的图:两地距离就是两个人相遇的时候所走的路程和。
两人同时出发,所以所行的时间相同。
我们可以这样解决:70+60=130(米)130×9=1170(米)也可以这样解决:70×9=630(米)60×9=540(米)630+540=1170(米)答:两地路程相距1170米。
通过问题的解决,我们可以得到:速度和×相遇时间=总路程试一试1:两人同时从两地对面走来,甲每分钟走60米,乙每分钟走50米,走了5分钟后两人相遇,求两地相距多少米?例如2:两地之间的海上距离是400千米。
第十讲相遇问题相遇问题中主要涉及到三个重要的数量关系:速度和=总路程÷相遇时间;总路程=速度和×相遇时间;相遇时间=总路程÷速度和。
例1:甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
问:两人几小时后相遇?思路点拨:此题可用总路程÷速度和,就可以得到相遇时间。
模仿练习:甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船还相距20千米。
求两港间的水路长多少千米?例2:南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。
两人的速度各是多少?思路点拨:用总路程÷相遇时间,就得到速度和。
模仿练习:东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。
求他们的速度各是多少?例3:两地相距900千米,甲、乙两列火车同时从两地出发相向而行。
甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。
从两车相遇算起,它们开到对方的出发点各需要多长时间?思路点拨:此题先要把相遇时间求出来,再把各自到达对方的时间算出来,时间之差就是他们相遇之后各自到达对方的时间。
模仿练习:两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。
甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。
从相遇时算起,两车开到对方的出发点各需多少小时?例4:甲、乙、丙三人的步行速度分别为每分钟70米、60米和50米,甲从B地,乙和丙从A地同时出发相向而行,途中甲遇到乙后10分钟又遇到丙,求A、B两地距离。
(2011年成都实验外国语学校小升初数学试题)思路点拨:甲、乙相遇时,甲丙间距离为(70+50) 10=1200(米),从开始到甲乙相遇的时间为:1200÷(60-50)=120(分钟),A、B间的距离为……模仿练习:甲、乙、丙三人的步行速度分别为每分钟70米,60米和50米,甲从B地,乙和丙从A地同时出发相向而行,途中甲遇到乙后2分钟又遇到丙,求A、B两地距离。
四年级奥数:行程问题之相遇问题、追及问题两个运动的物体,以不同的速度从不同地点出发沿同一线路相向而行,两个物体之间的距离不断缩短,直到相遇。
我们把这样的问题叫做相遇问题,相遇问题的关系式为:相遇路程=速度和×相遇时间。
解相遇问题一定要紧盯速度与相遇路程。
本篇我主要会讲到以下几种类型的题目:(1)一般相遇问题:如果两个物体是同时出发,那么相遇路程就是两个物体原来相距的路程;如果两个物体不是同时出发,那么它们的相遇路程等于两个物体原来相距的路程减去其中一个物体先走的路程;(2)中点相遇问题:相遇路程等于相遇地点与中点距离的两倍;(3)往返相遇问题:同时出发,同时停止,则中间往返的时间就是相遇时间;(4)环形相遇问题:同时、同地背向出发,相遇路程就是一周的长度。
一般相遇问题一般行程问题中,路程=速度×时间,速度=路程÷时间,时间=路程÷速度。
例题1,此类相遇问题中:相遇时间=相遇路程÷速度和。
中点相遇问题相遇问题中,路程差=速度差×时间差;速度差=路程差÷时间;时间=路程差÷速度差。
中点相遇问题中,快的多走的路程就是距离中点路程的两倍。
相遇时间=路程差÷速度差。
往返相遇问题往返相遇问题的关键是,往返行驶的时间与相遇时间相等。
环形相遇问题环形跑道上同时背向行驶,相遇几次,则相遇路程就是几个全程,再根据相遇时间=路程÷速度和求解。
在追及问题中,必定有一个物体的速度较快,而另一个物体速度较慢,解题的关键是找到追及路程。
追及问题的关系式为:追及时间×速度差=追及路程。
两种追及路线的追及路程分别是:(1)直线追及:如果两人同时同向不同地出发,那么追及路程就是两人相距的路程;如果两人同地同向不同时出发,那么追及路程就是先走的路程;(2)环形追及:如果两人同时、同地、同向出发,那么追及问题就是一周的长;如果是不同时或不同向或不同地出发,需要结合具体情景,借助示意图和列表进行分析。
相遇问题例1.一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46 千米,货车每小时行48 千米。
3.5 小时两车相遇。
甲、乙两个城市的路程是多少千米?例2.大头儿子的家距离学校3000 米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24 米,50 分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?例3.甲、乙两辆汽车分别从A、B 两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15 千米.甲车每小时行48 千米,乙车每小时行50 千米.求A、B 两地间相距多少千米?例4.甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54 千米;出发5小时后,两人还相距27 千米.问出发多少小时后两人相遇?例5.两列城铁从两城同时相对开出,一列城铁每小时走40 千米,另一列城铁每小时走45 千米,在途中每列车先后各停车4次,每次停车15 分钟,经过7小时两车相遇,求两城的距离?例6.两地相距3300 米,甲、乙二人同时从两地相对而行,甲每分钟行82 米,乙每分钟行83 米,已经行了15 分钟,还要行多少分钟两人可以相遇?例7.甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50 千米,乙车每小时行40 千米.途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地.A、B两地间的路程是多少?例8.甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙车每小时比甲车多行20 千米,比甲车提前2小时到达.求A、B 两地间的距离.例9.军事演习中,“我”海军英雄舰追及“敌”军舰,追到A岛时,“敌”舰已在10 分钟前逃离,“敌”舰每分钟行驶1000 米,“我”海军英雄舰每分钟行驶1470 米,在距离“敌”舰600 米处可开炮射击,问“我”海军英雄舰从A 岛出发经过多少分钟可射击敌舰?例10.甲乙两车分别从A、B 两地同时相向开出,4 小时后两车相遇,然后各自继续行驶3小时,此时甲车距B 地10 千米,乙车距A地80 千米.问:A,B 两地的距离是多少千米?例11.甲乙两车分别从A、B 两地同时相向开出,4 小时后两车相遇,然后各自继续行驶3小时,此时甲车距B 地10 千米,乙车距A地80 千米.问:甲车到达B地时,乙车还要经过多少时间才能到达A地?相遇问题例1.一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46 千米,货车每小时行48 千米。
相遇问题(一)例1:A、B两地相距138千米,甲、乙两人骑自行车分别从两地同时出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车耽误了1小时,然后继续行进,与甲相遇。
求出发到相遇经过几小时例2:甲、乙两车分别从相距480千米的两地同时相向而行,5小时后相遇。
已知甲车每小时比乙车快8千米,相遇时乙车行了多少路程例3:A、B两地相距520千米,甲车从A地开出2小时后,乙车从B地相对开出,乙车开出后5小时后与甲车相遇,已知甲车比乙车每小时少行8千米。
问甲、乙两车每小时各行多少千米例4:某县举行长跑比赛,运动员跑到离起点5千米处要向起跑点返回,领先的运动员每分跑320米,最后的运动员每分跑305米。
起跑后多少分这两个运动员相遇相遇时离返回点有多少米练一练1.甲、乙两地相距450千米,客车10小时行完全程,货车15小时行完全程,客车和货车同时从两地出发,相向而行,几小时后相遇相遇时两车各行了多少千米2.甲、乙两人从同一地点出发,背向而行,甲以每分钟60米的速度先行,12分钟后乙才出发,乙行了20分钟后与甲相距3220米,乙每分钟行多少米3.甲、乙两地相距180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地同时出发,两人相向而行,已知摩托车车速是自行车的3倍,问多少小时后两人相遇4.两地相距320千米,甲车从一地开出1小时后,乙车从另一地相对开出,又经过4小时与甲车相遇,已知甲车每小时比乙车多行10千米,问一车每小时行多少千米5.甲、乙二人从相距116千米的A、B两地出发相向而行,甲先出发1小时。
他们二人在乙出后的4小时相遇,又已知甲比乙每小时慢2千米,求甲、乙二人的速度。
6.A、B两地相距496千米,甲车从A地出发开往B地,每小时行32千米,甲车开出半小时后,乙车从B地出发开往A地,它的速度是甲车的2倍,问乙车开出几小时后,两车相遇7.甲、乙两人骑自行车,分别从相距75千米处同时相向而行,3小时后两人相遇,已知甲骑车比一骑车每小时快5千米。
第十讲相遇问题
1.甲、乙两列对开的火车在途中相遇。
甲车司机看见乙车从旁边开
过去,共用了8秒。
已知甲车每秒行15米,乙车每秒行12米,求乙车长多少米?
2.A、B两地相距480千米,甲、乙两车同时从两站相对出发,甲车
每小时行35千米,乙车每小时行45千米,一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车返飞回去,遇到甲车又返飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?
3.甲、乙两艘舰,由相距418千米的两个港口同时相对开出,甲舰
每小时行36千米,乙舰每小时行34千米,开出1小时后,甲舰因有紧急任务,返回原港,以后又立即起航继续相对航行,经过多少小时两舰相遇?
4.甲、乙两列火车,同时从南、北两地相向而行,甲车每小时行50
千米,乙车每小时行42千米,两车在离中点40千米处相遇,求南、北两地间的距离是多少千米?
5.甲、乙两列火车分别从A、B两地相对开出,甲车的速度是58千
米/小时,乙车的速度是46千米/小时,甲、乙两车相遇后继续前进,甲到达B地,乙到达A地后,立即按原路返回,两车从开始到第二次相遇共用9小时,求A、B两地相距多少千米?
6.甲乙两个城市相距1030千米,从甲城到乙城开出一列普通客车,
每小时行驶65千米,2小时后,从乙城开出一列快车,每小时行驶85千米。
快车开出多少小时同普通客车相遇?
7.甲、乙两辆汽车,同时从东西两地相向而行,甲车每小时行56千
米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地间的公路是多少千米?
8.两列火车分别从A、B两站相向而来。
快车车身长132米,车速
为每秒钟27米;慢车车身长118米,车速为每秒钟23米,两车从车头相遇到车尾分开,共需多长时间?
9.一列客车和一列货车同时从北京站出发反向而行,货车每小时比
客车多走7千米,4小时后,两车相距468千米。
求两车的速度。
10.甲、乙二人同时从相距46千米的A、B两地出发相向而行,甲先
出发1小时。
他们两人在乙出发后4小时相遇,又已知甲比乙每小时快2千米。
求甲、乙两人的速度。
11.
13.兄妹好人同时离家去900米的学校上学,哥哥每分钟走90米,妹
妹每分钟行60米,哥哥到校门口时,发现忘记带课本,方即沿原路返回去取,问他们相遇时离学校有多远?。