超级电容辅助发动机启动系统建模
- 格式:pdf
- 大小:456.49 KB
- 文档页数:3
风电机组变桨用超级电容测试系统设计摘要:变桨控制系统有电网电源和备用电源两组供电电源,避免在电网发生故障时不能工作,无法安全被制动,因此后备电源的稳定将是风机安全运行的保障。
超级电容以其功率密度高、充放电速度快、循环充放电次数多等优点而被广泛运用在后备电源中,通过串联以匹配后备电源电压等级。
当电容单体因电参数改变、开路或被击穿等原因导致电容值发生改变时,电容单体上的电压将超过额定值,甚至造成损坏,从而影响到后备电源的正常供电。
对超级电容进行测试,更换异常电容是解决问题的有效手段。
但现有超级电容测试系统体积较大,需上位机软件配合,同时不能匹配后备电源使用超级电容的额定电压,因此无法对后备电源用超级电容进行测试。
针对上述问题,本文设计出一种体积较小、测量速度快,且具有对电容进行编号,对测试结果进行打印并能通过USB进行存储等功能的超级电容测试系统。
关键词:风电机组;超级电容;变桨系统;测试系统引言电容是基本元器件,其特性直接影响产品的质量。
以前,电容的测量工作是给出不同的测试条件,用测量仪器人工逐点记录,然后对测量数据进行人工或计算机辅助分析与处理。
这需要投入大量的人力和物力,效率低,特别是当需要掌握连续变化条件下的某些参数时,难以达到测试要求。
随着表面贴装器件(SMD)的广泛应用,电路工作频率的不断提高,各类仪器日趋小型化、智能化,人们对测试仪的测试过程和精度有了更高要求,使得电路中电感、电容、电阻(LCR)元件量值准确可靠的测量成为迫切需要解决的问题。
1超级电容容量测试原理模型中包含一个等效串联电阻ESR、一个电容C及等效并联电阻EPR。
等效串联电阻ESR反映的是电容在充放电过程中的能量损耗;等效并联电阻EPR反映的是电容存在缓慢的自放电情况,表征漏电流的大小,对超级电容器的长期性能很重要。
2检测系统原理及各模块实现2.1检测对象测试用超级电容采用某科技开发有限公司提供的两组串联不对称电极双电层超级电容组件。
AUTO PARTS | 汽车零部件超级电容器在汽车启动中的应用周美玲 刘欣欣长春汽车工业高等专科学校 吉林省长春市 130013摘 要: 在汽车启动过程中,传统汽车采用的是直流万向电机启动器。
在起动的瞬间,电机转速为零,机械传动部分有很大的阻尼,而且起动电路的电枢电阻、蓄电池电阻和线路电阻都很低,所以起动电流很大,可达数百台万向电机。
当超级电容器与蓄电池并联时,汽车启动过程会得到极大的改善。
超级电容器具有使用寿命长、电流密度大、环保等优点。
此外,它们的能级可以从它们的终端电压估计出来。
由于超级电容器供电的电动汽车只需充电30秒就可以运行20分钟以上,因此充电电动汽车不会成为主要问题。
关键词:超级电容器 汽车启动1 超级电容器概述当今燃料电池汽车发展面临的最大挑战是汽车充电和管理。
电动汽车与燃料电池发电机打算的平均功率只。
由于燃料电池内部电化学特性缓慢,不能满足瞬态负载要求。
在这些框架工厂的利用能源储存设备(如电池,超级电容器)是必不可少的快速电力输送。
另一方面,电动汽车的驱动侧应采用异步电动机磁场定向矢量控制,以避免固有的耦合效应(即转矩和磁通都是电压或电流和频率的函数),这种耦合效应使系统响应迟缓,容易导致系统不稳定。
在许多系统中,能源储存正成为越来越重要的资产。
在各种储能技术中,超级电容器具有功率密度高、循环寿命长等优点。
事实上,基于超级电容器的能量存储系统已经被广泛应用,包括智能电网,电动汽车,无线传感器网络,以及生物医学设备。
一些著名的汽车公司,如通用汽车、福特、卡夫、丰田、本酒、日产等都有以内燃机和电动机为能源的混合动力技术这个这种混合动力汽车的超级电容器具有高功率密度,使用寿命长,高功率密度,高压缩性和安全。
超级电容器在汽车上的应用,可以在启动或制动时迅速释放或吸收负载上的能量,避免发动机处于低速、重载状态,高转速、高负荷,使发动机在理想状态下运转,节省燃油,减少污染减少了。
所以超级电容器已成为未来电动汽车发展的重要方向之一。
超级电容器的原理与应用超级电容器,又称为超级电容、超级电容放电器,是一种新型电化学器件,它具有比传统电容器更高的电容量和能量密度,以及更高的功率密度。
这种电化学器件在现代电子设备、交通工具、能源储存系统等领域有着重要的应用。
本文将从超级电容器的原理、结构、特点以及应用领域等方面进行介绍。
一、超级电容器的原理超级电容器的工作原理基于电荷的吸附和离子在电解质中的迁移。
其正极和负极均采用多孔的活性碳材料,两者之间的电解质是导电液体。
当加上电压时,正负极之间形成两层电荷分布,即电荷层,进而形成电场。
电荷的吸附和电子的迁移使得电容器储存电能。
二、超级电容器的结构超级电容器的主要结构包括两块活性碳电极、电解质和两块集流体。
活性碳电极是超级电容器的核心部件,通过高度多孔的结构使得电极表面积大大增加,从而增加电容器的电容量。
电解质则起着导电和电荷传递的作用,而集流体则是用于导电的金属片或碳素片。
三、超级电容器的特点1.高功率密度:超级电容器具有较高的功率密度,能够在短时间内释放大量电能。
2.长循环寿命:相比于锂离子电池等储能装置,超级电容器具有更长的循环寿命。
3.快速充放电:超级电容器具有快速的充放电速度,适用于需要频繁充放电的场景。
4.环保节能:超级电容器不含有有害物质,具有较高的能源利用效率。
四、超级电容器的应用1.汽车启动系统:超级电容器作为汽车启动系统的辅助储能装置,能够有效提高发动机启动速度,降低能源消耗。
2.再生制动系统:超级电容器在电动汽车的再生制动系统中起到储能和释放能量的作用,提高能源回收效率。
3.电网能量储存:超级电容器可用作电网能量的储存装置,用于平衡电力需求与供给之间的波动。
4.工业自动化设备:超级电容器在工业自动化领域中广泛应用,用于缓冲电源波动和提供紧急供电。
5.医疗设备:超级电容器可用于医疗设备的储能,确保设备持续稳定运行。
结语超级电容器以其高功率密度、长循环寿命、快速充放电等特点在各个领域发挥着重要作用,为现代社会的能源存储和利用提供了新的技术解决方案。
超级电容器的原理及应用一、原理:超级电容器(Supercapacitor)又称为超级电容器或超级电容器电池,它是一种特殊的电容器,其存储能量量级为焦耳级别,远高于普通电容器的毫焦耳级别。
超级电容器具有快速充电和放电、长寿命、高循环稳定性等特点,适合于需要高能量密度和高功率密度的应用场合。
观察超级电容器的内部结构,其由两个锰氧化物电极板和一个电介质隔离层组成,锰氧化物电极板表面没有铝箔覆盖,其间以100nm的间距排列,从而即可达到高电容电极表面积的效果。
电介质隔离层由聚丙烯的多层膜组成。
在正极板和负极板之间的介质薄膜壁具有极高的介电常数,因此能够将电场强度扩展到导电性電解質中。
因此,超级电容器具有更高的比容量和能量密度。
二、应用:超级电容器可广泛应用于电子、汽车、医疗等领域。
以下是具体的应用:1. 电子产品:可广泛应用于移动物联网、消费电子等领域。
例如,可用于数码相机、MP3等数码产品,为其提供性能更加卓越的电源。
2. 汽车研发:超级电容器可以在汽车领域应用到停车制动能量回收系统、发动机启动、辅助动力系统等方面。
比如,在刹车时,能够以更为高效的方式回收能量,提高储能系统的效率,在加速时则能够减少电池的功率消耗,从而延长电池使用寿命。
同时,超级电容器还能在车辆制动、起动和交通噪声的减少方面发挥重要作用。
3. 医疗器械:在呼吸机、心脏起搏器等医疗领域中,超级电容器可以减小器械的尺寸同时增加器械的能量输出。
4. 其他领域:超级电容器还可广泛应用于军事领域、能源行业、新能源领域及航空航天等领域。
超级电容器对柴油发电机启动的辅助作用摘要:柴油发电机在现代生产和生活中担当着非常重要的角色,其主要用途是为工业和农业生产提供电力,同时也可以作为备用电源。
在柴油发电机的运行过程中,启动是一个非常关键的环节。
传统的启动方式是使用蓄电池,但是蓄电池在低温和高温环境下的启动效果都会受到影响,同时也无法满足频繁启动的需求。
为了解决这些问题,超级电容器被引入到柴油发电机的启动中,以提供辅助启动作用。
关键词:超级电容器;柴油发电机引言:柴油发电机作为一种常见的发电设备,其启动过程对于其正常运行至关重要。
传统的柴油发电机启动方式主要依靠蓄电池来提供起动电流。
然而,在低温环境下,蓄电池的电能输出能力会明显下降,导致发电机启动困难;而在高温环境下,蓄电池的寿命也会受到影响。
因此,如何提高柴油发电机的启动效率和可靠性成为了一个重要问题,超级电容器作为一种新型的电能储存设备,具有容量大、充放电速度快、寿命长等优点。
本文将探讨超级电容器在柴油发电机启动中的辅助作用,以期为柴油发电机的启动提供新的思路和解决方案。
一、超级电容器的基本原理超级电容器是一种高能量密度电子元件,它具有高速充电和放电的能力。
与传统电容器相比,超级电容器具有更高的电容量和更低的内阻,因此具有更高的电能存储和释放能力。
在现代电子领域中,超级电容器已经被广泛应用于多种领域,包括电动车、太阳能系统、电网储能系统和智能电网等。
超级电容器的基本原理可以简单地描述为:通过将两个电极分别浸入电解质中,形成一个电容器。
当电极上施加电压时,电荷会被吸附到电极表面,从而形成一个电场。
在电场的作用下,电子将移动到对立电极上,从而形成电流流动。
当电场消失时,电荷将离开电极,并返回电解质中[1]。
超级电容器的电容量主要取决于电极的表面积和电解质的介电常数。
在实际应用中,为了增加电容量,通常会使用多个电极,以形成叠层电容器。
这些电极通常是由高表面积的多孔材料制成,例如活性炭和氧化铁。
试验与研究 超级电容在混合动力电动汽车中的应用合肥工业大学机械与汽车学院 张炳力 赵 韩 张 翔 钱立军 [摘要]随着混合动力电动汽车研究的深入,超级电容独特的储能特性正日益受到人们的重视。
本文在介绍超级电容的分类、特性、工作原理的基础上,提出了超级电容和蓄电池一起用于混合动力电动汽车,可以实现制动能量快速回收利用、发动机冷起动等,对混合动力电动汽车研究具有一定的参考价值。
关键词: 混合动力电动汽车 超级电容 制动 能量回收 冷起动1 引言混合动力电动汽车(H yb ird E lectric V eh icle, H EV)是采用传统内燃机和电动机作为动力源,通过热能和电力两套系统开动汽车,达到节省燃料和降低排气污染的目的,具有排量小、速度高、排放好的优点。
各国政府都在加紧研制,美国政府和三大汽车公司实施的PN GV计划,通过3年的论证,混合动力电动系统可在低污染条件下达到百公里油耗仅3L。
日本本田和美国克莱斯勒的产品都已达到技术指标,丰田公司的产品销量超过1000台。
为了在该项技术与国际同步,我国政府也耗资数亿元启动了国家“863”计划电动车重大专项计划,“十五”目标是混合动力电动汽车要达到节省燃料50%,排放下降80%,制动能量回收30%,要想实现上述目标,必须在发动机、电动机、蓄电池等各单元技术,各系统的电控技术上攻关。
近年来,由于超级电容(U ltra Cap acito r)具有快速存储释放能量、适用温度范围宽、寿命长和易于管理等优点,如和其它能量元件(发动机、蓄电池、燃料电池)组成联合体共同工作,可以使系统同时满足动力性、经济性的要求,与其它储能元件单独使用相比具有明显优势,是实现能量回收利用、降低污染的有效途径,国外已开始研究超级电容在汽车驱动系统中的应用。
2 超级电容的分类、特点和工作原理2.1 分类目前国际上生产超级电容主要有欧美和日本的M axw ell、Skeltech、Saft、W ess、Panason ic等几家大公司,按电容器活性物质的储能方式可分为3类:第一类是以活性碳为正、负电极的电双层超级电容(E lectric Doub le L arger Cap acito r,EDL C)。
超级电容器在新能源汽车中的应用随着人们对环境保护和可持续发展的关注日益增加,新能源汽车作为未来的发展趋势受到了广泛的关注。
超级电容器作为一种新型储能设备,具有高能量密度、高功率密度、长寿命和快速充放电等优势,已经开始在新能源汽车中发挥重要作用。
1. 超级电容器的基本原理超级电容器,也称为电化学电容器,是一种利用电吸附、电解质电导和电化学双层电容效应实现能量存储的电子元器件。
其具有两个电极和介质组成,电极材料一般采用活性炭和电解液,通过离子在电解质中的吸附和释放,实现电荷的储存和释放。
2. 2.1 启动辅助系统在新能源汽车中,超级电容器可以用于辅助发动机的启动。
传统内燃机启动时需要消耗较大电流,而电池的储能能力有限,无法满足瞬时高能量需求。
超级电容器具有高功率密度的特点,可快速释放储存的电能,为发动机提供启动所需的大电流,提高启动可靠性和效率。
2.2 能量回收与储存在新能源汽车中,通过制动能量回收系统将制动时产生的能量转化为电能并存储起来,以供后续加速等需要能量的时候使用。
超级电容器具有高充放电效率和长寿命等特点,适用于高功率、频繁充放电的场景,可以高效地存储和释放制动能量,提高能量利用率。
2.3 辅助动力系统新能源汽车在加速、爬坡等需要额外动力的情况下,超级电容器可以作为辅助能源系统供电,提供临时的高功率输出。
相比传统电池,超级电容器具有更高的功率密度和更快的充放电速度,可以满足瞬间高功率需求,提升汽车的加速性能和爬坡能力。
3. 超级电容器在新能源汽车中的优势和挑战3.1 优势超级电容器具有高能量密度、高功率密度和长寿命等优势。
其能够快速充放电,适用于频繁的储能和释放需求,提供更可靠的动力支持。
此外,超级电容器具有宽温度范围和良好的耐高低温性能,能够在复杂的环境条件下正常工作。
3.2 挑战目前,超级电容器技术仍面临着一些挑战,如能量密度相对较低、成本较高和电容衰减等问题。
与传统电池相比,超级电容器的能量密度仍有较大提升空间,未来的研发和创新将进一步提高其能量储存能力和降低成本。
超级电容在汽车电气系统中的应用引言超级电容是一种新型的电能存储装置,具有比传统电池更高的功率密度和更长的使用寿命。
目前,在汽车电气系统中,超级电容的应用越来越广泛。
一、超级电容在汽车起动系统中的应用汽车发动机起动过程需要消耗很大的电流,传统蓄电池存在供电能力不足和充电时间过长等问题,而超级电容的高功率输出和短充电时间等特点能够有效克服这些问题,提高汽车的发动效率。
以超级电容启动器为例,它通过一段时间的充电后,能够在几毫秒内释放足够的电流,使发动机快速启动。
这种启动方式不仅能够提高汽车起动效率,而且减少了传统起动器在启动过程中的磨损。
二、超级电容在汽车制动系统中的应用制动能量回收技术被广泛应用于汽车电气系统中,它能够利用车辆制动时的能量改善燃油效率。
传统的制动能量回收技术采用蓄电池来存储能量,存在充电时间长和容量限制等问题,而超级电容可以更快速地对制动能量进行充放电。
超级电容制动能量回收系统利用超级电容存储能量,在车辆减速时充电,并在需要时通过超级电容提供辅助动力。
这种系统能够显著降低车辆制动时的能量损耗,改善汽车燃油经济性。
三、超级电容在汽车辅助电气系统中的应用汽车有很多辅助电气设备,如风扇、空调、音响等,这些设备的电能消耗会影响到车辆燃油经济性和运转效率。
传统的辅助电气设备采用蓄电池供电,在长时间使用的过程中容易出现容量不足的情况,而超级电容则可以实现辅助电气设备的快速充放电,提高车辆的能效。
超级电容辅助电气系统主要由超级电容和功率变换器两部分组成。
功率变换器可以转换输入电压、调控电流和保障稳定输出,而超级电容能够快速对输入电能进行吸收或释放,使得车辆辅助电气设备能够在需要时得到稳定的电源供应。
结论超级电容具有高功率输出、短充电时间和较长使用寿命等特点,使其在汽车电气系统中得到广泛应用。
从目前的发展情况看,超级电容的应用前景十分广阔,它将继续发挥着重要的作用,为汽车电气系统的发展贡献力量。
汽车加装超级电容案例
汽车加装超级电容是一种常见的改装方式,它可以为汽车提供额外的电力支持,改善启动性能和系统稳定性。
以下是一些关于汽车加装超级电容的案例:
1. 提升启动性能,许多车主在汽车加装超级电容后反映,车辆的启动性能得到了显著提升。
超级电容可以在发动机启动时提供更稳定的电流,减少启动时的电压波动,从而使发动机更容易启动,尤其是在低温环境下。
2. 减少音响系统噪音,一些车主选择在音响系统中加装超级电容,以减少电压波动对音响设备的影响,提高音质表现。
超级电容可以作为电力储备,确保音响系统获得稳定的电源供应,从而减少噪音和失真。
3. 辅助电气设备,在一些大功率电气设备需要额外电力支持的情况下,汽车加装超级电容可以作为辅助电源,确保这些设备能够获得足够的电力供应,例如车载冰箱、电动工具等。
4. 改善车辆稳定性,超级电容的高速放电特性可以在汽车电气
系统中起到缓冲作用,减少电压波动对其他电子设备的影响,从而提高整车的电气系统稳定性。
5. 节能减排,一些超级电容还可以通过回收制动能量,减少发动机负荷,从而达到节能减排的效果。
需要注意的是,汽车加装超级电容需要谨慎操作,确保符合当地的法律法规,并且需要选择适合车辆电气系统的合适型号和安装位置,以免影响车辆正常使用和安全性。
最好在专业技师的指导下进行安装,以确保安全可靠。
新能源汽车超级电容器的应用技术研究随着环保意识的增强和对能源消耗问题的关注,新能源汽车正成为未来交通的主要趋势。
然而,传统的电池技术在充电速度、续航里程和循环寿命等方面还存在一些不足。
超级电容器作为一种新的能源储存技术,具备充电速度快、高功率输出和循环寿命长等优点,因此在新能源汽车领域的应用备受关注。
本文将探讨超级电容器在新能源汽车中的应用技术研究。
2.超级电容器的基本原理超级电容器是一种能量存储设备,利用电荷在电极材料上的吸附和解吸附来存储和释放电能。
与传统的化学电池不同,超级电容器的能量存储是基于电场而非化学反应。
它由两个电极和一个电解质组成,通过在电极间施加电压来储存电能。
超级电容器的储能机制有两种主要类型:电双层和伪电容。
电双层超级电容器通过将电解质分子吸附在电极表面形成一个电荷层,以电场吸引和释放电荷。
伪电容超级电容器则利用材料表面的可逆氧化还原反应来储存电荷。
这些储能机制使得超级电容器具有高电荷/放电速度、长循环寿命和低内阻等特点。
3.超级电容器在新能源汽车中的应用超级电容器在新能源汽车中的应用主要体现在三个方面:辅助动力系统、能量回收系统和启动系统。
3.1辅助动力系统新能源汽车辅助动力系统需要高功率输出和频繁充放电的能力。
传统的电池系统在这方面存在一定的限制,而超级电容器具有高功率输出和快速充放电的特点,能够满足辅助动力系统对能量的需求。
通过将超级电容器与电池系统结合,可以提高动力系统的响应速度和动力输出能力,提升整车性能和驾驶体验。
3.2能量回收系统新能源汽车能量回收系统可以将车辆行驶和制动过程中产生的能量转化为电能并存储起来,以供后续使用。
传统的电池系统在能量回收过程中存在充电速度慢和能量利用率低的问题。
而超级电容器具有快速充放电和高能量密度的特点,非常适合用于能量回收系统。
通过将超级电容器与能量回收系统结合,可以提高能量回收效率,延长电池寿命,并减少能源浪费。
3.3启动系统新能源汽车为了提高燃油效率和减少排放,通常采用启停系统来降低怠速时的能耗。
汽车启动系统中超级电容的作用
汽车启动系统中的超级电容起到了重要的作用。
超级电容,也被称为超级电容器或超级电荷器,是一种能够储存和释放大量电荷的电子元件。
在汽车的启动系统中,超级电容主要用于辅助起动过程,为引擎提供所需的高电流,以便快速启动发动机。
汽车启动过程中,电瓶扮演着储能设备的角色,而超级电容则具有储能和释放能量的特性。
当我们启动汽车时,启动电机需要大量的电流来引动发动机正常工作。
而传统的电瓶在短时间内提供大电流会面临着动力不足的问题,尤其是在低温环境下。
超级电容通过其高容量和低内阻的特点,能够在短时间内迅速释放储存的能量,为启动电机提供所需的电流。
它具有快速充放电的特性,能够在几秒钟内存储和释放大电流,从而提供了较传统电瓶更好的启动性能。
超级电容还具有良好的耐低温性能。
传统电瓶在低温环境下经常会出现电压下降的情况,影响启动性能。
而超级电容由于其特殊的电化学特性,可以在极低温度下保持高性能,能够迅速响应启动指令,确保引擎的正常启动。
超级电容还具有长寿命、高安全性和环保等优点。
相比于传统电瓶,超级电容的寿命更长,能够承受更多的充放电循环,减少更换的频率。
此外,超级电容没有液体电解质,不会发生泄漏和腐蚀,更加安全可靠。
同时,超级电容无需使用有害物质,对环境友好。
汽车启动系统中超级电容的作用不可忽视。
它能够为引擎提供高电流,加速启动过程,特别是在低温环境下。
同时,超级电容具有长寿命、高安全性和环保等优点,是现代汽车启动系统中不可或缺的元件。
动力电池的电池包与超级电容器混合动力系统混合动力系统是当今汽车领域的热门话题之一。
它将传统的燃油发动机与电力驱动系统相结合,以提高燃油效率和降低尾气排放。
其中,动力电池的电池包和超级电容器是混合动力系统中关键的组成部分。
本文将重点讨论动力电池的电池包与超级电容器在混合动力系统中的应用。
一、动力电池的电池包动力电池是混合动力汽车的重要能源储备装置。
它可以将电能储存起来,并提供给电动机进行驱动。
而电池包则是将多个电池单体组装在一起形成的整体,通常包括电池单体、电池管理系统、温控系统等。
1. 动力电池单体动力电池单体是电池包中的基本单元,它由电池正负极、隔膜、电解液等组成。
目前市场上常见的动力电池单体有锂离子电池、镍氢电池等。
锂离子电池因其高能量密度和长寿命等特点而被广泛应用于混合动力系统。
2. 电池管理系统电池管理系统是对电池组进行监控和控制的关键部分。
它可以实时监测电池的状态、电流、电压等参数,确保电池组的工作在安全范围内。
同时,电池管理系统还可以对电池进行均衡充放电,以延长电池的使用寿命。
3. 温控系统温控系统可以有效地控制电池的温度,保持电池在合适的工作温度范围内。
过高或过低的温度都会对电池的性能和寿命产生不利影响。
因此,温控系统在电池包中起到了至关重要的作用。
二、超级电容器超级电容器是一种能够快速充放电的电子元件,它具有高能量密度和高功率密度的特点。
在混合动力系统中,超级电容器可用于辅助动力电池,提供瞬时的高功率输出。
超级电容器的充放电速度远远快于动力电池,而且寿命长、环境友好。
它可以通过吸收制动能量并进行储存,在车辆再次加速时释放储存的能量,从而减少能量的浪费。
此外,在启动车辆和超车等瞬间加速时,超级电容器能够提供额外的动力支持,提升车辆的性能和燃油效率。
三、动力电池包与超级电容器的优势和应用前景将动力电池的电池包与超级电容器相结合在混合动力系统中,可以充分发挥两者的优势,提高车辆的整体性能。
基于超级电容的自行火炮启动系统设计
刘重发;陈远江;杨杰敏;张涛;张郑
【期刊名称】《船电技术》
【年(卷),期】2015(035)005
【摘要】自行火炮一般采用4块大容量铅酸蓄电池混联实施启动,蓄电池经常维护保养耗费大量人力物力.如果单独采用2块蓄电池实施启动,则会导致装备作战性能下降.文章对比超级电容和蓄电池的性能,提出采用2块蓄电池和超级电容组成启动电源系统.根据自行火炮电启动线路特点进行设计,需要启动前蓄电池组给超级电容
组充电,同时闭锁启动电路,充足电后共同实施启动.新启动电源系统寿命长、适应广、保养省,节省人力物力.
【总页数】3页(P63-65)
【作者】刘重发;陈远江;杨杰敏;张涛;张郑
【作者单位】武汉军械士官学校,武汉430075;武汉军械士官学校,武汉430075;武
汉军械士官学校,武汉430075;武汉军械士官学校,武汉430075;武汉军械士官学校,武汉430075
【正文语种】中文
【中图分类】TJ306
【相关文献】
1.基于DSP的自行火炮数字交流随动系统设计 [J], 黄丽娟;程治新;黄林昊;赵海燕
2.基于ARM+WinCE的某自行火炮火控系统模拟训练与考核系统设计与实现 [J],
程治新;张瑞;黄丽娟;文谷生
3.基于VR的某自行火炮指挥车虚拟驾驶系统设计与实现 [J], 韩永要;徐德友;蔡春生
4.自行火炮发动机不能启动或启动困难故障分析与排除 [J], 杨杰敏;刘重发;张郑
5.基于超级电容的汽车应急启动电源设计 [J], 王思原
因版权原因,仅展示原文概要,查看原文内容请购买。