1、因式分解1(提套)
- 格式:doc
- 大小:234.50 KB
- 文档页数:7
因式分解之套公式法【知识精读】1.把乘法公式反过来,就可以得到因式分解的公式。
常用公式有:平方差公式 a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±()立方和、立方差公式 a b a b a ab b 3322±=±⋅+()()μ 2. 补充:欧拉公式:a b c abc a b c a b c ab bc ca 3332223++-=++++---()() =++-+-+-12222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。
【典例精析】(一)运用公式分解因式1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2D. ()()a b b a 2222--分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。
再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。
说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。
同时要注意分解一定要彻底。
2.因式分解:x xy 324-=________。
解:x xy x x y x x y x y 32224422-=-=+-()()()说明:因式分解时,先看有没有公因式。
此题应先提取公因式,再用平方差公式分解彻底。
3.分解因式:2883223x y x y xy ++=_________。
解:288244322322x y x y xy xy x xy y ++=++()=+222xy x y () 说明:先提取公因式,再用完全平方公式分解彻底。
因式分解最全方法归纳一、因式分解的概念与原则1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。
2、原则:(1)分解必须要彻底(即分解之后的因式均不能再做分解);(2)结果最后只留下小括号;(3)结果的多项式是首项为正,为负时提出负号;(4)结果个因式的多项式为最简整式,还可以化简的要化简;(5)如有单项式和多项式相乘,应把单项式提到多项式前;(6)相同因式的乘积写成幂的形式;(7)如无特殊要求,一般在有理数范围内分解。
如另有要求,在要求的范围内分解。
3、因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;(3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解;(4)检查各因式是否进行到每一个因式的多项式都不能再分解。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。
十字相乘试一试,分组分解要相对合适。
”二、因式分解的方法1、提取公因式公因式:一个多项式的多项都含有的相同的因式叫做这个多项式的公因式。
公因式可以是单项式,也可以是多项式。
确定公因式的方法:公因数的常数应取各项系数的最大公约数,多项式第一项为负的,要提出负号;字母取各项的相同字母,而且各字母的指数取次数最低的。
提取公因式:公因式作为一个因式,原式除以公因式的商作为另一个因式。
注意事项:(1)先确定公因式,一次把公因式全部提净;(2)提完公因式后,商的项数与原式相同,与公因式相同的项,其商为1 不可丢掉;(3)提取的公因式带负号时,多项式的各项要变号。
例1、分解因式:6a 2 b–9abc+3ab解:原式=3ab (2a-3c+1 )例2、分解因式:–12x 3 y 2 +4x 2 y 3解:原式=–4x 2 y 2 ( 3x–y)总结(口诀):找准公因式,一次要提净;全家都搬走,留1 把家守;提负要变号,变形看奇偶。
提公因式法、公式法【知识要点】1.因式分解概念:把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算。
2.提公因式法;(1)多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
(2)公因式的构成:①系数:各项系数的最大公约数; ②字母:各项都含有的相同字母; ③指数:相同字母的最低次幂。
3.公式法: (1)常用公式平 方 差: )b a )(b a (b a 22-+=- 完全平方: 222)b a (b 2ab a ±=+±(2)常见的两个二项式幂的变号规律:①22()()nn a b b a -=-;②2121()()n n a b b a ---=--.(n 为正整数) 【课前热身】1.计算下列各式:(1)(4)(4)m m +-= (2)2(3)y -= (3)3(1)x x -= (4)()m a b c ++=2.根据上题填空:(1)233x x -= (2)216m -= (3)ma mb mc ++= (4)269y y -+=【典型例题】例1 把下列各式分解因式(1)236x xy x -+= (2)3241626m m m -+-=(3)330a b ab b ++=例2 把下列各式分解因式(1)324(1)2(1)q p p -+- (2)3()()m x y n y x ---(3)(51)(31)m ax ay m ax ay +---- (4)22311(2)(2)24a x a a a x ---例3 把下列各式分解因式(1)22516x -= (2)22194a b -= (3)229()()m n m n +--= (4)328x x -= 例4 把下列各式分解因式(1)2()6()9m n m n +-++= (2)22363ax axy ay ++=(3)2244x y xy --+= (4)2234293m n mn n ++= 例5 计算(1)123369510157142113539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯(2)222111111234⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭…22111199100⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭例6 求证:111631125255--能被19整除.【练 习】A 组一、选择题1.下列各式:①22623x y x y =;②243(2)(2)3x x x x x --=+--;③22(2)ab ab ab b -=-;④221(1)(1)1a a a a -+=-+=-,其中从左至右的变形是因式分解的有( ) A .4个 B .3个 C .2个 D .1个 2.下列各式中,没有公因式的是( )A .33a b -与b a -B .mx y +与x my +C .2()x y +与x y --D .2x xy -与()()x y x y +- 3.观察下列各组式子,其中有公因式的是( )①2y x +与x y +;②3()a m n -与m n -+;③a b -与2()a b +;④22x y -与2()y x - A .①③ B .②③ C .②④ D .③④4.多项式2nn bb -提公因式n b 后,另一个因式是( ) A .1n b - B .211n b-- C .21n b - D .n b 5.下列多项式中,在有理数范围内不能用平方差公式分解因式的是( )A .22x z -+B .216x -C .20.369a -- D .2249n m -+6.多项式22222225()16()m n m n +--分解因式的结果是( )A .2222(9)(9)m n n m ++ B .22(3)(3)(3)m n m n m n ++- C .22(9)(3)(3)m n m n n m ++- D .(3)(3)(3)(3)m n m n m n m n +-+-二、分解因式1.231115255n n n xx x ++--+(1n >且是整数)=2.(2)(23)2(2)(32)a b a b a b a b a -----=3.222()4()a b m b a ---= 4.212n n xxy +-=5.()()2222224c b d a ab cd -+---=B 组一、因式分解:1.220041(1)(1)(1)x x x x x x x ++++++++ 2.22(161)(116)a x y b y x -++--3.22222()2()()x a b x a b a b ++-+- 4.2221()()2()2a b a b ab b a ab b a -+-+-三、计算:(1)1998 5.219987.4199.826⨯+⨯-⨯ (2)4.4513.74450.88944.50.26⨯+⨯-⨯(3)1(2)2(2)nn --+- (4)43937133⨯-⨯四、解答1.求证:对于任意的正整数22,3232n n n n n ++-+-一定是10的倍数。
第十讲因式分解(一)一.定义把一个多项式化成几个整式的积的形式,这种代数式变形就叫做把这个多项式因式分解,也叫作分解因式。
分解因式与整式乘法互为逆变形。
二.意义因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。
三.要点因式分解要注意一下五点:(1)因式分解的对象是多项式;(2)其结果必须是整式的乘积;(3)不能混淆因式分解和整式乘法;(4)要分解到不能分解为止;(5)因式分解结果的唯一性。
四.因式分解的数域范围因式分解的范围通常都是在有理数域上进行的,即分解的结果里面只能含有有理数。
五.书写惯例(1)因式分解的结果中有如果有一个单项式,通常要放在最前面,如:()232-+=-是不符合惯例的;a a a a a442(2)整式的乘积中如有相同的因式,要写成幂的形式,如:()()32a a a a a a-+=--是不符合惯例的;4422(3)首项的系数是负数时,要提出负号置于最前面,如:()()2111-+=---是不符合惯例的。
x x x六.基本方法1.提公因式法首先,什么叫做公因式呢?各项都含有的公共的因式叫做这个多项式各项的公因式。
这个公因式可以是单项式,也可以是多项式。
定义:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将一个多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同的字母,而且各字母的指数取次数最低的;(3)取相同的多项式,多项式的次数取最低的;(4)正确找出多项式提出最大公因式后剩余的项;注意:(1)如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
1.定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.2.因式分解结果的要求:因式分解结果的标准形式 常见典型错误或者不规范形式符合定义,结果一定是乘积的形式 ()()()x x x +1+2+3+7既约整式,不能含有中括号 []()()x x +12+3-1 最后的因式的不能再次分解 ()()x x 2-1-1单项式因式写在多项式因式的前面()()x x x -1+1 相同的因式写成幂的形式 ()()()x x x x -1+1-1 每个因式第一项系数一般不为负数 ()()x x x -+1+1 每个因式第一项系数一般不为分数x x x 12⎛⎫⎛⎫-+1+1 ⎪⎪33⎝⎭⎝⎭因式中不能含有分式 x x x 21⎛⎫+ ⎪⎝⎭因式中不能含有无理数()()()x x x +1+2-23.因式分解基本解法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式. 例如:()ma mb mc m a b c 2+4+6=2+2+3把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体. ②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉. 平方差公式()()a b a b a b 22+-=- 完全平方公式:()a b a ab b 222+=+2+()a b a ab b 222-=-2+立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2 完全立方公式:()a b a a b ab b 33223+=+3+3+()a b a a b ab b 33223-=-3+3-大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++---(1)下列各式从左边到右边的变形中,是因式分解的是( )A .()ab a b a b ab 223+=3+3B .x x x x 222⎛⎫2+4=21+ ⎪⎝⎭C .()()a b a b a b 22-4=+2-2D .()x xy x x x y 23-6+3=3-2(2)如果下列式子是因式分解的结果,请判断下列式子形式是否正确,如果错误,请说明理由.①()x y x y 224-3+7;②()m m 23-4;③()()a b a b -4+2-2;④()[()]y x 22+1-1-3;⑤x x x 1⎛⎫+ ⎪⎝⎭;⑥()x x x 1⎛⎫+1-2 ⎪2⎝⎭;⑦()()y x x 2-+3-+3;⑧()()()()x y x y x y x y 2244++++.(1)C ;(2)③正确,①②④⑤⑥⑦⑧错误.【教师备课提示】这道题主要讲解因式分解的概念:(1)因式分解是一种恒等变形.(2)因式分解的结果必须是乘积的形式,每一个因式必须是整式,且不可再分解.(1)多项式x y x y x y 3222236-3+12的公因式是___________.(2)多项式()()()x y z a b x y z a b x y z a b 23433232545-24-+20-+8-公因式是_________.(3)观察下列各式:①a b 2+和a b +;②()m a b 5-和a b -+;③()a b 3+和a b --;④x y 22-和x y 22+,其中有公因式的是___________.(1)x y 223;(2)()x y z a b 223-4-;(3)②③.【教师备课提示】这道题主要讲解怎么找公因式,数和式子单独来看,数找公因数,式子找公因式.模块二 提取公因式法模块一 因式分解的概念因式分解:(1)a x abx y acx 232212+6-15(2)()()()()a b x y b c a b x y b c 223322++-6++(3)()()()x y x y x y 322+-2++2+ (4)abx acx ax 43-3+-(5)()()()()x y x y y x x y 2-33-2+2-32+3(6)a b a b ab 3223273-6+4这6道小题反映了提取公因式法的6大原则:(1)一次提净:应当先检查数字系数,然后再一个个字母逐个检查,将各项的公因式提出来,使留下的式子没有公因式可以提取. 原式()ax ax by c 2=34+2-5(2)视“多”为一:把多项式(如x y +,b c +等)分别整个看成是一个字母.原式2322()()(33)a b x y b c x y ab ab c =+++--(3)切勿漏“1”:当多项式的某一项恰好是所提取公因式时,剩下的式子里应当留下“1”,千万不要忽略掉.原式2(2)[(2)(2)1]x y x y x y =++-++22(2)(4421)x y x xy y x y =+++--+ (4)提负数:原式32(31)ax bx cx =--+(5)提相反数:原式(32)[(23)(23)]x y x y x y =---+6(32y x y =--)(6)化“分”为整:在提出一个分数因数(它的分母是各项系数的公分母)后,我们总可以使各项系数都化为整数(这个过程实质上就是通分).并且,还可以假定第一项系数是正整数,否则可用前面说过的方法,把1-作为公因数提出,使第一项系数称为正整数.原式32231(122427)4a b a b ab =-+223(489)4ab a b ab =-+.因式分解(随堂练习):(1)x y xyz xy 25-10+5(2)()()()a x a b a x x a -+--- (3)()()()x x a x x -2+1++1++1(4)()()()()x m x m y m m x m y -----(5)n n b b 3-12-131+26(n 是正整数)(6)()()()p x p x p x 32226-1-8-1-21-(1)=()xy x z 5-2+1原式;(2)=()()()a x a b x a x a -----原式()()x a a b =---1; (3)()()x x a =+1-2++1原式()()x x a =-+12--1;(4)()()m x m y 2=---原式;(5)()n n b b 2-11=9+16原式;(6)()[()]p x x p 2=2-13-1-4-1原式()()p x x p 2=2-13-4-4. 【教师备课提示】例3和例4主要考查提取公因式因式分解.因式分解:(1)()x 2-1-9 (2)()()m n m n 229--4+(3)()()a b a b 22-4-+16+ (4)()()a b a b 222222-3-5+5-3 (5)x xy y 229-24+16 (6)a a 28-4-4 (7)()c a b a b 222222---4(1)()()x x +2-4;(2)[()()][()()]m n m n m n m n =3-+2+3--2+原式()()m n m n m n m n =3-3+2+23-3-2-2 ()()m n m n =5--5;(3)原式()()a b a b 43++3=;(4)()()a b a b a b a b 22222222=5-3+3-55-3-3+5原式()()a b a b 2222=8-82+2 ()()()a b a b a b 22=16+-+;(5)()x y 2=3-4原式;(6)()a a 2=-4-2+1原式()a 2=-4-1;(7)原式()()()()c a b c a b c a b c a b +--+++--=.因式分解(随堂练习):(1)()a b 216-3+2 (2)x y x y 62575-12(3)a b c 444-81+16 (4)()()a b a b 2222223---3(5)()()x y z x y z 22+-6++9 (6)()x y x y 22222+-4(7)m m 4216-72+81模块三 公式法(1)()()a b a b =4+3+24-3-2原式;(2)()x y x y 244=325-4原式()()x y x y x y 22222=35+25-2;(3)()()c a b c a b 222222=4-94+9原式()()()c ab c ab c a b 222=2+32-34+9; (4)()()a b a b a b a b 22222222=3-+-33--+3原式()()a b a b 2222=4-42+2()()()a b a b a b 22=8+-+;(5)原式()x y z 2+-3=; (6)原式()()x y x y 22=+-;(7)()()m m 2222=4-2⋅4⋅9+9原式()m 22=4-9()()m m 22=2-32+3. 【教师备课提示】例5和例6主要考查平方差公式和完全平方公式因式分解.因式分解:(1)x 38+27 (2)y 3-+64(3)x x y 5239-72 (4)a b 66+ (5)a b 66-(1)()()x x x 2=2+34-6+9原式; (2)()()y y y 2=4-+4+16原式;(3)()x x y 233=9-8原式()()x x y x xy y 222=9-2+2+4; (4)()()a b 2323=+原式()()a b a a b b 224224=+-+; (5)()()a b 3232=-原式()()a b a b 3333=+-()()()()a b a b a ab b a ab b 2222=+--+++另解:()()a b 2323=-原式()()a b a a b b 224224=-++()()()a b a b a a b b a b 422422=+-+2+- ()()()()a b a b a ab b a ab b 2222=+--+++;【教师备课提示】这道题主要考查立方差和立方和公式. 因式分解:(1)a b c bc ca ab 2224+9+9-18-12+12(2)x x y xy y 32238-36+54-27(1)()a b c 2=2+3-3原式;(2)()x y 3=2-3原式.【教师备课提示】这道题主要考查三项完全平方和完全立方公式.下列因式分解正确的是( )A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3D .因式分解:(1)abc a b a b 2336-14+12 (2)a a a 324-6+15-12 (3)()x a x a x 22224+--(4)()()p q p 22-1-4-1(5)()()()(a b m p a b m p 5-22+3-2-72+3) (6)()()()x y x y x y 232++6+-4+(1)()ab a c ab 22=26+3-7原式; (2)()a a a 22-34+2-5=原式; (3)()()a x x 22=+4-1原式; (4)原式()()p p q =2-1-2-1; (5)=()()m p a b 2+33+5原式;(6)()[()()]x y x y x y 2=2+1+3+-2+原式()()x y x y x y xy 22=2+1+3+3-2-2-4.模块二 提取公因式法模块一 因式分解的概念已知b c a +-=-2,求()()a a b c b c a b c b c a 22221⎛⎫--+-++2+2-2 ⎪33333⎝⎭的值.()()a b c a b c 2=----3原式()a b c 22=--3.∵b c a +-=-2,∴a b c --=2,则原式8=3.因式分解:(1)()y z x 224-2-(2)(m x y mn 2232--3)(3)x y 88-(4)x x 516-(5)()()x x x x 22225+2-3--2-3 (6)()()x x x x 2222+4+8+4+16(7)n n n a a a +2-2+8+16(1)=()()y z x y z x 2+2-2-2+原式;(2)原式=()()m x y n x y n 32-+2--;(3)=()()x y x y 4444-+原式()()()x y x y x y 222244=-++()()()()x y x y x y x y 2244=+-++;(4)()()()x x x x x 422=16-1=4-14+1原式()()()x x x x 2=2-12+14+1; (5)()()x x x 22=6-64+4原式()()()x x x x =24+1-1⋅⋅+1()()x x x 2=24-1+1; (6)()x x 22=+4+4原式()x 4=+2;(7)()n a a a -242=+8+16原式()n a a -222=+4.因式分解:(1)a b c 3338-1(2)a b b 33932-4(3)x y y 631564+(1)()()abc a b c abc 222=2-14+2+1原式;(2)=原式()b a b 33648-()()b a b a ab b 32224=42-4+2+; (3)()y x y 3612=64+原式()()y x y x x y y 3244248=4+16-4+.模块三 公式法。
因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
《因式分解》知识梳理及经典例题【知识梳理】1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
例:13ax +13bx =13x(a +b)因式分解,应注意以下几点。
1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。
2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
{系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:12a 3b 3c −8a 3b 2c 3+6a 4b 2c 2的公因式是 .解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分a 3b 3c,a 3b 2c 3,a 4b 2c 2都含有因式a 3b 2c ,故多项式的公因式是2a 3b 2c .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。
注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。
多项式中第一项有负号的,要先提取符号。
(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
a.逆用平方差公式:a2−b2=(a+b)(a−b)b.逆用完全平方公式:a2±2ab+b2=(a±b)2c.逆用立方和公式:a3+b3=(a+b)(a2−ab+b2)(拓展)d.逆用立方差公式:a3−b3=(a−b)(a2+ab+b2)(拓展)注意:①公式中的字母可代表一个数、一个单项式或一个多项式。
因式分解(一)——提公因式法教学目标:因式分解的概念,和整式乘法的关系,公因式的相关概念,用提公因式法分解因式,学会逆向思维,渗透化归的思想方法.教学重点和难点:1. 因式分解;2. 公因式;3. 提公因式法分解因式.教学过程:一、提出问题,感知新知1.问题:把下列多项式写成整式的乘积的形式(1)x2+x =_________ (2)x2−1 =_________ (3)am+bm+cm =_ _学生思考,得出结果.2.分析特点:根据整式乘法和逆向思维原理(1)x2+x = x(x+1);(2)x2−1 = (x+1)(x−1);(3)am+bm+cm = m(a+b+c)分析特点:等号的左边:都是多项式等号的右边:几个整式的乘积形式.3.得到新知总结概念:像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.与整式乘法的关系:是整式乘法的相反方向的变形.注意:因式分解不是运算,只是恒等变形.形式:多项式 = 整式1×整式2×…×整式n4.分析例题:(1)x2+x =_________ (2)am+bm+cm =_ _(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m.因此,我们把每一项都含有的因式叫做公因式.5.认识公因式例:多项式 14m3n2+7m2n−28m3n3的公因式是?7m2n教师分析,学生解答二、学生动手,总结方法1.我们已经学习了公因式,下面请大家根据自己的理解完成下列的因式分解.把8a3b2−12ab3c分解因式.2.学生动手.3.分析过程:①先确定公因式:4ab2;②然后用每一项去除以公因式;③结果:4ab2(2a2b−3bc).4.总结方法:以上①②③的分解过程的方法叫做提公因式法.5.加强练习例:因式分解:① 2a(b+c)−3(b+c) ②3x3−6xy+x ③−4a3+16a2−18a ④6(x−2)+x(2−x)解:① 2a(b+c)−3(b+c) = (b+c)(2a−3)②3x3−6xy+x = x(3x2−6y+1)③−4a3+ 16a2−18a = −2a(2a2−8a+9)④6(x−2)+x(2−x) = (x−2)(6−x)三、小结:1.因式分解的概念;2.公因式;3.提公因式法.因式分解(二)——公式法教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x2−25和9x2−y2它们有什么共同特征?学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2−b2 = (a+b)(a−b)如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2 = ( )2②b2 = ( )2③ 0.16a4 =( )2④1.21a2b2 = ( )2⑤2x4 = ( )2⑥5x4y2 = ( )2解答:① 4a2 = ( 2a)2;②b2 = (b)2;③ 0.16a4 = ( 0.4a2)2;④ 1.21a2b2 = (1.1ab)2;⑤2x4 = (x2)2;⑥5x4y2 = (x2y)2.例2:下列多项式能否用平方差公式进行因式分解①−1.21a2+0.01b2②4a2+625b2③16x5−49y4④−4x2−36y2解答:①−1.21a2+0.01b2能用②4a2+625b2不能用③16x5−49y4不能用④−4x2−36y2不能用问题:根据学习用平方差公式分解因式的经验和方法,分析和推测运用完全平方公式分解因式吗?能够用完全平方公式分解因式的多项式具有什么特点?分析:整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.即:a2±2ab+b2 = (a±b)2公式特点:多项式是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数.例:分解因式:①16x2+24x+9 ②−x2+4xy−4y2解答:①16x2+24x+9 = (4x)2+2•3•(4x)+32 = (4x+3)2②−x2+4xy−4y2 = −[x2−2•x•2y+(2y)2] = −(x−2y)2随堂练习:三、小结:1.平方差公式;2.完全平方公式.典型例题1.如果a(a−b)2−(b−a) = (a−b)·M,那么M等于( )A.a(a−b) B.−a(a−b) C.a2−ab−1 D.a2−ab+1答案:D说明:因为a(a−b)2−(b−a) = a(a−b)2+(a−b) = (a−b)[a(a−b)+1] = (a−b)(a2−ab+1),所以M = a2−ab+1,答案为D.2.下列各项的两个多项式中没有公因式的一组是( )A.6xy+8yx2与−4x−3 B.(a+b)2与−a−bC.a−b与−a2+ab D.ax+y与x+y答案:D说明:选项A,6xy+8yx2= 2xy(3+4x),与−4x−3有公因式4x+3;选项B,(a+b)2与−a−b 有公因式a+b;选项C,−a2+ab = −a(a−b),与a−b有公因式a−b;选项D,ax+y与x+y没有公因式,所以答案为D.3.下列式子中,不能用平方差公式分解因式的是( )A.−m4−n2 B.−16x2+y 2 C.−x4 D.(p+q)2−9答案:A说明:选项A不能用平方差公式分解因式;选项B,−16x2+y2= (y+4x)(y−4x),可以用平方差公式分解因式;选项C,−x4 = (+x2)(−x2),可以用平方差公式分解因式;选项D,(p+q)2−9 = [(p+q)+3][(p+q)−3],也可以用平方差公式分解因式;所以正确答案为A.4.下列多项式中,能用公式法进行因式分解的是( )A.x2−xy+y2 B.x2+2xy−y2 C.x2+xy+y2 D.−x2+2xy−y2答案:D说明:观察四个选项中多项式的形式,不难得出A、B、C三个选项中的多项式不能用公式法进行因式分解,选项D,−x2+2xy−y2 = −(x2−2xy+y2) = −(x−y)2,可以用完全平方公式进行因式分解,所以答案为D.习题精选选择题:1.若多项式3x2+mx−4分解因式为(3x+4)(x−1),则m的值为( )A.7 B.1 C.−2D.3答案:B说明:因为因式分解并不改变多项式的值,所以(3x+4)(x−1) = 3x2+mx−4,而(3x+4)(x−1) = 3x2+4x−3x−4 = 3x2+x−4,因此,m = 1,答案为B.2.下列各式的分解因式中,正确的是( )A.3a2x−6bx+3x = 3x(a2−2b) B.xy2+x2y =xy(y+x) C.−a2+ab−ac = −a(a+b−c) D.9xyz−6x2y2= 3xyz(3−2xy)答案:B说明:选项A,3a2x−6bx+3x = 3x(a2−2b+1)≠3x(a2−2b),A错;选项B正确;选项C,−a2+ab−ac = −a(a−b+c)≠−a(a+b−c),C错;选项D,9xyz−6x2y2 = 3xy(3z−2xy)≠3xyz(3−2xy),D错;答案为B.3.若9x2−kxy+4y2是一个完全平方式,则k的值为( )A.6 B.±6 C.12 D.±12答案:D说明:由已知可设9x2−kxy+4y2 = (mx+ny)2 = m2x2+2mnxy+n2y2,所以m2 = 9,n2 = 4,2mn = k,由m2 = 9,n2 = 4可得m2n2 = 36,即(mn)2 = 36,则有mn =±6,所以k = 2mn =±12,答案为D.4.分解因式的结果为(x−2)(x+3)的多项式是( )A.x2+5x−6 B.x2−5x−6 C.x2+x−6D.x2−x−6答案:C说明:因为(x−2)(x+3) = x2−2x+3x−6 = x2+x−6,所以分解因式的结果为(x−2)(x+3)应该是x2+x−6,答案为C.5.下列从左边到右边的变形,是因式分解的是( )A.(x+1)(x−1) = x2−1 B.x2−1+x = (x+1)(x−1)+xC.x2−1 = (x+1)(x−1) D.2x·3x = 6x2答案:C说明:因式分解是把一个多项式化成几个整式的积的形式,则因式分解的结果首先应该是积的形式,因此,A、B都不正确;而选项D左边是两个单项式的乘积,它的变形过程只是简单的单项式乘以单项式的过程,不是因式分解,正确的答案应该是C.6.多项式5a3b3+ 15a2b−20a3b3的公因式是( )A.5a3b B.5a2b2 C.5a2b D.5a3b2答案:C说明:这个多项式中有三项,这三项的系数分别是5,15,−20,系数所含的公因式为5;第一项有因式a3,第二项中含因式a2,第三项中含因式a3,公因式则是a2,同样道理这三项还有公因式b,即这个多项式的公因式应该是5a2b,答案为C.7.下列分解变形中正确的是( )A.2(a+b)2−(2a+b) = 2(a+b)(a+b−1) B.xy(x−y)−x(y−x) =x(x−y)(y+1)C.5(y−x)2+3(x−y) = (y−x)(5x−5y+3) D.2a(a−b)2−(a−b) =(a−b)(a−b−1)答案:B说明:选项A,2a+b中没有a+b这个因式,因此,A中的变形是错误的;选项B,xy(x−y)−x(y−x) = (x−y)(xy+x) = x(x−y)(y+1),B正确;选项C,5(y−x)2+3(x−y) =(y−x)[5(y−x)+3] = (y−x)(5y−5x+3),C错误;选项D,2a(a−b)2−(a−b) = (a−b)[2a(a−b)−1] = (a−b)(2a2−2ab−1),D错误;答案为B.8.下列式子中,能用平方差公式分解因式的是( )A.a2+4 B.−x2−y2 C.a3−1 D.−4+m2答案:D说明:根据平方差公式的形式,不难得到能用平方差公式分解因式的应该是−4+m2 = (m+2)(m−2),答案为D.9.下列各题中,因式分解正确的是( )①(x−3)2−y2 = x2−6x+9−y2;②a2−9b2 = (a+9b)(a−9b);③4x6−1 = (2x3+1)(2x3−1);④(3x+2y)2−4y2 = 3x(3x+4y)A.①②③ B.②③④ C.③④ D.②③答案:C说明:①中的变形不是因式分解;②a2−9b2 = (a+3b)(a−3b)≠(a+9b)(a−9b),②中因式分解错误;③4x6−1 = (2x3+1)(2x3−1),③中因式分解正确;④(3x+2y)2−4y2 =(3x+2y+2y)(3x+2y−2y) = 3x(3x+4y),④中因式分解正确,所以答案为C.解答题:1.把下列各式分解因式:①9(x+y)2−4(x−y)2;②−8a4b3+2a2b;③4(a+b)−(a+b)2−4;④(a−2)(a−3)+ 5a−42.答案:①(5x+y)(x+5y);②2a2b(1+2ab)(1−2ab);③−(a+b−2)2;④(a+6)(a−6)说明:①9(x+y)2−4(x−y)2 = [3(x+y)+2(x−y)][3(x+y)−2(x−y)] =(3x+3y+2x−2y)(3x+3y−2x+2y) = (5x+y)(x+5y)②−8a4b3+2a2b = 2a2b(−4a2b2+1) = 2a2b(1+2ab)(1−2ab)③4(a+b)−(a+b)2−4 = −[(a+b)2−4(a+b)+4] = −[(a+b)−2]2 = −(a+b−2)2④(a−2)(a−3)+5a−42 = a2−3a−2a+6+5a−42 = a2−36 = (a+6)(a−6)2.已知a、b、c为三角形的三条边,且满足:a2+b2+c2−ab−bc−ac = 0,试判断△ABC 的形状,并说明理由.答案:a = b = c,等边三角形说明:因为2(a2+b2+c2−ab−bc−ac) = 2a2+2b2+2c2−2ab−2bc−2ac= (a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2) = (a−b)2+(a−c)2+(b−c)2再由已知a2+b2+c2−ab−bc−ac = 0,知2(a2+b2+c2−ab−bc−ac) = (a−b)2+(a−c)2+(b−c)2 = 0因为(a−b)2≥0,(a−c)2≥0 ,(b−c)2≥0,所以(a−b)2 = 0,(a−c)2 = 0,(b−c)2 = 0即a = b = c,所以该三角形为等边三角形.3.已知矩形面积是(x+2)(x+3)+x2−4(x>0),其中一边长是2x+1,求矩形的另一边长.答案:x+2说明:因为(x+2)(x+3)+x2−4 = (x+2)(x+3)+(x+2)(x−2) = (x+2)(x+3+x−2) =(x+2)(2x+1),即该矩形的面积是(x+2)(2x+1),而它的一边长为2x+1,所以它的另一边长为x+2.4.已知x3+x2+x+1 = 0,求1+x+x2+x3+…+x2003的值.答案:0说明:1+x+x2+x3+…+x2003 = (1+x+x2+x3)+(x4+x5+x6+x7)+…+(x4n+x4n+1+x4n+2+x4n+3)+…+(x2000+x2001+x2002+x2003) = (1+x+x2+x3)+x4(1+x+x2+x3)+...+x4n(1+x+x2+x3)+...+x2000(1+x+x2+x3) = (1+x+x2+x3)(1+x4+...+x4n+ (x2000)∵1+x+x2+x3 = 0,∴1+x+x2+x3+…+x2003 = (1+x+x2+x3)(1+x4+…+x4n+…+x2000) = 0。
第1讲 因式分解(1)
【竞赛导航】
如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
本讲主要涉及用提公因式法和公式法分解因式.
一、提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:
(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数取各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
二、把乘法公式反过来,就可以得到因式分解的公式。
主要有:
平方差公式:a 2-b 2=(a +b )(a -b )
完全平方公式: a 2 ±2a b+b 2=(a ±b )2
推广公式:a 2+b 2+c 2+2ab+2ac+2bc=(a+b+c)2
立方和、立方差公式: a 3±b 3=(a ±b )( a 2 a b+b 2)
和(差)的立方公式:33223)(33b a b ab b a a ±=±+±
补充:欧拉公式: a 3+b 3+c 3
= (a +b +c )(a 2+b 2+c 2-ab -ac -bc ) +3abc
])()())[((2
1222a c c b b a c b a -+-+-++=+3abc 特别地:(1)当a +b +c =0时,有a 3+b 3+c 3=3abc
(2)当0=c 时,欧拉公式变为两数立方和公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。
但有时需要经过适当的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。
因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。
【典例解析】
例1. 把下列各式因式分解
(1)-+--+++a x abx acx ax m m m m 2213;(2))(2)(2)(223a b ab a b a b a a ---+-
例2. 计算:1368
987521136898745613689872681368987123⨯+⨯+⨯+⨯
例3. 不解方程组23532x y x y +=-=-⎧⎨⎩
,求代数式()()()22332x y x y x x y +-++的值。
例4. 证明:对于任意自然数n ,323222n n n n ++-+-一定是10的倍数。
例5. 已知:x bx c 2++(b 、c 为整数)是x x 42625++及3428542x x x +++的公因式,求b 、c 的值。
例6. 设x 为正整数,试判断1052+++x x x ()是质数还是合数,请说明理由。
例7. 分解因式a a b b 2222+--= .
例8. 已知多项式232x x m -+有一个因式是21x +,求m 的值。
例9. 已知a b c 、、是∆ABC 的三条边,且满足a b c ab bc ac 2220++---=,试判断∆ABC 的形状。
例10. 两个连续奇数的平方差一定是8的倍数。
例11. 已知a b c a b c ++=++=00333,, 求证:a b c 5550++=
1、因式分解(1)322x x x ()()---= .
(2)412132q p p ()()-+-= .
(3)-+-41222332m n m n mn = .
(4)234xy x -= .
(5)2883223x y x y xy ++= .
(6)()()a a +--23122= .
(7)x x y x y x 5222()()-+-= .
2、计算:200020012001200120002000⨯-⨯= .
3. 计算:()()-+-221110的结果是( )
A. 2100
B. -210
C. -2
D. -1
4. 已知x 、y 都是正整数,且x x y y y x ()()---=12,求x 、y.
5. 证明:812797913--能被45整除.
6.已知:a m b m c m =
+=+=+121122123,,, 求a ab b ac c bc 222222++-+-的值.
7.若x y x xy y 3322279+=-+=,,求x y 22+的值.
8.已知:x x +
=-13,求x x
441+的值.
1、因式分解:
(1)a x abx acx adx n n n n 2211++-+--(n 为正整数)= .
(2)a a b a b a ab b a ()()()-+---322222= .
(3)a x y a x y x y 22342()()()-+-+-= .
2. 化简:20122)1()1()1(1x x x x x x x ++++++++
3. 若a b c ,,是三角形的三条边,求证:a b c bc 22220---<
4. 已知:ωω210++=,求2013ω的值。
5. 已知a b c ,,是不全相等的实数,且abc a b c abc ≠++=03333,,试求
(1)a b c ++的值; (2)a b c b c a c a b
()()()111111+++++的值.
6.求证:n n 53
+是6的倍数.(其中n 为整数) (法一:若n n 53+是6的倍数,则n n 53+-6也是6的倍数;法二:n n 53+=n n n 63
+-).
7.已知:a 、b 、c 为三角形的三边,比较ab c b a 2222和-+的大小.
8.已知:a 、b 、c 是非零实数,且3)11()11()11(1222-=+++
++=++b
a c a c
b
c b a c b a ,, 求a+b+c 的值. 3)11()11()11(-=+++++b
a c a c
b
c b a 两边乘abc
a2(c+b)+b2(a+c)+c2(a+b)+3abc=0
ac(a+b+c)+ab(a+b+c)+cb(a+b+c)=0
(a+b+c)(ac+bc+ab)=0
又因为(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=1+2(ab+bc+ca)
所以(a+b+c)不可能等于0 则ab+bc+ac=0
所以a+b+c=1
继续追问: a^2(c+b)+b^2(a+c)+c^2(a+b)+3abc=0这一步到
这一步怎么来的ac(a+b+c)+ab(a+b+c)+cb(a+b+c)=0
继续追问: a+b+c=±1都行?
1/b+1/c中就缺a/a就可因式分解了同理得:
a(1/b+1/c)+a/a+b(1/a+1/c)+b/b+c(1/a+1/b)+c/c=0
a(1/a+1/b+1/c)+b(1/a+1/b+1/c)+c(1/a+1/b+1/c)=0
(a+b+c)(1/a+1/b+1/c)=0
这就好办了 a+b+c=0或 1/a+1/b+1/c=0 通分 (ab+bc+ac)/abc=0 因为abc不等于0 则ab+bc+ac=0
(a+b+c)2 =a^2+b^2+c^2+2ab+2bc+2ac=1
a+b+c=1,-1
所以a+b+c=0,+1,-1
a(1/c+1/b)+b(1/c+1/a)+c(1/a+1/b)=-3两边乘abc
a^2(c+b)+b^2(a+c)+c^2(a+b)+3abc=0
ac(a+b+c)+ab(a+b+c)+cb(a+b+c)=0
(a+b+c)(ac+bc+ab)=0
又因为
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca=1+2(ab+bc+ca)
所以(a+b+c)不可能等于0 则ab+bc+ac=0
a+b+c=1
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。