指数函数复习教案
- 格式:doc
- 大小:995.50 KB
- 文档页数:16
芯衣州星海市涌泉学校仲尼中学高三数学一轮复习教案:指数函数的图像与性质教材分析:在学习了函数概念,掌握了函数的一些性质之后,学习的指数函数和对数函数,是两个重要的根本初等函数,通过学习可以加深理解函数概念、进一步探究函数的性质,更重要的是让学生理解系统地研究一类函数的方法。
学情分析:学生对于函数根本性质知道的比较模糊,有些可以讲出函数的性质,却不会运用。
对于与二次函数、方程、不等式等内容结合的综合性题要由易到难,让学生有一个理解的过程。
教学目的:1.理解指数函数模型的实际背景。
2.理解指数函数的概念。
3.会判断指数函数的单调性以及指数函数图像通过的特殊点。
教学重点:指数函数的概念和性质。
教学难点:用数形结合的方法从特殊到一般地探究、概括指数函数的性质。
教学过程:一、知识梳理:(1)指数函数的定义一般地,函数y=ax(a>0且a≠1)叫做指数函数.(2)指数函数的图象底数互为倒数的两个指数函数的图象关于y轴对称.(3)指数函数的性质①定义域:R.②值域:(0,+∞).③过点(0,1),即x=0时,y=1.④当a>1时,在R 上是增函数;当0<a<1时,在R 上是减函数.二、讲解例题:1.假设a>0,那么函数11x y a -=+的图像经过定点〔〕A.〔1,2〕B.〔2,1〕C.〔0,11a +〕D.〔2,1+a 〕 2.假设10.25,4m n ⎛⎫< ⎪⎝⎭那么m,n 的关系是〔〕 A.2n m = B.m=nC.m>nD.m<n 3.假设函数()(1)x f x a =-在R 上是减函数,那么实数a 的取值范围是___________________. 4.假设函数2x y m =+的图像不经过第二象限,那么m 的取值范围是____________________.5.函数112x y -=的定义域是__________.6.指数函数()x f x a =图像过点1(2,)16,求(0)f ,(1)f ,(2)f - 7.求函数23213()x x y -+=的单调区间。
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
浙江省衢州市仲尼中学高三数学一轮复习教案:指数与指数函数教材分析:本节在根式的基础上将指数概念扩充到有理指数幂,并给出了有理指数幂的运算性质 在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法. 学情分析:学生基础较为薄弱,大部分学生知道运算性质,但是运用却不灵活。
关键是对知识理解的不够透彻。
只有在理解的基础上,通过运算,才能使学生熟练掌握本节知识。
教学目的:1.理解分数指数幂的概念.2.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化. 教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解. 教学过程: 一、知识梳理:1.根式的定义2.根式的运算性质:①当n 为任意正整数时,(n a )n=a.②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a .⑶根式的基本性质:n m npmp a a =,(a ≥0) 用语言叙述上面三个公式:⑴非负实数a 的n 次方根的n 次幂是它本身.⑵n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变. 3.引例:当a >0时 ①5102552510)(a a a a===②3124334312)(a a a a === ③32333232)(a a a ==④21221)(a a a ==上述推导过程主要利用了根式的运算性质,整数指数幂运算性质(2).因此,我们可以得出正分数指数幂的意义.4.正数的正分数指数幂的意义n m nm a a= (a >0,m ,n ∈N *,且n >1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定. 规定:(1)nm nm aa1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.5.有理指数幂的运算性质: a r ·a s =a r +s (a r )s =a rs(a >0,r ,s ∈Q )(a ·b )r =a r ·b r(a >0,b >0,r ∈Q )二、讲解例题:例1求值:4332132)8116(,)41(,100,8---. 解:422)2(8232332332====⨯827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--课内练习求下列各式的值: (1)2523(2)2732(3)(4936)23(4)(425)23-(5)432981⨯(6)23×35.1×612解:(1)23223)5(25==53=125 (2)233323323)3(27⨯===32=9(3)34321676)76()76(])76[()4936(33323223223=====⨯(4)125852)52()25()25(])25[()425(333323223223======-⨯--(5)41324432442123244213224432)33(3333])3[(3981⨯=⨯=⨯=⨯=⨯⨯⨯=66141324143333)3()3(=⨯=⨯(6)23×35.1×612=2×321×(23)31×(3×22)61=2×321×331×231×361×231=(2×231-×231)×(321×331×361)=231311+-×3613121++=2×3=6要求:学生板演练习,做完后老师讲评.例2计算下列各式:433225)12525)(2();0()1(÷->a aa a分析:(1)题把根式化成分数指数幂的形式,再计算 (2)题先把根式化成分数指数幂的最简形式,然后计算 解:课内练习:用分数指数幂表示下列各式:65653221223212322)1(a a a a a a a a a ===•=•--.555555555555)55(5)12525)(2(412545125412341324123413241233243-=-=-=÷-÷=÷-=÷---(1)32x (2)43)(b a +(a+b>0) (3)32)(n m - (4)4)(n m -(m>n) (5)56q p ⋅(p>0) (6)mm 3解:(1) 3232x x = (2) 4343)()(b a b a +=+ (3) 3232)()(n m n m -=-(4) 244)()(n m n m -=-=(m-n)2 (5) 2532526215656)()0(q p q p q p p q p ⋅==⋅=⋅φ (6)252133m mm m m =⋅=-要求:学生板演练习,做完后老师讲评.三、小结本节课要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质. 四、课后作业:1.用分数指数幂表示下列分式(其中各式字母均为正数)(C)(1)43a a ⋅(2)a a a (3)322b a ab +(4)4233)(b a +解:(1)43a a ⋅=12741314131a aa a ==⋅+(2) a a a =[a ·(a ·a 21)21]21=a 21·a 41·a 81=a 87814121a =++(3)322b a ab +=(ab 2+a 2b )31(4)4233)(b a +=(a 3+b 3)42=(a 3+b 3)212.求下列各式的值:(C) (1)|2|21(2)(4964)21-(3)1000043-(4)(27125)32-解:(1)12121=(112)21=11212⨯=11(2)(4964)21-=(2278)21-=(78))21(2-⨯·(78)-1=87(3)1000043-=(104)43-=10)43(4-⨯=10-3=0.001(4) (27125)32-=(3335)32-=[(35)3] 32-=(35))32(3-⨯=(35)-2=259._______5则.25,45已知).2(;)12(3256)71(027.0.)1(计算:(B).320143231===-+-+----y x y x4.化简: (A) (1)3327-a a÷31638a a -÷313--a a ;(2).11111333233++-++----a a a a a a a a 解:(1)原式=312327)(-•aa ÷2131638)(a a•-÷323432312)(--÷÷=aa a a =1.(2)原式=)1()1()1(11)(1)(1)31(1)1(313231313131331312313313231+----+=++-++----a a a a a a a a a a a a a 31a ==3a.板书设计指数幂的概念与性质1.正分数指数幂意义 例题一: 例题二:a nm =n ma (a >0,m ,n ∈N*,n >1)2.规定 (1)anm -=nm a1(a >0,m ,n ∈N *,n >1),。
【课题】4.2指数函数【教学目标】知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴以实例引入知识,提升学生的求知欲;⑵“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间别用光滑的曲线依次联结各点,得到函数y =2x 和y =1()2x 的图像,如上图所示.归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势. 推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解计算 部分 可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合25*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数.归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点30*巩固知识 典型例题通过x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).。
指数函数教案教案一、教学目标1. 理解指数函数的概念和特点。
2. 掌握指数函数的基本性质和运算规律。
3. 能够应用指数函数解决实际问题。
二、教学重点和难点1. 指数函数的定义和特点是本节课的重点,学生需要理解指数函数的基本概念。
2. 指数函数的运算规律和应用是本节课的难点,学生需要掌握指数函数的基本性质并能够灵活运用于实际问题的解决中。
三、教学内容1. 指数函数的定义和性质a. 指数函数的概念和表示方法b. 指数函数的特点和图像c. 指数函数的增长和衰减规律2. 指数函数的运算规律a. 指数函数的加法和减法b. 指数函数的乘法和除法c. 指数函数的幂运算3. 指数函数的应用a. 指数函数在自然界和社会生活中的应用b. 利用指数函数解决实际问题四、教学方法1. 案例分析法:通过具体案例引导学生理解指数函数的概念和特点。
2. 活动探究法:设计一些小组活动,让学生通过探究和讨论来掌握指数函数的运算规律。
3. 归纳总结法:引导学生总结指数函数的应用方法,培养学生的综合运用能力。
五、教学过程1. 导入:通过一个生活中的案例引入指数函数的概念和特点。
2. 概念讲解:讲解指数函数的定义、性质和图像特点。
3. 练习:设计一些基础练习,让学生巩固和理解所学知识。
4. 拓展:引导学生探究指数函数的运算规律和应用方法。
5. 实践:设计一些实际问题,让学生运用所学知识解决问题。
6. 总结:对本节课所学内容进行总结,强化学生对指数函数的理解和掌握。
六、教学工具1. 教学PPT2. 板书3. 实物或图片案例4. 练习题和实际问题七、教学评估1. 课堂练习:通过课堂练习考察学生对指数函数的掌握程度。
2. 作业布置:设计一些拓展性的作业,巩固学生对指数函数的理解和运用能力。
八、教学反思通过本节课的教学,学生应该能够初步掌握指数函数的基本概念、性质和运算规律,能够灵活运用指数函数解决实际问题。
同时,教师需要根据学生的学习情况及时调整教学方法,帮助学生更好地理解和掌握指数函数相关知识。
“指数函数及其性质教案”一、教学目标1. 理解指数函数的定义和表达形式;2. 掌握指数函数的性质,包括单调性、奇偶性和周期性;3. 能够运用指数函数解决实际问题;4. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 指数函数的定义和表达形式;2. 指数函数的单调性;3. 指数函数的奇偶性;4. 指数函数的周期性;5. 指数函数在实际问题中的应用。
三、教学重点与难点1. 指数函数的定义和表达形式;2. 指数函数的单调性的证明;3. 指数函数的奇偶性的证明;4. 指数函数的周期性的证明;5. 指数函数在实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生主动探索和发现指数函数的性质;2. 通过举例和练习,让学生加深对指数函数的理解和应用;3. 利用多媒体辅助教学,展示指数函数的图像和实际应用场景。
五、教学安排1. 第一课时:介绍指数函数的定义和表达形式,引导学生理解指数函数的概念;2. 第二课时:讲解指数函数的单调性,通过例题和练习让学生掌握单调性的判断方法;3. 第三课时:讲解指数函数的奇偶性,通过例题和练习让学生掌握奇偶性的判断方法;4. 第四课时:讲解指数函数的周期性,通过例题和练习让学生掌握周期性的判断方法;5. 第五课时:介绍指数函数在实际问题中的应用,让学生学会将实际问题转化为指数函数问题,并解决。
六、教学评价1. 通过课堂讲解和练习,评估学生对指数函数定义和表达形式的掌握程度;2. 通过课后作业和练习题,评估学生对指数函数单调性、奇偶性和周期性的理解;3. 通过实际问题解决的练习,评估学生对指数函数应用的能力;4. 结合学生的课堂表现和作业完成情况,综合评价学生的数学思维能力和问题解决能力。
七、教学资源1. 教学PPT或黑板,用于展示指数函数的图像和性质;2. 教材或教辅资料,提供指数函数的相关理论知识和练习题;3. 计算器,用于计算和演示指数函数的值;4. 实际问题案例,用于引导学生将理论应用于实际问题的解决。
4.1.2指数函数(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)【课程名称】:高一数学同步精品课堂(人教版2021·基础模块上册)【课时数量】:1课时【适用对象】:中职高一学生【教学目标】:1. 理解指数函数及其定义域、值域、单调性等基本性质;2. 理解指数函数与幂函数之间的关系;3. 掌握指数函数的图像及其在实际问题中的应用。
【教学内容与时间分配】:一、导入(5分钟)1. 与上节课复习幂函数知识并引入指数函数;2. 通过例题引出指数函数的定义。
二、教学(30分钟)1. 指数函数的定义及其性质:(1)指数函数的定义;(2)指数函数的定义域、值域、奇偶性、单调性;(3)特殊的指数函数:f(x)=a^x+a^(-x)。
2. 指数函数与幂函数的关系:(1)幂函数与指数函数的定义比较;(2)两者之间的关系及其性质。
3. 指数函数的图像及其应用:(1)画出常见指数函数的图像;(2)指数函数在实际问题中的应用。
三、总结(10分钟)1. 简要总结指数函数及其性质;2. 强化练习。
【教学重点与难点】:1. 控制指数函数和幂函数的定义和性质之间的联系和差异,弄清它们间的逐步转化及其特点;2. 理解指数函数的定义和性质,并能够应用其在实际问题中。
【教学方法】:1. 课堂讲授法:通过案例分析,让学生了解指数函数的定义、性质和图像;2. 互动探究法:在学生的探究过程中启发性指导,引导学生深入理解概念;3. 组合模式:在授课之外,适当安排小组讨论、小组展示等环节,活跃课堂气氛。
【教学手段】:黑板、白板、多媒体、PPT等多种教学手段。
【教学参考资料】:1. 《新课程数学》(人教版);2. 《高中数学必修一》(人教版)。
【教学评估方法】:1. 在教学班前开展诊断测评;2. 课堂练习;3. 课后练习;4. 学期末考试。
【教学反思】:指数函数的学习,主要是通过教师的引导,让学生学会运用公式求指数函数的值、域、值域等,较为简单。
指数函数及其性质教学教案一、教学目标1. 知识与技能:(1)理解指数函数的定义;(2)掌握指数函数的性质;(3)能够运用指数函数解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等方法,引导学生发现指数函数的性质;(2)利用信息技术手段,动态展示指数函数的图像,帮助学生直观理解指数函数的性质。
3. 情感态度价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)指数函数的定义;(2)指数函数的性质;(3)指数函数在实际问题中的应用。
2. 教学难点:(1)指数函数的性质的推导;(2)指数函数在实际问题中的灵活运用。
三、教学准备1. 教师准备:(1)熟悉指数函数的相关知识;(2)准备相关的教学案例和实际问题;(3)准备教学课件和教学素材。
2. 学生准备:(1)掌握函数的基本概念;(2)了解对数函数的相关知识。
四、教学过程1. 导入新课:(1)复习函数的基本概念,引导学生回顾已知函数的性质;(2)提问:同学们,你们听说过指数函数吗?指数函数是什么样的函数呢?2. 探究指数函数的定义:(1)引导学生通过观察、分析,总结指数函数的一般形式;(2)给出指数函数的定义,并解释指数函数的特点。
3. 探究指数函数的性质:(1)引导学生通过观察、分析、归纳等方法,发现指数函数的性质;(2)利用信息技术手段,动态展示指数函数的图像,帮助学生直观理解指数函数的性质。
4. 应用指数函数解决实际问题:(1)给出实际问题,引导学生运用指数函数知识解决问题;(2)引导学生总结指数函数在实际问题中的应用方法。
五、课堂小结本节课我们学习了指数函数的定义和性质,并通过实际问题了解了指数函数的应用。
希望同学们能够掌握指数函数的知识,并在实际问题中灵活运用。
教学反思:在教学过程中,要注意引导学生通过观察、分析、归纳等方法,发现指数函数的性质。
要注重培养学生的实际问题解决能力,提高学生运用数学知识解决实际问题的能力。
高一数学指数函数教案汇总6篇高一数学指数函数教案汇总6篇教案对于老师是重要的。
学习可以说很枯燥,记公式做题,做大量的类型题。
这时候,如果教师有一份明确的说课稿,将会大大提升教学效率,下面小编给大家带来关于高一数学指数函数教案,希望会对大家的工作与学习有所帮助。
高一数学指数函数教案篇1教学目标:(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1)重点:了解集合的含义与表示、集合中元素的特性。
(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗集合与元素之间有怎样的关系[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
. ;. 指数函数
一、考纲点击 1.了解指数函数模型的实际背景; 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算; 3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点; 4.知道指数函数是一类重要的函数模型。 二、热点、难点提示 1.指数幂的运算、指数函数的图象、单调性是高考考查的热点. 2.常与函数的其他性质、方程、不等式等交汇命题,考查分类讨论思想和数形结合思想. 3.多以选择、填空题形式出现,但若以e为底的指数函数与导数交汇命题则以解答题形式出现.
1.根式
(1)根式的概念
根式的概念 符号表示 备注 如果nxa,那么x叫做a的n次方根 1nnN且 当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数 na 零的n次方根是零
当n为偶数时,正数的n次方根有两个,它们互为相反数 (0)naa 负数没有偶次方根
(2).两个重要公式 ①(0)(0)nnnanxaaaaanaa为奇数为偶数;
②()()nnnaaaa注意必须使有意义。 2.有理数指数幂 (1)幂的有关概念 ①正整数指数幂:()nnaaaanN个;
②零指数幂:01(0)aa; ③负整数指数幂:1(0,);ppaapNa . ;. ④正分数指数幂:(0,,1)mnmnaaamnNn、且; ⑤负分数指数幂: 11(0,,1)mnmnmnaamnNnaa、且
⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①aras=ar+s(a>0,r、s∈Q); ②(ar)s=ars(a>0,r、s∈Q); ③(ab)r=arbs(a>0,b>0,r∈Q);. 3.指数函数的图象与性质 y=ax a>1 0图象
定义域 R 值域 (0,+)
性质 (1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,0x<0时, y>1 (3)在(-,+)上是增函数 (3)在(-,+)上是减函数
思考:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx(4),y=dx的图象,如何确定底数a,b,c,d与1之间的大小关系?
提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 【热点难点全析】 一、幂的运算的一般规律及要求 1.相关链接 . ;. (1)分数指数幂与根式根据*(,,,)mmnnaaa0mnNn1>且>可以相互转化. (2)分数指数幂中的指数不能随便约分,例如要将24a 写成12a等必须认真考查a的取值才能决定,如,2244111而1211无意义.
(3)在进行幂的运算时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,再利用幂的运算性质进行运算. (4)指数幂的一般运算步骤:有括号先算括号里的,无括号先做指数运算,先乘除后加减,负指数幂化成正指数幂的倒数,底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数的,先化成假分数,若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数运算性质.
指数幂的化简与求值的原则及结果要求
(1)化简原则 ①化根式为分数指数幂; ②化负指数幂为正指数幂; ③化小数为分数; ④注意运算的先后顺序. 注:有理数指数幂的运算性质中,其底数都大于0,否则不能用性质运算。 (2)结果要求 ①若题目以根式形式给出,则结果用根式表示; ②若题目以分数指数幂的形式给出,则结果用分数指数幂表示; ③结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂。 2.例题解析
〖例1〗(1)化简:5332332323323134)2(248aaaaabaaabbbaa; (2)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[( 分析:(1)因为题目中的式子既有根式又有分数指数幂,先化为分数指数幂以便用法则运算。 (2)题目中给出的是分数指数幂,先看其是否符合运算法则的条件,如符合用法则进行下去,如不符合应再创设条件去求。
解:(1)原式=51312121323131231313123133133131)()(2)2()2()(])2()[(aaaaababbaabaa 232316165313131313
1
2)2(aaaaaabaabaa
; . ;. (2)原式=41322132)10000625(]102450)81000()949()278[( 922)2917(21]1024251253794[
〖例2〗已知11223xx,求22332223xxxx的值 解:∵11223xx, ∴11222()9xx, ∴129xx, ∴17xx, ∴12()49xx, ∴2247xx,
又∵331112222()(1)3(71)18xxxxxx,
∴223322247231833xxxx 二、指数函数的图象及应用 1.相关链接 (1)图象的变换 1()()yfxyfxa、 ()()+byfxyfx2、
()()yfxyfx3、 ()()yfxyfx4、 ()()yfxyfx4、 5()()yfxyfx、 6()()yfxyfx、 7()()yfxyfx、 .
;. (2)从图象看性质 函数的图象直观地反映了函数的基本性质 ①图象在x轴上的投影可得出函数的定义域; ②图象在y轴上的投影可得出函数的值域; ③从左向右看,由图象的变化得出增减区间,进而得出最值; ④由图象是否关于原点(或y轴)对称得出函数是否为奇(偶)函数; ⑤由两个图象交战的横坐标可得方程的解。 (3)应用指数函数图象研究指数型函数的性质: 对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解. (4)利用图象解指数型方程、不等式: 一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.
2.例题解析 〖例1〗已知f(x)=|2x-1| (1)求f(x)的单调区间. (2)比较f(x+1)与f(x)的大小.
(3)试确定函数g(x)=f(x)-x2零点的个数. 【方法诠释】(1)作出f(x)的图象,数形结合求解. (2)在同一坐标系中分别作出f(x)、f(x+1)图象,数形结合求解.
(3)在同一坐标系中分别作出函数f(x)与y=x2的图象,数形结合求解.
解析:(1)由f(x)=|2x-1|=,.,xx21x012x0<可作出函数的图象如图.
因此函数f(x)在(-∞,0)上递减;函数f(x)在(0,+∞)上递增. (2)在同一坐标系中分别作出函数f(x)、f(x+1)的图象,如图所示. . ;. 由图象知,当||00x1x2121时,解得,022xlog3 两图象相交,从图象可见,当22xlog3<时,f(x)>f(x+1); 当=22xlog3时,f(x)=f(x+1); 当22xlog3时,f(x)<f(x+1). (3)将g(x)=f(x)-x2的零点转化为函数f(x)与y=x2图象的交点问题,在同一坐标系中分别作出函数f(x)=|2x-1|和y=x2的图象如图所示,有四个交点,故g(x)有四个零点.
〖例2〗已知函数y=(13)|x+1|。 (1) 作出图象; (2) 由图象指出其单调区间; (3) 由图象指出当x取什么值时函数有最值。 分析:化去绝对值符号将函数写成分段函数的形式作图象写出单调区间写出x的取值。
解答:(1)由已知可得 1|1|11(1)1,333(1)xxxxyx
其图象由两部分组成: . ;. 一部分是: 1111()(0)()(1);33xxyxx向左平移个单位 另一部分是:113(0)3(1).xxyxyx向左平移个单位 图象如图:
(2)由图象知函数在(,1]上是增函数,在(1,)上是减函数。 (3)由图象知当1x时,函数有最大值1,无最小值。 三、指数函数的性质及应用 1、相关链接 与指数函数有关的复合函数的单调性的求解步骤 ①求复合函数的定义域; ②弄清函数是由哪些基本函数复合而成的; ③分层逐一求解函数的单调性; ④求出复合函数的单调区间(注意“同增异减”)。 2、例题解析
〖例1〗(1)函数2x11y327的定义域是______. (2)函数1()32x4x3fx的单调递减区间为______,值域为______. (3)已知函数xxa1fxa1 (a>0且a≠1) ①求f(x)的定义域和值域; ②讨论f(x)的奇偶性; ③讨论f(x)的单调性. 【方法诠释】根据待求的指数型函数的结构特征,选择恰当的 求函数定义域、值域(最值)、单调区间、奇偶性的方法求解.
解析:(1)由题意知,2x113027
∴32x-1≥3-3,∴2x-1≥-3, ∴x≥-1,即定义域是[-1,+∞).