高政祥固体物理讲义
- 格式:pdf
- 大小:1.65 MB
- 文档页数:99
固体物理王矜奉思考题1.什么是晶体?晶体有哪些基本特性?答案:晶体是由原子、分子或离子按照一定规律周期性排列而成的固体。
晶体具有以下基本特性:(1)自限性:晶体在形成过程中会自动调整结构,使其达到最小能量状态。
(2)各向异性:晶体在不同方向上具有不同的物理性质,如机械性质和光学性质等。
(3)均匀性:晶体内部原子或分子的分布是均匀的,不存在宏观上的不均匀性。
(4)对称性:晶体具有多种对称性,如平移、旋转、反演等,这些对称性可以通过晶体的几何形状表现出来。
2.简述晶体中常见的三种晶格结构,并指出其特点。
答案:晶体中常见的三种晶格结构包括:(1)简单立方晶格:每个晶格点被一个原子占据,每个原子与八个原子相连接,形成一个立方体结构。
这种晶格结构在现实中较少见。
(2)面心立方晶格:每个晶格点被一个原子占据,每个原子与12个原子相连接,形成了一个面心立方结构。
这种晶格结构在许多金属和合金中都很常见,如铜、铝等。
(3)体心立方晶格:每个晶格点被一个原子占据,每个原子与八个原子相连接,形成一个体心立方结构。
这种晶格结构在许多金属和合金中也很常见,如钠、钾等。
特点:简单立方晶格的对称性最高,面心立方晶格的对称性次之,体心立方晶格的对称性最低。
3.什么是晶格振动?为什么晶格振动是固体物理中的重要概念?答案:晶格振动是指固体中原子或分子的振动状态,这种振动状态对固体的热学、电学和光学性质都有重要影响。
晶格振动是固体物理中的一个重要概念,因为它决定了固体的许多物理性质,如热容、热传导、电导率等。
通过研究晶格振动,可以深入了解固体的微观结构和相互作用机制,从而更好地理解和控制材料的物理性质。
4.什么是能带理论?能带理论在固体物理中有哪些应用?答案:能带理论是指将固体中的电子能量状态按照能量的高低分成若干个能带,这些能带之间存在间隙的理论。
在能带理论中,每个能带代表一组电子的状态,这些电子具有相似的能量和波函数。
能带理论在固体物理中有以下应用:(1)解释金属和绝缘体的性质:根据能带理论,金属的价带与导带重叠,因此金属是导体;而绝缘体的价带与导带之间存在较大的间隙,因此电子难以跃迁到导带形成电流。
高一物理竞赛课程1-6次课讲义1. 固体,液体的热胀冷缩2. 液体的表面张力,浸润非浸润3. 分子运动论,理想气体的压强,温度4.理想气体状态方程知识精讲一.固体的热膨胀几乎所有的固体受热温度升高时,都要膨胀。
在铺设铁路轨时,两节钢轨之间要留有少许空隙,给钢轨留出体胀的余地。
一个物体受热膨胀时,它会沿三个方向各自独立地膨胀,固体的温度升高时,它的各个线度(如长、宽、高、半径、周长等)都要增大,这种现象叫固体的线膨胀。
我们把温度升高1℃所引起的线度增长跟它在0℃时线度之比,称为该物体的线胀系数。
线膨胀系数α的意义是温度每改变1K 时,其线度的相对变化。
即:t l l l a t 00-=式中a 的单位是1/℃,0l 为0℃时固体的长度,t l 为t ℃时固体的长度,一般金属的线胀系数大约在510-/℃的数量级。
上述线胀系数公式,也可以写成下面形式:)1(0at l l t +=对于各向同性的固体,当温度升高时,其体积的膨胀可由其线膨胀很容易推导出。
为简单起见,我们研究一个边长为l 的正方体,在每一个线度上均有:T al l ∆=∆)331()1()1(33223333T a T a T a l t a l l V t ++∆+=∆+=∆+=因固体的α值很小,则T a T a T a ∆∆∆3,33322与相比非常小,可忽略不计,则)31(3T a l V t ∆+= 即:T aV V ∆=∆3第一讲 物质的热性质知识体系介绍式中的3α称为固体的体膨胀系数。
随着每一个线度的膨胀,固体的表面积和体积也发生膨胀,其面膨胀和体膨胀规律近似是)1(0t S S t γ+= )1(0t V V t β+=考虑各向同性的固体,其面胀系数γ、体胀系数β跟线胀系数α的关系为γ=2α,β=3α。
例题精讲【例1】 有一摆钟在0℃时走时准确,它的周期是1s ,摆杆为钢质的,其质量与摆锤相比可以忽略不计,仍可认为是单摆。
当气温是25℃时,摆钟周期如何变化?一个昼夜24小时误差多少?已知钢的线胀系数 5102.1-⨯=a ℃-1。
《固体物理学》第二章晶格振动和固体比热第二章晶格振动和固体比热晶体中的格点表示原子的平衡位置,晶格振动便是指原子在格点附近的振动。
晶格振动对晶体的电学、光学、磁学、介电性质、结构相变和超导电性都有重要的作用。
本章的主题:用最近邻原子间简谐力模型来讨论晶格振动的本征频率;并用格波来描述晶体原子的集体运动;再用量子理论来表述格波相应的能量量子。
2-1、绝热近似和简谐近似绝热近似:考虑离子运动时,可以近似认为电子很快适应离子的位置变化。
为简单化,可以把离子的运动看成是近似成中性原子的运动。
简谐近似:r 设一维单原子晶体的布喇菲格子的格矢为R ,那么第n 个格点原子的位置r r r r矢量为:Rn na a 为基矢。
令第n 个原子相对其平衡位置Rn 的瞬时位置由与时r r r r间相关的矢量Sn 给出。
那么原子的瞬时位置为:rn Rn Sn 。
晶体的总势能应该为所有原子相互作用势能之和忽略均匀电子云产生的常1 r r势能项。
静态格点时的总势能:U 0 ∑ u0 Rn Rn ,u x 表示一维原子链中2 n n距离为x 的两原子的相互作用能。
1 r r 1 r r r r 考虑晶格振动时的总势能:U ∑ urn rn 2 ∑ u Rn Sn Rn Sn 2 n n nn 这时势能与动力学变量Sn有关,如果Sn是个小量,将势能U在平衡值U0附近1作泰勒展开:f r a f r a f r a 2 f r ...... 。
2 r r r r r r 取r Rn Rn a Sn Sn 1 r r 1 r r r r 1 r r r rU ∑ u0 Rn Rn 2 ∑ Sn Sn u0 Rn Rn 4 ∑ Sn Sn 2 u0 Rn Rn .... 2 n n nn nn 我们忽略高阶项,只保留二阶项第一项非零校正项,那么势能近似为:1 r r r r U U 0 ∑ S n S n 2 u0 Rn Rn 4 n n 上述近似称为简谐近似。
《原子物理》课程教学大纲课程名称:原子物理课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56学时 3.5学分其中实验学时:0 学时一、课程性质、教学目标原子物理学属普通物理范畴,是力学、电磁学和光学的后续课程,是物理专业的一门重要基础课。
本课程着重从物理实验规律出发,引进近代物理关于微观世界的重要概念和原理,探讨原子的结构和运动规律,介绍在现代科学技术上的重大应用。
通过本课程的教学,使学生建立丰富的微观世界的物理图象和物理概念。
通过对重要实验现象以及理论体系逐步完善过程的分析,培养学生分析问题和解决问题的能力。
本课程是量子力学、固体物理学、原子核物理学、近代物理实验等课程的基础课。
课程教学目标如下:课程教学目标1:使学生初步了解并掌握原子的结构和运动规律,了解物质世界的原子特性,原子层次的基本相互作用,为今后继续学习量子力学、固体物理学、近代物理实验等课程打下坚实基础。
课程教学目标2:使学生了解并适当涉及一些正在发展的原子物理学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。
的支撑强度来定性估计,H表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求理解原子壳式结构,了解原子物理学的发展和学习方法。
掌握原子能量级概念和光谱的一般情况。
理解氢原子的波尔理论,了解富兰克-赫兹实验。
了解氢原子能量的相对论效应。
了解盖拉赫实验,理解原子的空间取向量子化,理解物质的波粒二象性了解不确定原则。
理解波函数及其物理意义和薛定谔方程。
了解碱金属光谱的精细结构,电子自旋轨道的相互作用。
理解两个价电子的原子态,了解泡利原理。
理解原子磁矩及外磁场对原子的作用,了解顺磁共振和塞曼效应,掌握原子的壳层结构和原子基态的电子组态。
了解康普顿效应,理解X 射线的衍射。
执行本大纲应注意的问题:1.原子物理学是一门实验性很强的学科,关于原子结构的一切知识均建立在实验的基础上,学生在学习过程中应特别注重这一点。
第 20 次 课教学目的:理解晶体能带的对称性;理解能带图像;理解能态密度;掌握费密面、费密能级、费米速度等概念;理解晶体中电子填充;教学内容: §4.6 晶体能带的对称性§4.7 能态密度和费密面重点难点:晶体能带的对称性;能态密度;费密面、费密能级、费米速度等;晶体中电子填充§4.6 晶体能带的对称性1、能带关于k 的周期性 —— 电子的能量2()()E k E k naπ=+ 波矢为2'k k n a π=+的布洛赫函数:2()22()()i k n x ak n k n a ax e u x πππψ+++=2()k nax πψ+22[()]n ix ikxak nae eux ππ+=——2()()()ikx k k k nax e u x x πψψ+==—— 结果表明在波矢的状态中所观察到的物理量与在波矢2'k k n aπ=+的状态中是相同的 —— 即2()()E k E k naπ=+ —— 在三维晶体中表示为:()()n E k E k G =+ 2、能带的时间反演对称性可以证明: ()()E k E k =-—— 能带的时间反演对称性 3、能带的3种表示图式 1) 扩展能区图式_ —— 如图XCH004_005所示第一能带序号1()E k : ~k aaππ=-+第二能带序号2()E k :2~k a a ππ=--,2~a a ππ++ 第三能带序号:3()E k :32~k a a ππ=--,23~a aππ++ 第四能带序号:4()E k :43~k a a ππ=--,34~a aππ++,…… 。
2) 简约能区图式—— 如图XCH004_007所示能量在波矢空间具有周期性:()()n E k E k G =+ —— 周期为2aπ—— 可以将简约布里渊区(,)a aππ-+外的波矢k 通过倒格矢2h G n aπ=移到简约布里渊区,即:2k k naπ=+ —— 每一个能带在简约布里渊区都有各自的图像,得到所有能带在简约布里渊区的图像—— 在简约布里渊区要标志一个状态需要表明i) 它属于哪一个能带 ii) 它的简约波矢k 是什么? 3) 周期能区图式—— 由于能量是波矢的周期性函数,所以将任意一条能量曲线通过倒格子矢量从一个布里渊区移到其它布里渊区,在每一个布里渊区画出所有能带,构成k 空间中能量分布的完整图像 —— 如图XCH004_032所示§4.7 能态密度和费密面1 能态密度函数—— 原子中电子的能量是一系列分立的能级,在固体中电子的能量由一些准连续的能级形成的能带能量在E ~E +ΔE 之间的能态数目ΔZ 能态密度函数:0()limE ZN E E∆→∆=∆在k 空间,根据()constant E k =构成的面为等能面,如图XCH004_036所示。
第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。
第1讲光电效应波粒二象性学习目标 1.理解光电效应的实验规律,会利用光电效应方程计算逸出功、最大初动能、截止频率等物理量。
2.会分析光电效应的图像问题。
3.理解物质波的概念,理解光的波粒二象性。
一、黑体辐射及实验规律1.热辐射(1)定义:周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。
(2)特点:热辐射强度按波长的分布情况随物体温度的不同而有所不同。
2.黑体、黑体辐射的实验规律(1)黑体:能够完全吸收入射的各种波长的电磁波而不发生反射的物体。
(2)黑体辐射的实验:①对于一般材料的物体,辐射电磁波的情况除与温度有关外,还与材料的种类及表面状况有关。
②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。
随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动,如图所示。
3.能量子(1)定义:普朗克认为,当带电微粒辐射或吸收能量时,只能辐射或吸收某个最小能量值ε的整数倍,这个不可再分的最小能量值ε叫作能量子。
(2)能量子大小:ε=hν,其中ν是带电微粒吸收或辐射电磁波的频率,h称为普朗克常量。
h=6.626×10-34J·s(一般取h=6.63×10-34J·s)。
二、光电效应及其规律1.光电效应现象照射到金属表面的光,能使金属中的电子从表面逸出的现象,发射出来的电子叫光电子。
2.光电效应的产生条件入射光的频率大于或等于金属的截止频率。
3.光电效应规律(1)每种金属都有一个截止频率,入射光的频率必须大于或等于这个极限频率才能产生光电效应。
(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。
(3)光电效应的发生几乎是瞬时的,一般不超过10-9s。
(4)当入射光的频率大于截止频率时,饱和光电流的大小与入射光的强度成正比。
三、爱因斯坦光电效应方程1.光子说:在空间传播的光不是连续的,而是一份一份的,每一份叫作一个光子,光子的能量ε=hν。