6.4.2 剑桥(Cambridge)模型
塑性功表达式为
dW
p
pd
p v
qd
p s
由于沿屈服曲线,体积应变为常数,则
dW
p
Mpd
p s
令以上两式相等得
d
p v
d
p s
M
q p
从而得微分方程
dq q M 0 dp p
6.4 土的弹塑性模型
Cambridge模型
6.4.2 剑桥(Cambridge)模型
x
2 yz
y
2 zx
z
2 xy
σ1σ2σ3
此外由应力偏张量可得:
J2
1 6
x y
2 y z
2 z x
2
6
2 xy
2 yz
2 zx
1 3
I12
3I2
1 6
1
2 2
2
3 2
3
1 2
主应变计算方程
3 I1' 2 I2 ' I3' 0
6.1 土的应力应变特性
应力应变状态的表达法 (1) 主应力应变空间
{ } [1, 2 , 3 ]T {} [1, 2 , 3 ]T
(2) 广义应力应变空间
{ } [ p, q]T {} [ v , s ]T
(3) 八面体应力应变空间
{ } [ oct , oct ]T {} [ oct , oct ]T
6.1 土的应力应变特性
J2 I1 K
ⅲ Mohr-Coulomb准则
f c ntg
6.3 土的弹塑性模型理论
6.3.1 屈服和破坏准则
ⅳ Lade准则