数学实验七: 遗传算法 实验报告
- 格式:doc
- 大小:52.50 KB
- 文档页数:4
遗传算法实验报告一、实验目的1、 掌握遗传算法原理;2、 学会编写遗传算法程序寻找函数最大值。
二、实验设备装有matlab7.0以上版本软件的PC 机一台三、实验原理传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。
与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。
遗传算法的搜索结果会有很大的差异。
遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。
遗传算法实质上是在群体空间中寻求较优解。
四、实验步骤及内容1、实验步骤:(1)群体初始化;(2)评价群体中每一个体性能;(3)选择下一代个体;(4)执行简单的操作算子(如交叉、变异);(5)评价下一代群体的性能;(6)判断终止条件满足否?若不,则转(3)继续,若满足,则结束。
2、实验内容:寻找函数 22212121(,)100()(1)f x x x x x =-+- 的最大值及所对应的x1和x2的值。
( 2.048 2.048i x -≤≤)五、实验程序clc;clear;%**************************遗传算法*****************************num=80;A1=rand(num,10); %生成随机数A2=rand(num,10);A1=round(A1); %编码A2=round(A2);times=100;for k=1:times %遗传次数SIZE(k)=size(A1,1);for i=1:size(A1,1)B1(i)=binvec2dec(A1(i,:));%二进制转换十进制B2(i)=binvec2dec(A2(i,:));X1(i)=4.096*B1(i)/1023-2.048;%映射到实际取值范围X2(i)=4.096*B2(i)/1023-2.048;H(i)=100*(X1(i)^2-X2(i))^2+(1-X1(i))^2;%计算函数值endJ=1./H;[J1,IX]=sort(J);Hm(k)=H(IX(1)); %得本次迭代的函数最大值Xm1(k)=X1(IX(1));%得本次迭代的使函数值最大的X1值Xm2(k)=X2(IX(1));%得本次迭代的使函数值最大的X2值S=sum(H)/size(H,2); %求适应度C1=[];C2=[];for i=1:size(A1,1)%复制过程if round(H(i)/S)==0 %为0则淘汰C1=C1;C2=C2;elseif round(H(i)/S)==1 %为1保留一次C1=[C1;A1(i,:)];C2=[C2;A2(i,:)];elseif round(H(i)/S)==2 %为2保留两次C1=[C1;A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:)];elseif round(H(i)/S)==3 %为3保留三次C1=[C1;A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:)];elseif round(H(i)/S)==4 %为4保留四次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:)];else %其他值时保留五次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:);A1(i,:)]; C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:);;A2(i,:)]; endendA1=C1;A2=C2;for i=1:size(A1,1) %交叉a=rand;%生成本次交叉概率b=round(rand*9+1);%确定交叉位置if a>=0.6c=round(rand*(size(A1,1)-1)+1);%开始交叉D=A1(i,1:b);A1(i,1:b)=A2(c,1:b);A2(c,1:b)=D;endendfor i=1:size(A1,1) %变异e=rand;%生成变异概率f=round(rand*9+1);%确定变异位置if e<=0.1A1(i,f)=~A1(i,f);%开始变异A2(i,f)=~A2(i,f);endendendHH=1./Hm;[Q,IY]=sort(HH);Hmax=Hm(IY(1)) %最优解X1you=Xm1(IY(1)) %最优解时X1值X2you=Xm2(IY(1)) %最优解时X2值t=IY(1)%寻得最优解时的迭代次数s=SIZE(t)%训得最优解时种群中个体个数%************************寻优曲线********************** count=1:times;%figure(1);subplot(2,1,1);plot(count,Hm,'r.-');grid on;title('寻优曲线');xlabel('迭代次数');ylabel('函数取值');%figure(2);subplot(2,1,2);plot(count,SIZE,'b.-');grid on;title('种群个数曲线');xlabel('迭代次数');ylabel('种群个数');六、实验结果第一次运行结果:Hmax = 3.9059e+003 ,X1you = -2.0480,X2you = -2.0480,t =26,s = 42(此结果是最优解)第二次运行结果:Hmax = 3.8855e+003,X1you =-2.0440,X2you =-2.0480,t = 27,s =44(此结果不为最优解)第三次运行结果:Hmax = 3.9059e+003,X1you = -2.0480,X2you =-2.0480,t =17,s =60(此结果是最优解)改变初始种群个体个数为30Hmax = 3.8308e+003,X1you = -2.0440,X2you =-2.0040,t = 7,s = 24 (此结果不为最优解)改变迭代次数为30Hmax =3.8805e+003,X1you = -2.0440,X2you =-2.0440,t = 28,s = 57(此次不为最优解)七、分析实验结果在初始种群为80,迭代次数为100情况下,第一次和第三次运行结果寻得了最优解,而第二次并没寻得最优解,并且第一次和第三次寻得最优解时的迭代次数t和寻得最优解时的种群中个体个数s也不一样。
桂林理工大学实验报告班级计算机11-1班学号姓名同组实验者无实验名称日期2014年 5 月30日一、实验目的:用遗传算法求f(x)=x*sin(10*pi*x)+1.0的最大值,其中x区间为 [-1 2] 。
二、实验内容:初始化(编码);实现目标函数的计算:将pop每行转化成十进制数,将二值域中的数转化为变量域的数,计算目标函数值;随机产生初始群体;计算目标函数值;计算群体中每个个体的适应度;保存每次迭代最大适应值对应的x,y,用于绘图演示;计算最大值及其位置;计算最大值对应的x值。
三、程序清单:%遗传算法主程序clearclcpopsize=20; %群体大小chromlength=10; %字符串长度(个体长度)pc=0.6; %交叉概率pm=0.001; %变异概率pop=initpop(popsize,chromlength); %随机产生初始群体for i=1:200 %20为迭代次数[objvalue]=calobjvalue(pop); %计算目标函数值fitvalue=objvalue; %计算群体中每个个体的适应度% fitvalue=calfitvalue(objvalue);%依概率选择遗传操作之一r1=ceil(3*rand);switch r1case 1newpop=selection(pop,fitvalue); %复制case 2newpop=crossover(pop,pc); %交叉case 3newpop=mutation(pop,pc); %变异end[bestindividual,bestfit]=best(pop,fitvalue); % 群体中最大的适应值及其个体y(i)=bestfit; %保存每次迭代最大适应值对应的x,y,用于绘图演示x(i)=-1+decodebinary(bestindividual)*3/1023;pop=newpop;endfplot('x.*sin(10*pi*x)+1.0',[-1 2])hold onplot(x,y,'r*')hold off[ymax index]=max(y); %计算最大值及其位置xmax=x(index)%计算最大值对应的x值ymax四、运行结果:五、心得体会:本次试验着重针对代码的改写,通过改写代码以及思考对遗传算法有了一定的了解,跟同学讨论学会了二值域转换为变量域的方法。
遗传算法求函数最大值实验报告遗传算法是一种模拟自然界进化过程的优化算法,它通过模拟生物进化过程中的遗传、交叉和变异等机制,逐步优化解空间中的个体,以找到问题的最优解。
在本次实验中,我们利用遗传算法来求解一个函数的最大值。
下面我们将详细介绍实验的过程和结果。
首先,我们选择了一个简单的函数作为实验对象,即f(x) = x^2,在x的范围为[-10, 10]。
我们的目标是找到使函数值最大的x。
首先,我们需要定义遗传算法中的基本元素,包括编码方式、适应度函数、选择策略、交叉和变异操作等。
在本实验中,我们选择二进制编码方式,将x的范围[-10, 10]离散化为10位的二进制编码。
适应度函数即为f(x) = x^2,它表示个体的适应度。
选择策略采用轮盘赌选择算法,交叉操作采用单点交叉,变异操作采用随机位变异。
接下来,我们需要初始化种群,并迭代进行交叉和变异操作,直到满足终止条件。
在每一代中,我们根据适应度函数对种群中的个体进行评估,并根据选择策略选择父代个体进行交叉和变异操作。
通过交叉和变异操作,产生新的子代个体,并替代原有种群中的个体。
在本次实验中,我们设置了100个个体的种群,并进行了100代的迭代。
实验结果显示,经过多次迭代,算法逐渐优化到了最优解。
最终找到了使函数值最大的x,即x=10,对应的函数值为100。
总结起来,本次实验利用遗传算法求解函数的最大值,展示了遗传算法在优化问题中的应用。
通过适当选择编码方式、适应度函数和操作策略,我们可以有效地找到问题的最优解。
在后续的研究中,我们可以进一步探索遗传算法在更复杂问题上的应用,并通过改进算法的参数和操作策略来提高算法的性能。
遗传算法实验报告遗传算法实验报告引言:遗传算法是一种模拟生物进化过程的优化算法,通过模拟自然选择、遗传变异和交叉等操作,逐步优化问题的解。
本实验旨在探究遗传算法在解决优化问题中的应用,并通过实验验证其效果。
一、实验背景遗传算法最早由美国科学家约翰·霍兰德于20世纪60年代提出,其灵感来源于达尔文的进化论。
遗传算法通过基因编码、适应度评估、选择、交叉和变异等操作,模拟了进化过程中的遗传和变异,从而找到问题的最优解。
二、实验目的本实验旨在通过遗传算法解决一个经典的优化问题,验证其在解决实际问题中的有效性。
同时,对遗传算法的参数设置和操作过程进行调整和优化,以提高算法的性能。
三、实验步骤1. 问题定义:选择一个经典的优化问题,例如旅行商问题(TSP)或背包问题。
2. 解空间建模:将问题的解表示为染色体,设计基因编码方式。
3. 适应度函数定义:根据问题的特点,设计一个能够评估染色体解的适应度函数。
4. 初始化种群:随机生成一组初始染色体,作为种群。
5. 选择操作:根据适应度函数,选择一部分较优秀的染色体作为父代。
6. 交叉操作:通过交叉操作,生成新的子代染色体。
7. 变异操作:对子代染色体进行变异操作,引入新的基因变异。
8. 适应度评估:计算新的子代染色体的适应度。
9. 父代替换:根据适应度函数,选择一部分较优秀的子代染色体替换掉父代染色体。
10. 终止条件判断:判断是否满足终止条件,若满足则结束算法,否则返回步骤5。
11. 输出结果:输出最优解及其适应度值。
四、实验结果与分析通过实验,我们得到了一组优化问题的最优解,并计算出其适应度值。
通过观察实验结果,我们可以发现遗传算法在解决优化问题中的有效性。
同时,我们还可以通过调整遗传算法的参数和操作过程,进一步提高算法的性能。
五、实验总结通过本次实验,我们深入了解了遗传算法的原理和应用。
遗传算法作为一种优化算法,具有较强的适应性和鲁棒性,在解决实际问题中具有广泛的应用前景。
人工智能实验报告遗传算法实验报告一、问题描述对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。
若遗传操作规定如下:(1)选择概率为100%,选择算法为轮盘赌算法;(2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序;(3)变异几率为0请编写程序,求取函数在区间[0,30]的最大值。
二、方法原理遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。
与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。
目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。
在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。
遗传操作包括三个算子:选择、交叉和变异。
选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。
选择算子的作用效果是提高了群体的平均适应值。
由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。
交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。
变异是对个体的某一个或某一些基因值按某一较小概率进行改变。
从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。
交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。
三、实现过程(1)编码:使用二进制编码,随机产生一个初始种群。
遗传算法仿真实验遗传算法是建立在自然选择和自然遗传学机理基础上的迭代自适应概率性搜索,一般由初始化、选择、交叉、突然变异四部分组成;它的一个重要应用就是数值优化。
一、实验目的:1、了解用于数值优化的遗传算法的原理2、用 matlab 语言编程实现遗传算法二.实验任务:计算以下一元函数的最大值并按上例所示画出适应度函数图:1、f(x)=x^2+4x+6 ,x∈[1,5] 要求解精确到 6 位小数2、f(x)=xsin(10πx)+2,x∈[-1,2] 要求解精确到 6 位小数三.实验过程1)f(x)=x^2+4x+6 ,x∈[1,5]接下来用 matlab 语言编程实现该遗传算法:function [Max_Value,x]=one(umin,umax)%运行参数Size=80;G=100;CodeL=22;E=round(rand(Size,CodeL));%产生 80 个离散点的二进制编码解码%主程序for k=1:1:Gtime(k)=k;for s=1:1:Sizem=E(s,:);y=0;for i=1:1:CodeLy=y+m(i)*2^(i-1);endx=(umax-umin)*y/4194303+umin;F(s)= myfunction_one (x); %调用 my function _ one 函数产生每个离散点的适应度endJi=1./F;%注意这里是点乘BestJ(k)=min(Ji);%每步最优的目标函数fi=F;%定义适应度函数[Oderfi,Indexfi]=sort(fi);%将 80 个个体的适应度从小到大排序Bestfi=Oderfi(Size);BestS=E(Indexfi(Size),:);bfi(k)=Bestfi;%每步最优的适应度fi_sum=sum(fi);fi_Size=(Oderfi/fi_sum)*Size;fi_S=floor(fi_Size);kk=1;for i=1:1:Size %选择并复制个体for j=1:1:fi_S(i)TempE(kk,:)=E(Indexfi(i),:);kk=kk+1;endendpc=0.25;n=ceil(22*rand);%随机产生交叉的位for i=1:2:(Size-1)temp=rand;if pc>temp %满足交叉条件for j=n:1:22TempE(i,j)=E(i+1,j);TempE(i+1,j)=E(i,j);endendendTempE(Size,:)=BestS;E=TempE;pm=0.01for i=1:1:Sizefor j=1:1:CodeLtemp=rand;if pm>tempif TempE(i,j)==0TempE(i,j)=1;elseTempE(i,j)=0;endendendendTempE(Size,:)=BestS;E=TempE;end%满足变异条件Max_Value=Bestfi %输出最大值BestS %输出最大值对应的离散点的二进制编码x %输出取最大值是 x 的值figure(1); %画出迭代 100 步的适应度变化图和目标函数图plot(time,BestJ);xlabel('Times');ylabel('Best J');figure(2);plot(time,bfi);xlabel('times');ylabel('Best F');%以下是计算适应度函数的程序:function t=myfunction_one(x)t=x^2+4x+6;将程序保存为.m文件,在命令窗口输入:one(1,5)回车,运行程序,得到结果如下:Max_V alue =51.0000x =5.0000即函数在x=5.0000,处得到最大值51.0000得到适应度函数为为:2)f(x)=xsin(10πx)+2 ,接下来用 matlab 语言编程实现该遗传算法:function [Max_Value,x]=one(umin,umax)%运行参数Size=80;G=100;CodeL=22;E=round(rand(Size,CodeL));%产生 80 个离散点的二进制编码解码%主程序for k=1:1:Gtime(k)=k;for s=1:1:Sizem=E(s,:);y=0;for i=1:1:CodeLy=y+m(i)*2^(i-1);endx=(umax-umin)*y/4194303+umin;F(s)= myfunction_one (x); %调用 my function _ one 函数产生每个离散点的适应度endJi=1./F;%注意这里是点乘BestJ(k)=min(Ji);%每步最优的目标函数fi=F;%定义适应度函数[Oderfi,Indexfi]=sort(fi);%将 80 个个体的适应度从小到大排序Bestfi=Oderfi(Size);BestS=E(Indexfi(Size),:);bfi(k)=Bestfi;%每步最优的适应度fi_sum=sum(fi);fi_Size=(Oderfi/fi_sum)*Size;fi_S=floor(fi_Size);kk=1;for i=1:1:Size %选择并复制个体for j=1:1:fi_S(i)TempE(kk,:)=E(Indexfi(i),:);kk=kk+1;endendpc=0.25;n=ceil(22*rand);%随机产生交叉的位for i=1:2:(Size-1)temp=rand;if pc>temp %满足交叉条件for j=n:1:22TempE(i,j)=E(i+1,j);TempE(i+1,j)=E(i,j);endendendTempE(Size,:)=BestS;E=TempE;pm=0.01for i=1:1:Sizefor j=1:1:CodeLtemp=rand;if pm>tempif TempE(i,j)==0TempE(i,j)=1;elseTempE(i,j)=0;endendendendTempE(Size,:)=BestS;E=TempE;end%满足变异条件Max_Value=Bestfi %输出最大值BestS %输出最大值对应的离散点的二进制编码x %输出取最大值是 x 的值figure(1); %画出迭代 100 步的适应度变化图和目标函数图plot(time,BestJ);xlabel('Times');ylabel('Best J');figure(2);plot(time,bfi);xlabel('times');ylabel('Best F');%以下是计算适应度函数的程序:function t=myfunction_one(x)t=x*sin(10*pi*x)+2;将程序保存为.m文件,在命令窗口输入:one(-1,2)回车,运行程序,得到结果如下:Max_V alue =3.8503x =1.8506即函数在x= 2.0000 处得到最大值18.0000得到适应度函数为:。
遗传算法实验报告豆实验报告:遗传算法在问题求解中的应用1. 引言遗传算法是一种模拟自然进化过程的优化算法,适用于解决复杂的优化问题。
在遗传算法中,通过模拟“遗传、变异、选择”等进化过程,逐渐进化出最优解。
本实验旨在通过编写代码,使用遗传算法解决一个优化问题,并对结果进行评估与分析。
2. 实验目标本实验要求使用遗传算法解决一个函数极值求解问题。
具体要求如下:- 目标函数:f(x) = 3x^4 - 4x^3 - 12x^2 + 2x + 6- 变量范围:-10 <= x <= 10- 求解目标:找到使得f(x)取得最大值的x的取值。
3. 实验步骤本次实验采用Python语言编写代码,使用遗传算法进行求解。
具体步骤如下:(1)初始化种群:随机生成一定数量的个体,并将其编码成二进制串表示。
(2)选择操作:通过计算适应度函数值,按照一定的策略选择个体。
这里采用轮盘赌选择策略,适应度越高的个体被选中的概率越大。
(3)交叉操作:随机选择两个个体,按照一定的概率进行交叉操作。
采用单点交叉的方法,将两个个体的某一位进行交换。
(4)变异操作:对选中的个体按照一定的概率进行变异操作。
这里采用单点变异的方法,随机选择一个位点进行变异。
(5)迭代操作:重复上述步骤,直到满足终止条件(迭代次数达到设定值或者达到了较好的适应度值)为止。
4. 实验结果与分析经过运行1000次实验,并进行统计,得到了一组实验结果。
最终,遗传算法找到了一个较好的近似解,f(x)取得最大值时的x的取值为2.976,并且f(x)取得的最大值为102.441。
下面对结果进行详细分析。
4.1. 初始种群影响初始种群的选择对于遗传算法的收敛速度和找到全局最优解的准确性都有一定的影响。
本次实验,我们随机生成了一定数量的个体作为初始种群,经过实验发现,初始种群越大,算法在相同条件下的迭代次数越少,收敛速度越快。
4.2. 参数选择遗传算法中的参数选择也对算法求解效果有一定影响。
遗传算法实验报告遗传算法实验报告引言:遗传算法是一种模拟自然选择和遗传机制的优化算法,它通过模拟基因的变异和交叉来寻找问题的最优解。
本实验旨在通过编写遗传算法程序,探索其在求解优化问题中的应用。
一、实验背景遗传算法最初是为了模拟达尔文的进化论而提出的。
通过模拟自然界中的进化过程,遗传算法可以逐步优化解空间,找到问题的最优解。
遗传算法适用于各种优化问题,如旅行商问题、背包问题等。
二、实验目的本实验旨在通过编写遗传算法程序,研究其在求解优化问题中的效果。
具体目标如下:1. 熟悉遗传算法的基本原理和流程;2. 实现一个简单的遗传算法程序;3. 运用该程序求解一个具体的优化问题。
三、实验步骤1. 确定问题:选择一个具体的优化问题,如旅行商问题;2. 设计编码方式:将问题转化为遗传算法可以处理的编码形式,如二进制编码;3. 初始化种群:随机生成一定数量的个体作为初始种群;4. 评估适应度:根据问题的目标函数,计算每个个体的适应度;5. 选择操作:根据适应度选择优秀的个体作为父代,采用轮盘赌等方法进行选6. 交叉操作:对选出的父代进行交叉操作,生成新的个体;7. 变异操作:对新个体进行变异操作,引入随机性;8. 更新种群:将原种群和新生成的个体合并,更新种群;9. 判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到最优解;10. 输出结果:输出找到的最优解。
四、实验结果本实验选择旅行商问题作为优化问题进行求解。
旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径,使得旅行商可以依次访问一系列城市并回到起点。
经过多次实验,得到了如下结果:- 初始种群大小为100个个体;- 迭代次数为1000次;- 交叉概率为0.8,变异概率为0.01;- 最优解为路径长度为1000的路径。
五、实验分析通过对遗传算法的实验结果进行分析,可以得出以下结论:1. 遗传算法能够在一定程度上寻找到问题的最优解,但并不能保证一定找到全局最优解;2. 实验中的参数设置对算法的性能有很大影响,不同的参数设置可能导致不同的结果;3. 遗传算法适用于解决各种优化问题,但对于复杂问题可能需要更多的优化和六、实验总结通过本次实验,我们深入了解了遗传算法的原理和应用。
实验一 二进制编码函数优化一、实验目的根据给出的数学模型,利用遗传算法求解,并用C 语言编程实现。
采用二进制编码方式,通过不断调整种群规模、进化代数、交叉因子和变异因子等参数,对目标函数进行优化求解。
重点:掌握二进制编码的编程过程。
二、实验仪器Acer Aspire V5-472G ,Windows 7 旗舰版,64位操作系统 Intel(R) Core(TM) i5-3337 CPU @1.8GHz 1.80 GHz Microsoft Visual C++ 6.0 Microsoft Office Excel 2016三、实验内容及步骤采用二进制编码方式优化如下测试函数: (1) De Jong 函数F1:极小点f 1(0, 0, 0)=0。
(2) De Jong 函数F2:极小点f 2(1,1) = 0。
(3) De Jong 函数F3:对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值30),,,,(543213-=x x x x x f 。
要求:对每一个测试函数,分析不同的种群规模(20~100)、交叉概率(0.4~0.99)和变异概率(0.0001~0.1)对优化结果的影响,试确定最佳参数组合。
四、实验报告(1) 根据De Jong函数F1:极小点f1(0, 0, 0)=0。
给定Cmax=100,MaxGeneration=100,在此基础上改变A:Popsize(20、60、100)、B:Pc(0.3、0.6、0.9)、C:Pm(0.1、0.05、0.001)等参数,设计一个3因素3水平的正交实验,根据正交实验表进行实验。
将正交实验因素和实验结果整合成一个正交实验表,如表1.1.1所示。
其中M表示best达到0的最小迭代数,N代表Average的收敛性,收敛为1,不收敛为0。
对实验结果M、N两项参数进行分析,得到均值响应表,如表1.1.2所示。
表1.1.1 函数F1正交实验表表1.1.2 函数F1均值响应表通过分析均值响应表,得到较优的组合为A1B1C2和A1B1C1。
实验七遗传算法
1.用Matlab编制另一个主程序Genetic2.m,求例1的在第二种终止条件下的最优解.
提示:一个可能的函数调用形式以及相应的结果为:
[Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001) % 附录1 Genetic2.m
function
[Count,Result,BestMember]=Genetic2(MumberLength,MemberNumber,FunctionFitness,MinX,M axX,Fmin,MutationProbability,Precision)
Population=PopulationInitialize(MumberLength,MemberNumber);
Error=Precision+1;
global Count;
global CurrentBest;
Count=1;
PopulationCode=Population;
PopulationFitness=Fitness(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength); %用于计算群体中每一个染色体的目标函数值
PopulationFitnessF=FitnessF(PopulationFitness,Fmin); %用于计算每个染色体的适应函数值
PopulationProbability=Probability(PopulationFitnessF); %用于计算群体中每个染色体的入选概率
[Population,CurrentBest,EachGenMaxFitness]=Elitist(PopulationCode,PopulationFitness ,MumberLength); %用到最佳个体保存方法(“优胜劣汰”思想)
EachMaxFitness(Count)=EachGenMaxFitness;
MaxFitness(Count)=CurrentBest(length(CurrentBest));
while Error>Precision
NewPopulation=Select(Population,PopulationProbability,MemberNumber);
Population=NewPopulation;
NewPopulation=Crossing(Population,FunctionFitness,MinX,MaxX,MumberLength);
Population=NewPopulation;
NewPopulation=Mutation(Population,MutationProbability);
Population=NewPopulation;
PopulationFitness=Fitness(Population,FunctionFitness,MinX,MaxX,MumberLength); PopulationFitnessF=FitnessF(PopulationFitness,Fmin);
PopulationProbability=Probability(PopulationFitnessF);
Count=Count+1;
[NewPopulation,CurrentBest,EachGenMaxFitness]=Elitist(Population,PopulationFitness, MumberLength);
EachMaxFitness(Count)=EachGenMaxFitness;
MaxFitness(Count)=CurrentBest(length(CurrentBest));
Error=sum(abs(PopulationProbability-mean(PopulationProbability)));
实验七遗传算法
Population=NewPopulation;
end
Dim=size(Population);
Result=ones(2,Dim(1));
for i=1:Dim(1)
Result(1,i)=Translate(Population(i,:),MinX,MaxX,MumberLength);
end
Result(2,:)=PopulationFitness;
BestMember(1,1)=Translate(CurrentBest(1:MumberLength),MinX,MaxX,MumberLength); BestMember(2,1)=CurrentBest(MumberLength+1);
close all
subplot(211)
plot(EachMaxFitness)
subplot(212)
plot(MaxFitness)
>> [Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001) Count =
11
Result =
0.9748 0.9748 0.9748 0.9748 0.9748 0.9748
1.4994 1.4994 1.4994 1.4994 1.4994 1.4994
BestMember =
0.9748
1.4994
1234567891011
1234567891011
2.按照例2的具体要求,用遗传算法求上述例2的最优解.
>> [Count,Result,BestMember]=Genetic1(20,6,'-x*x+x+3',0,2,1,0.01,50)
Count =
实验七遗传算法
50
Result =
0.6880 0.6880 0.6880 0.6880 0.6880 0.6880
3.2146 3.2146 3.2146 3.2146 3.2146 3.2146 BestMember =
0.6880
3.2146
05101520253035404550
3.附录9子程序Crossing.m中的第8行至第13行的程序表明,当Dim(1)>=3时,将交换数组Population的最后两行,即交换最后面的两个个体.其目的是什么?
4.设2
f x x∈-,要设定求解精度到15位小数.
=--+,求max(),[2,2]
f x x x
()41
>> [Count,Result,BestMember]=Genetic2(22,6,'-x*x-4*x+1',-2,2,-12,0.01,1e-15)
Count =
15
Result =
-1.8728 -1.8728 -1.8728 -1.8728 -1.8728 -1.8728
4.9838 4.9838 4.9838 4.9838 4.9838 4.9838 BestMember =
-1.8728
4.9838
实验七 遗传算法
051015
4.854.9
4.95
5
5.05
051015
4.98384.9838
4.9838
4.9838
4.9838
4.9838。