材料分析测试方法复习摘要
- 格式:docx
- 大小:92.30 KB
- 文档页数:9
材料测试技术复习知识点1.材料性能测试:材料性能测试是材料测试技术的核心内容之一、常见的材料性能测试包括力学性能测试、热性能测试、电性能测试等。
力学性能测试主要包括拉伸、压缩、弯曲等力学性能的测试,可以得到材料的强度、弹性模量、延伸率等力学性能参数。
热性能测试主要包括热膨胀系数、热导率、热稳定性等参数的测试。
电性能测试主要包括电导率、电阻率、介电常数等参数的测试。
这些测试可以帮助工程师和科研人员理解材料的性能特点,为材料选择和应用提供依据。
2.材料结构分析:材料结构分析是材料测试技术的另一重要内容。
结构分析主要包括显微结构分析、晶体结构分析和表面形貌分析。
显微结构分析主要通过光学显微镜、电子显微镜等工具对材料微观结构进行观察和分析,可以得到材料的晶粒大小、组织状态等信息。
晶体结构分析主要通过X射线衍射等手段对材料的晶体结构进行研究,可以得到材料的晶格常数、晶面指数等参数。
表面形貌分析主要通过扫描电子显微镜、原子力显微镜等工具对材料表面形貌进行观察和分析,可以得到材料的形貌特征和表面粗糙度等参数。
3.材料成分分析:材料成分分析是材料测试技术的另一个重要内容。
成分分析主要包括元素分析和化学组成分析。
元素分析主要是通过原子吸收光谱、电感耦合等离子体发射光谱等方法对材料中元素的含量进行测定,可以得到材料中各个元素的含量分布。
化学组成分析主要是通过质谱仪、红外光谱仪等方法对材料中化学组成和官能团进行鉴定,可以得到材料的化学成分和官能团结构。
4.材料性能评价:材料性能评价是材料测试技术的另一个重要内容。
性能评价主要是通过对材料进行一系列测试,来评价材料的适用性和可靠性。
常见的材料性能评价方法包括疲劳寿命测试、耐腐蚀性评价、抗磨损性评价等。
这些评价方法可以帮助生产厂家和应用方确定材料的使用寿命和适应环境。
5.材料缺陷检测:材料缺陷检测是材料测试技术的重要应用之一、常见的材料缺陷检测方法包括超声波检测、X射线检测、磁粉检测等。
材料分析测试方法复习摘要前言:材料现代分析测试方法:光谱分析、电子能谱分析、衍射分析与电子显微分析。
第一章:X射线的物理学基础X射线衍射学:根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化相关的各种问题。
X射线光谱学:根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。
产生X射线的条件:1,以某种方式得到一定量的自由电子;2,在高真空中,在高压电场作用下迫使这些电子作定向高速运动;3,在电子运动路径上设障碍物,以急剧改变电子的运动速度。
连续X射线谱:由波长连续变化的X射线构成,和白光相似,是多种波长的混合体。
/由于极大数量的电子衍射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。
特征X射线谱:由有一定波长的若干X射线叠加在连续X射线谱上构成,和单色的可见光相似,具有一定波长。
/当管电压等于或高于20KV时,则连续X 射线谱外,位于一定波长处还叠加有少数强谱线,它们就是特征X射线谱。
=K(Z-??)莫塞莱定律:(物质发出的特征谱波长与它本身的原子序数的关系)√????式中:K和σ是常数。
该定律是X射线光谱分析的基本依据,是X射线光谱学的重要公式。
根据莫塞莱定律,将实验结果所得到的未知元素的特征X射线谱线波长,与已知的元素波长相比较,可以确定它是合种元素。
相干散射:由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件。
不相干散射:散射线分布于各个方向,波长各不相等,不能产生干涉现象。
(X射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射X射线长的X射线,且波长随散射方向不同而改变。
)光电效应:物质在光子作用下放出电子的物理过程。
俄歇效应:K层的一个空位被L层的两个空位所替代的现象。
X射线滤波片的选择规则:Z靶<40时,Z滤= Z靶-1;Z靶>40时,Z滤= Z靶-2。
材料分析测试方法复习重点材料分析是一项重要的测试方法,广泛应用于科学研究、工程技术以及品质控制等领域。
为了确保材料的性能和品质符合要求,我们需要使用一系列的测试方法对材料进行分析。
本文将重点介绍一些常用的材料分析测试方法及其原理。
一、化学分析方法化学分析方法是通过对材料中化学成分的定性和定量分析来确定材料的组成和含量。
常用的化学分析方法包括火花光谱法、质谱分析法、红外光谱法和紫外可见分光光度法等。
火花光谱法是一种用于金属材料分析的方法,通过在样品上施加高电压或放电,使金属原子受到激发并发出特定波长的光线,根据光谱图谱可以确定材料中金属元素的种类和含量。
质谱分析法是一种通过测量材料中各种离子的质荷比来确定其组成的方法。
通过对物质进行电离和分离,然后利用质谱仪测量各离子的质荷比,可以得到材料中各种离子的含量信息。
红外光谱法是一种通过测量材料对红外光波长的吸收来确定其组成的方法。
每种物质都有独特的红外吸收谱,通过测量材料在不同波长的红外光下的吸收情况,可以确定材料中的化学键、官能团和杂质等信息。
紫外可见分光光度法是一种通过测量材料对紫外或可见光的吸收程度来确定其组成的方法。
不同化合物对光的吸收和透射具有特定的规律,通过测量材料在不同波长的紫外或可见光下的吸收强度,可以确定材料中的成分和浓度。
二、物理分析方法物理分析方法是通过对材料的物理性质进行测试和分析来确定材料的特性和性能。
常用的物理分析方法包括扫描电子显微镜、透射电子显微镜、X射线衍射和热分析等。
扫描电子显微镜是一种通过扫描样品表面并检测反射的电子束来观察材料微观形貌和内部结构的方法。
通过扫描电子显微镜可以获得高分辨率的图像,观察材料表面的形态、颗粒大小和分布等信息。
透射电子显微镜是一种通过透射样品的电子束来观察材料内部结构和成分的方法。
透射电子显微镜具有非常高的分辨率,可以观察到材料的晶体结构、晶粒大小和晶格缺陷等信息。
X射线衍射是一种通过测量材料对入射X射线的衍射图案来确定其晶体结构的方法。
XRD复习重点1.X射线的产生及其分类2.X射线粉晶衍射中靶材的选取3.布拉格公式4.PDF卡片5.X射线粉晶衍射谱图6.X射线粉晶衍射的应用电子衍射及透射电镜、扫描电镜和电子探针分析复习提纲透射电镜分析部分:4.TEM的主要结构,按从上到下列出主要部件1)电子光学系统——照明系统、图像系统、图像观察和记录系统;2)真空系统;3)电源和控制系统。
电子枪、第一聚光镜、第二聚光镜、聚光镜光阑、样品台、物镜光阑、物镜、选区光阑、中间镜、投影镜、双目光学显微镜、观察窗口、荧光屏、照相室。
5. TEM和光学显微镜有何不同?光学显微镜用光束照明,简单直观,分辨本领低(0.2微米),只能观察表面形貌,不能做微区成分分析;TEM分辨本领高(1A)可把形貌观察,结构分析和成分分析结合起来,可以观察表面和内部结构,但仪器贵,不直观,分析困难,操作复杂,样品制备复杂。
6.几何像差和色差产生原因,消除办法。
球差即球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律而造成的。
减小球差可以通过减小CS值和缩小孔径角来实现。
色差是由于入射电子波长(或能量)的非单一性造成的。
采取稳定加速电压的方法可以有效的减小色差;适当调配透镜极性;卡斯汀速度过滤器。
7.TEM分析有那些制样方法?适合分析哪类样品?各有什么特点和用途?制样方法:化学减薄、电解双喷、竭力、超薄切片、粉碎研磨、聚焦离子束、机械减薄、离子减薄;TEM样品类型:块状,用于普通微结构研究;平面,用于薄膜和表面附近微结构研究;横截面样面,均匀薄膜和界面的微结构研究;小块粉末,粉末,纤维,纳米量级的材料。
二级复型法:研究金属材料的微观形态;一级萃取复型:指制成的试样中包含着一部分金属或第二相实体,对它们可以直接作形态检验和晶体结构分析,其余部分则仍按浮雕方法间接地观察形态;金属薄膜试样:电子束透明的金属薄膜,直接进行形态观察和晶体结构分析;粉末试样:分散粉末法,胶粉混合法思考题:1.一电子管,由灯丝发出电子,一负偏压加在栅极收集电子,之后由阳极加速,回答由灯丝到栅极、由栅极到阳极电子的折向及受力方向?2.为什么高分辨电镜要使用比普通电镜更短的短磁透镜作物镜?高分辨电镜要比普通电镜的放大倍数高。
XRD X 射线衍射 TEM 透射电镜—ED 电子衍射 SEM 扫描电子显微镜—EPMA 电子探针(EDS能谱仪 WPS 波谱仪) XPS X 射线光电子能谱分析 AES 原子发射光谱或俄歇电子能谱IR —FT —IR 傅里叶变换红外光谱 RAMAN 拉曼光谱 DTA 差热分析法 DSC 差示扫描量热法 TG 热重分析 STM 扫描隧道显微镜 AFM 原子力显微镜测微观形貌:TEM 、SEM 、EPMA 、STM 、AFM 化学元素分析:EPMA 、XPS 、AES (原子和俄歇)物质结构:远程结构(XRD 、ED )、近程结构(RAMAN 、IR )分子结构:RAMAN官能团:IR 表面结构:AES (俄歇)、XPS 、STM 、AFMX 射线的产生:高速运动着额电子突然受阻时,随着电子能量的消失和转化,就会产生X 射线。
产生条件:1.产生并发射自由电子;2.在真空中迫使电子朝一定方向加速运动,以获得尽可能高的速度;3.在高速电子流的运动路线上设置一障碍物(阳极靶),使高速运动的电子突然受阻而停止下来。
X 射线荧光:入射的X 射线光量子的能量足够大将原子内层电子击出,外层电子向内层跃迁,辐射出波长严格一定的X 射线俄歇电子产生:原子K 层电子被击出,L 层电子如L2电子像K 层跃迁能量差不是以产生一个K 系X 射线光量子的形式释放,而是被临近的电子所吸收,使这个电子受激发而成为自由电子,即俄歇电子14种布拉菲格子特征:立方晶系(等轴)a=b=c α=β=γ=90°;正方晶系(四方)a=b ≠cα=β=γ=90°;斜方晶系(正交)a ≠b ≠c α=β=γ=90°;菱方晶系(三方)a=b=c α=β=γ≠90°;六方晶系a=b ≠c α=β=90°γ=120°;单斜晶系a ≠b ≠c α=β=90°≠γ;三斜晶系a ≠b ≠c α≠β≠γ≠90°布拉格方程的推导 含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干涉加强,形成衍射线,反之不能形成衍射线。
材料分析测试方法XRD1、x-ray 的物理基础X 射线的产生条件:⑴ 以某种方式产生一定量自由电子⑵ 在高真空中,在高压电场作用下迫使这些电子做定向运动⑶ 在电子运动方向上设置障碍物以急剧改变电子运动速度→x 射线管产生。
X 射线谱——X 射线强度随波长变化的曲线:(1)连续X 射线谱:由波长连续变化的X 射线构成,也称白色X 射线或多色X 射线。
每条曲线都有一强度极大值(对应波长λm )和一个波长极限值(短波限λ0)。
特点:最大能量光子即具有最短波长——短波限λ0。
最大能量光子即具有最短波长——短波限λ0。
影响连续谱因素:管电压U 、管电流 I 和靶材Z 。
I 、Z 不变,增大U→强度提高,λm 、λ0移向短波。
U 、Z 不变,增大I ;U 、I 不变,增大Z→强度一致提高,λm 、λ0不变。
(2)特征X 射线谱:由一定波长的若干X 射线叠加在连续谱上构成,也称单色X 射线和标识X 射线。
特点:当管电压超过某临界值时才能激发出特征谱。
特征X 射线波长或频率仅与靶原子结构有关,莫塞莱定律特定物质的两个特定能级之间的能量差一定,辐射出的特征X 射线的波长是特定。
特征x 射线产生机理:当管电压达到或超过某一临界值时,阴极发出的电子在电场加速下将靶材物质原子的内层电子击出原子外,原子处于高能激发态,有自发回到低能态的倾向,外层电子向内层空位跃迁,多余能量以X 射线的形式释放出来—特征X 射线。
X 射线与物质相互作用:散射,吸收(主要)(1)相干散射:当X 射线通过物质时,物质原子的内层电子在电磁场作用下将产生受迫振动,并向四周辐射同频率的电磁波。
由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称相干散射→ X 射线衍射学基础 ()σλ-=Z K 1(2)非相干散射:X 射线光子与束缚力不大的外层电子或自由电子碰撞时电子获得一部分动能成为反冲电子,X 射线光子离开原来方向,能量减小,波长增加,也称为康普顿散射。
第一章X射线的应用:①透射学②衍射学③光谱X射线如何产生的:X射线产生的条件(1)以某种方式得到一定量的自由电子;(2)在高真空中,在高压电场作用下迫使这些电子作定向高速运动;(3)在电子运动路径上设障碍物,以急剧改变电子的运动方和向。
X射线谱分为:连续X射线谱、特征X射线谱(标示X射线谱)应用X射线的,形状、大小、方向中含有大量物质结构信息用于判断。
特征X射线产生的物理机制:从X射线管中的热阴极发出的电子,在高电压的作用下,以很快速度撞到阳极上是,若X射线管的管电压超过某一临界值Vk时,则电子的动能就足以将阳极物质原子中的K层电子撞击出来,于是,在K层中形成了一个空位,这个过程称为激发。
对L/M/N.等壳层中的电子跳入K层空位是发出的X射线称为K K K 他们共同构成了K系标识X射线。
标识X射线产生根本原因是原子内层电子的跃迁。
X射线与物质的相互作用,规律,对以后的分析有哪些影响?相互作用:X射线与物质的作用主要为吸收和散射。
吸收是指X射线通过物质时光子的能量变成了其他形式的能量。
也即产生的光电效应和俄歇效应,使入射X射线的能量变成光电子、俄歇电子、荧光电子的能量,使X射线强度被衰减。
散射:分相干散射和不相干散射其中相干散射为是X射线在晶体中产生衍射现象的基础。
光电效应在分析工作中起到重要作用,在衍射分析中,荧光X射线会增加衍射击花样的背底,应尽量避免。
光谱分析中可利用进行成分析。
俄歇效应可作为研究物质表面微区成分的有力工具。
散射中的相干散射为衍射分析的基础。
散射现象相干散射:散射线的波长与入射线相同,并有一定的位相关系,它们可以相互干涉,形成衍射图样,所以称为相干散射。
不相干散射:波长不相同,随着散射角度的不同,散射波的波长也不相同。
X射线产生的基础。
光电吸收(光电效应)光电效应:当X射线的波长足够短时,其光子的能量就很大,以至能把原子中处于某一能级的电子打出来,而他本身则被吸收,他的能量就传递给了电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态,这个过程称之为光电吸收。
材料分析测试技术复习资料材料分析测试技术复习1.X射线的本质是什么?是谁⾸先发现了X射线,谁揭⽰了X射线的本质?本质是⼀种波长很短的电磁波,其波长介于0.01-1000A。
1895年由德国物理学家伦琴⾸先发现了X射线,1912年由德国物理学家laue揭⽰了X射线本质。
2.试计算波长0.071nm(Mo-Kα)和0.154A(Cu-Kα)的X射线束,其频率和每个量⼦的能量?E=hν=hc/λ3.试述连续X射线谱与特征X射线谱产⽣的机理连续X射线谱:从阴极发出的电⼦经⾼压加速到达阳极靶材时,由于单位时间内到达的电⼦数⽬极⼤,⽽且达到靶材的时间和条件各不相同,并且⼤多数电⼦要经过多次碰撞,能量逐步损失掉,因⽽出现连续变化的波长谱。
特征X射线谱: 从阴极发出的电⼦在⾼压加速后,如果电⼦的能量⾜够⼤⽽将阳极靶原⼦中内层电⼦击出留下空位,原⼦中其他层电⼦就会跃迁以填补该空位,同时将多余的能量以X射线光⼦的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X射线。
4. 连续X射线谱强度随管电压、管电流和阳极材料原⼦序数的变化规律?发⽣管中的总光⼦数(即连续X射线的强度)与:1 阳极原⼦数Z成正⽐;2 与灯丝电流i成正⽐;3 与电压V⼆次⽅成正⽐:I 正⽐于i Z V2可见,连续X射线的总能量随管电流、阳极靶原⼦序数和管电压的增加⽽增⼤5. Kα线和Kβ线相⽐,谁的波长短?谁的强度⾼?Kβ线⽐Kα线的波长短,强度弱6.实验中选择X射线管以及滤波⽚的原则是什么?已知⼀个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波⽚?实验中选择X射线管要避免样品强烈吸收⼊射X射线产⽣荧光幅射,对分析结果产⽣⼲扰。
必须根据所测样品的化学成分选⽤不同靶材的X射线管。
其选择原则是:Z靶≤Z样品+1应当避免使⽤⽐样品中的主元素的原⼦序数⼤2-6(尤其是2)的材料作靶材。
滤波⽚材料选择规律是:Z靶< 40时:Z滤=Z靶-1Z靶>40时:Z滤=Z靶-2例如: 铁为主的样品,选⽤Co或Fe靶,不选⽤Ni或Cu靶;对应滤波⽚选择Mn7. X 射线与物质的如何相互作⽤的,产⽣那些物理现象?X 射线与物质的作⽤是通过X 射线光⼦与物质的电⼦相互碰撞⽽实现的。
材料分析测试方法-----复习提纲
第一部分原子物理简介
1、原子态符号、L-S耦合、j-j耦合的计算
2、洪特定则、泡利原理、原子基态求解
3、多电子原子的磁矩、朗德因子的计算
第二部分、X射线衍射
1、布拉格方程的分析和计算
2、结构因子与系统消光规律的计算
第三部分、X射线光电子能谱、俄歇电子能谱、紫外光电子能谱
1、X射线光电子能谱分析的基本原理
XPS信息深度、XPS中的化学位移、化学位移现象起因及规律、多重分裂X射线光电子能谱的应用(图题)
2、俄歇电子能谱的基本原理
为什么H和He原子没有俄歇能谱?
俄歇电子能谱分析为什么是一种表面分析方法且空间分辨率高的能谱?
第四部分紫外可见光光谱、红外光谱、拉曼光谱、核磁共振波谱
1、分子吸收光谱跃迁类型、常用U-V光谱术语及谱带分类和特点
2、红外活性、常见基团特征吸收峰的位置、红外光谱在结构分析的应用(图题)
3、拉曼光谱的原理、拉曼位移、拉曼活性
斯托克斯线和反斯托克斯线、拉曼光谱与红外光谱比较
4、核磁共振基本原理、核磁共振的弛豫现象
核磁共振的化学位移、自旋偶合与自旋裂分现象
核磁共振图谱分析(图题)
第五部分组织形貌分析
1、扫描隧道显微镜(STM)的基本原理、原子力显微镜(AFM)的基本原理、
磁力显微镜(MFM)的基本原理。
材料分析测试技术期末复习1.X射线的本质:X射线属电磁波或电磁辐射,同时具有波动性和粒子性特征,波长较为可见光短,约与晶体的晶格常数为同一数量级,在10(-8次方)cm左右。
其波动性表现为以一定的频率和波长在空间传播;粒子性表现为由大量的不连续的粒子流构成。
X射线的产生条件:产生自由电子;使电子做定向高速运动;在电子运动的路径上设置使其突然减速的障碍物。
2.P7(计算题例题)计算当管电压为50 kv时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。
解:已知条件:U=50kv电子静止质量:m=9.1×10-31kg光速:c=2.998×108m/s电子电量:e=1.602×10-19C普朗克常数:h=6.626×10-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为E=eU=1.602×10-19C×50kv=8.01×10-18kJ由于E=1/2m0v 02所以电子与靶碰撞时的速度为v0=(2E/m)1/2=4.2×106m/s所发射连续谱的短波限λ的大小仅取决于加速电压λ(Å)=12400/U(伏) =0.248Å辐射出来的光子的最大动能为E0=hʋ=hc/λ=1.99×10-15J3.靶材选择公式:为避免入射X射线在试样上产生荧光X射线,且被试样吸收最小,若试样的K系吸收限为λ k,则应选择靶的λKα略大于λ k 一般由如下经验公式:Z靶≤ Z试样+14.底片安装方法:正装法、反装法、偏装法。
(记住书本上的图,P15)正装法:X射线从底片接口处入射,照射式样后从中心孔穿出,这样,低角的弧线接近中心孔,高角线则靠近端部。
由于高角线有较高的分辨率,有时能讲Kα双线分开。
正装法的几何关系和计算均较简单,常用于物相分析等工作。
反装法:X射线从底片中心孔摄入,从底片接口处穿出。
高角线条集中于孔眼附近,衍射线中除θ角极高的部分被光阑遮挡外,其余几乎全能记录下来。