六年级奥数上册奥数习题
- 格式:doc
- 大小:1.70 MB
- 文档页数:15
六年级上册奥数及答案【篇一:小学六年级奥数题及答案】t>工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率1-45/80=35/80表示还要的进水量答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
六年级奥数练试题及答案1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。
小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。
那么,小明这辆山地车的原价是________元。
【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。
已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。
【分析】方法一:方程。
设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。
方法二:比例。
1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。
两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。
倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。
3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。
4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。
六年级上册奥数第一讲牛吃草问题1:牧场上有一片青草,可以供6头牛吃8天,或者供10头牛吃4天,如果这片青草每天生长的速度相同,则这片青草可供18头牛吃几天?2、一只船发现漏水时,已经进了一些水,水匀速进入船内。
如果10人淘水,3小时淘完;如果5人淘水8小时淘完。
如果要求2小时淘完,要安排多少人淘水?3、牧场上有一片青草,每天生长速度相同,可供27头牛吃6天,或供69只羊吃9天,如果1头牛的吃草量等于3只羊的吃草量,那么这片青草可供11头牛和30只羊吃几天?4、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。
如果同时打开7个检票口,那么需多少分钟?5、因天气渐冷,牧场上的草以均匀的速度减少。
已知牧场上的草可供33头牛吃5天,或可供24头牛吃6天。
照此计算,这个牧场可供多少头牛吃10天?6、一个牧场,草每天匀速生长,每头牛每天吃的草量相同。
17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完,现有一群牛,吃了6天后,卖掉4头,余下的牛再吃2天就将草吃完。
则没有卖掉之前这群牛共有多少头?7、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。
问该扶梯共有多少级?8、一个蓄水池,每分钟流入4立方米水,如果打开5个水龙头,150分钟就把水池中的水放光;如果打开8个水龙头,90分钟就把水池中的水放光。
现打开13个水龙头,要多少时间才能把水池中的水放光?9、甲、乙、丙三个仓库,各存放着两样数量的化肥,甲仓库用皮带输送机一台和12名工人需要5小时才能把甲仓搬空;乙仓库用一台皮带输送机和28名工人需要3小时才能把乙仓搬空;丙仓库用二台皮带输送机,如果需要2小时把乙仓搬空,同时还需要多少名工人?(皮带输送机工效相同,每个工人每小时搬运量相同。
六年级上奥数题1、张强用270元买了一件外衣、一顶帽子和一条裤子,外衣比裤子贵140元,买外衣和裤子比帽子多花210元,张强买的外衣、帽子和裤子各多少钱?2、有一类小于200的自然数,每个数的各位数字之和是奇数,而且都是两个两位数的乘积(例如:144=12×12).那么这一类自然数中,第三大的数是________.3、9个连续的自然数中最多有_________个质数4、找出1992所有的不同质因数,它们的和是_______5、一个分数,如果分母减2,约分后是,如果分母减9,约分后是 .那么,原来的分数是________.三、解答题:(1~7题每题5分,8,9,10题每题10分,共65分)1、张强用270元买了一件外衣、一顶帽子和一条裤子,外衣比裤子贵140元,买外衣和裤子比帽子多花210元,张强买的外衣、帽子和裤子各多少钱?2、同学们乘坐大、中型两种车去春游,大型车每辆可坐65人,中型车每辆可坐2 6人.现有学生和教师共338人,要使每人都有一个座位,并且车上没有空余座位,大型车和中型车各需几辆?3、两名工人共同编制一批围巾,原计划6小时完成.实际每人都比原计划每小时多加工2条,结果5小时就完成了任务.这批围巾共有多少条?4、把一个正方形的一边缩短20%,另一边增加2米,得到一个长方形,它与原来正方形的面积相等.那么,正方形的面积是多少平方米.5、分子、分母之和是23,分母增加19以后,得到一个新的分数,把这个分数化为最简分数是,原来分数是几分之几?6、汽车和自行车分别从A、B两地同时相向而行,汽车每小时行50千米,自行车每小时行10千米,两车相遇后,各自仍沿原方向行驶,当汽车到达B地后返回到两车相遇地时,自行车在前面10千米处正向A地行驶,求A,B两地的距离.7、若自然数p,2p+1,4p+1都是素数,那么8 +55=?8、有一只船发现漏水时,已经进了一些水,现在水匀速进入船内.若10个人淘水, 12个小时可以淘完;15个人淘水,6小时可以淘完,如果3小时淘完,需要多少人淘水?9、甲、乙、丙、丁四人体重各不相同,其中有两人的平均体重与另外两人的平均体重相等.甲与乙的平均体重比甲与丙的平均体重少8千克,乙与丁的平均体重比甲与丙的平均体重重,乙与丙的平均体重是49千克.求:(1)甲、乙、丙、丁四人的平均体重是多少?(2)乙的体重是多少?10、A、B、C、D、E五位同学各自从不同的途径打听到中南地区小学生五年级通讯赛获得第一名的那位同学的情况(具体列表如下):A打听到:姓李,是女同学,年龄13岁,广东人B打听到:姓张,是男同学,年龄11岁,湖南人C打听到:姓陈,是女同学,年龄13岁,广东人D打听到:姓黄,是男同学,年龄11岁,广西人E打听到:姓张,是男同学,年龄12岁,广东人实际上获得第一名的那位同学的姓氏、性别、年龄、籍贯这四项内容的真实情况在上表中已有.而五位同学所打听到的情况,每人都仅有一项是正确的.请你据此判断这位获第一名的同学.11.甲、乙两人共同加工一批零件,8小时司以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了2 小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?12.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需做多少天? 题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有1 8车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了11 2次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?9\一根绳,第一次用去二分之一,第二次用去剩下的二分之一,依次类推,5次后还剩这根绳子的几分之几?1.设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张.2.设1元的有x张,2元的(x-2)张,5元的(52-2x) x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张.3.设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张.4.货物总数:(3024-2520)÷2=252(箱)设有大汽车x辆,小汽车(18-x)辆18x+12(18-x)=25218x+216-12x=2526x=36x=618-x=12答:有大汽车6辆,小汽车12辆.5.天数=112÷14=8天设有x天是雨天20(8-x)+12x=112160-20x+12x=1128x=48x=6答:有6天是雨天.6.西瓜数:(290-250)÷0.05=800千克设有大西瓜x千克0.4x+0.3(800-x)=2900.4x+240-0.3x=2900.1x=50x=500答:有大西瓜500千克.7.甲得分:(152+16)÷2=84分乙:152-84=68分设甲中x次10x-6(10-x)=8410x-60+6x=8416x=144x=9设乙中y次10y-6(10-y)=6816y=128y=8答:甲中9次,乙8次.8.设他答对x道题5x-2(20-x)=865x-40+2x=867x=126x=18答:他答对了18题.。
(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。
答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2. 有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。
4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。
经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。
六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
小学数学六年级上册奥数题大全一一、拓展提优试题1.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).2.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.3.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.4.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.5.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)6.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)7.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.8.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.9.若质数a,b满足5a+b=2027,则a+b=.10.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.11.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.14.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.2.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.3.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.4.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.5.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.6.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.7.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.8.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%11.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100014.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2. 有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。
4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。
经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。
六年级奥数练试题及答案1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。
小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。
那么,小明这辆山地车的原价是________元。
【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。
已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。
【分析】方法一:方程。
设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。
方法二:比例。
1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。
两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。
倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。
3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。
4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。
六年级上册奥数题及答案【篇一:小学六年级奥数题及答案(全面)】t>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(1+1/5)x这一步是什么意思,为什么这么做左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
六年级上册数学奥数题100道1、有甲、乙两堆棋子,其中甲堆棋子多于乙堆;现在按如下方法移动棋子:第一次从甲堆中拿出和乙堆一样多的棋子放到乙堆;第二次从乙堆中拿出和甲堆剩下的同样多的棋子放到甲堆。
如此移动三次后,甲乙两堆的棋子数恰好相等都是32个。
甲、乙两堆原来各有几个棋子?2、一辆汽车共坐50人,其中部分人买A种票,每张0.80元,另一部分买B种票,每张0.30元,售票员统计买A种票比B种票多收18元,求买A种票和B种票各几个人买?3、三个植树队共植树1800棵,甲队植树的棵树是乙队的2倍,乙队植树的棵树比丙队少200棵,甲队植树多少棵,乙队植树多少棵,丙队植树多少棵?4、数学考试共有5题,全班52人参加,共做对181道题,已知每人至少做对一题,对一题的有7人,5题全对有6人,做对二题和三题的人数一样多,求做对4题有几人?5、某短跑队有9名运动员,其中3人起跑技术好,另外2人弯道技术好,还有2人冲刺技术好,现在要从中选4人组队参加4×100米接力赛,为使每人充分发挥特长,共有多少种组队方式?6、假期小亮练习跳绳,放假第一天可以跳20个,第二天多跳5个,以后每天都在前一天的基础上增加5个,请问他开学前一天跳绳的数量可以达到多少个?(1月13日放假,2月28日开学)7、从山下到山上的路程是720米,小华上山时平均速度为每分钟走60米,下山时平均每分钟走120米,则小华往返行程中的平均速度是每分钟走多少米8、A、B两地相距40千米。
甲、乙两人同时分别由两地出发,相向而行,8小时相遇。
如果两人同时由A向B,5小时后甲在乙前5千米。
甲、乙每小时各行多少千米?9、兄弟二人早晨五点各推一车菜同时从家里出发去集市,哥哥每分钟行100米,弟弟每分钟行60米。
哥哥到达集市后用5分钟卸好菜,立即返回,中途接到弟弟,这时是5时55分,集市离他们家有多少米?10、一列火车长400米,铁路沿线的电线杆间都相距50米,这列火车从车头到达第一根电线杆到车尾离开第41根电线杆共用了2分钟。
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
一、拓展提优试题1.已知A是B的,B是C的,若A+C=55,则A=.2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?3.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.4.若一个十位数是99的倍数,则a+b=.5.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.6.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.7.根据图中的信息可知,这本故事书有页页.8.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).9.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.10.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.11.如图所示的“鱼”形图案中共有个三角形.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.14.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.15.能被5和6整除,并且数字中至少有一个6的三位数有个.16.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.17.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.18.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.19.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.20.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.21.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.24.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.25.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.26.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.27.分子与分母的和是2013的最简真分数有个.28.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.29.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.30.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.31.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.32.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.33.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.34.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.35.图中的三角形的个数是.36.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.37.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.38.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.39.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.40.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).【参考答案】一、拓展提优试题1.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.2.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.3.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.4.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.5.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:96.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.7.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.8.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.9.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.10.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.11.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.14.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.15.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.16.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.17.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.18.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.19.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.20.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.21.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.24.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.25.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.26.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.27.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.28.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.29.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.30.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.31.解:根据分析可得,,=,=2;故答案为:2.32.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.33.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.34.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.35.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.36.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.37.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.38.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.39.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.40.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.。
小学六年级上册奥数题及答案【篇一:六年级上册奥数题】b地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树。
两块地同时开始同时结束,乙应在开始后第几天从a地转到b 地?2. 有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。
4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。
经过2+1/3小时,a,b两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离。
六年级上册奥数训练题带答案知己知彼,百战不殆,做六年级奥数题要熟悉每一种题型的解法,这样才会对考试中出现的不同形式的题目都应付自如.下面就是给大家带来的六年级上册奥数训练题带答案,希望能帮助到大家!六年级上册奥数训练题带答案1、有一个蓝精灵,住在大森林里.他每天从住地出发,到河边提水回来.他提空桶行走的速度是每秒5米,提满桶行走的速度是每秒3米.提一趟水,来回共需8分钟.蓝精灵的住地离河边有多远?答案与解析:提空桶行走的速度∶提满桶行走的速度=5∶3.从反比关系得到提空桶行走的时间∶提满桶行走的时间=3∶5.来回一趟共计用8分钟,刚好8=3+5,所以提空桶行走的时间=3分钟=180秒.5×180=900(米).蓝精灵的住地到河边的距离是走同样长的路程,所用的时间和速度成反比.2、乒乓球比赛场地上,共有10张球桌同时进行比赛,有单打,也有双打,共有32名球员出场比赛.其中有几桌是单打,几桌是双打呢?答案与解析:单打每张球桌2人,双打每张球桌4人.如果10桌全是单打,出场的球员将只有20人.但是现在有32人出场,多12人.每拿一桌单打换成双打,参赛的球员多出2人.要能多出12人,应该有6桌换成双打.答案是:6桌双打,4桌单打.这个单打双打问题,按照题型来看,属于传统的鸡兔同笼问题.上面所用的解法,也是鸡兔同笼问题的常规解法,先假定都是同一种,然后替换.也可利用中国古代解答鸡兔同笼问题时的“折半〞法,算法更简单.每张球桌沿着中间的球网分成左右两半,只考虑左半边.单打的球桌左半边站1个人,双打的球桌左半边站2个人.10张球桌两边共站32个人,左半边共站16个人.3、问题:小玲从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校.如果每分钟走50米,则要迟到3分钟.小玲的家离学校的路程有多远?讲解:根据问题的条件,从家走到学校,两种速度所用时间的差是6+3=9(分).如果有两个人同时从小玲家往学校走,其中一个人以每分钟80米的速度快走,另一个人以每分钟50米的速度慢走,那么当快走的人到达学校时,慢走的人还差9分钟的路程,即50×9=450(米).从两人同时同地出发,到距离拉开成450米,所用的时间是450÷(80-50)=15(分).这15分钟是从家快步走到学校所用的时间,所以家到学校的距离是80×15=1200(米).六年级上册奥数训练题带答案1、标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的.小方先拉一下A的开关,然后拉B、C……直到G 的开关各一次,接下去再按A到G的顺序拉动开关,并依此循环下去.他拉动了1990次后,亮着的灯是哪几盏?答案:B、C、D、G解析:小方循环地从A到G拉动开关,一共拉了1990次.由于每一个循环拉动了7次开关,1990÷7=284……2,故一共循环284次.然后又拉了A和B的开关一次.每次循环中A到G的开关各被拉动一次,因此A和B的开关被拉动248+1=285次,C到G的开关被拉动284次.A 和B的状态会改变,而C到G的状态不变,开始时亮着的灯为A、C、D、G,故最后A变灭而B 变亮,C到G的状态不变,亮着的灯为B、C、D、G.2、请将16个棋子分放在边长分别为30厘米、20厘米、10厘米的三个正方盒子里,使大盒子里的棋子数是中盒子里棋子数的2倍,中盒子里的棋子数是小盒子里棋子数的2倍,问:应当如何放置?答案:①先分别在大、中、小盒子内装入4、8、4个棋子,然后把小盒子和中盒子都放在大盒子里,但小盒子不在中盒子内.②先分别在大、中、小盒子内装入8、4、4个棋子,然后把小盒子放到中盒子里,再把中盒子放到大盒子里即可.解析:把小盒子里的棋子看作1份,那么中盒子就是2份,大盒子就是4份.这说明大盒子里的棋子数必须是4的倍数,并且还占总数的一大半.所以大盒子里的棋子数只能是12个或16个.①如果大盒子里有12个棋子,中盒子里就有6个,小盒子里就有3个.可是这无论如何也无法满足一共有16个棋子这个条件.因为12+6=18,12+3=15.②如果大盒子里有16个棋子,中、小盒子就分别是8个和4个棋子.这时就又分两种情况了:一种是小盒子放在中盒子里,那么就分别在中、小盒子里各放4个棋子,再把小盒子放到中盒子里;另一种就是小盒子不放在中盒子里,小盒子4个,中盒子8个.六年级上册奥数训练题带答案1. 四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人?2. 有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?3. 在一个两位数之间插入一个数字,就变成一个三位数.例如:在72中间插入数字6,就变成了762.有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,求出所有这样的两位数.4. 某班买来单价为0.5元的练习本假设干,如果将这些练习本只给女生,平均每人可得15本;如果将这些练习本只给男生,平均每人可得10本.那么,将这些练习本平均分给全班同学,每人应付多少钱?5. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒,那么平均分给三群猴子,每只可得多少粒?6. 一个整数,减去它被5除后余数的4倍是154,那么原来整数是多少?7. 假设干名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加某次数学竞赛,家长和老师共有22人,家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有1名男老师,那么在这22人中,爸爸有多少人?8. 一次数学考试共有20道题,规定:答对一题得2分,答错一题扣1分,未答的题不计分.考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是个偶数.请你帮助小明计算一下,他答错了多少道题?9. 某种商品的价格是:每一个1分钱,每五个4分钱,每九个7分钱,小赵的钱至多能买50个,小李的钱至多能买500个.小李的钱比小赵的钱多多少分钱?10. 某幼儿园的小班人数最少,中班有27人,大班比小班多6人.春节分桔子25箱,每箱不超过60个,不少于50个,桔子总数的个位数字是7.假设每人分19个,则桔子数不够,现在大班每人比中班每人多分一个,中班每人比小班每人多分一个,刚好分完.问这时大班每人分多少桔子?小班有多少人?(此题是本讲中最难的问题!!!)11. 一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?12. 比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等.缝制的方法是:每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起.如果一个足球外表上共有12块黑色正五边形皮子,那么,这个足球应有白色正六边形皮子多少块?13. 5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶?14. 现有三堆苹果,其中第一堆苹果个数比第二堆多,第二堆苹果个数比第三堆多.如果从每堆苹果中各取出一个,那么在剩下的苹果中,第一堆个数是第二堆的三倍.如果从每堆苹果中各取出同样多个,使得第一堆还剩34个,则第二堆所剩下的苹果数是第三堆的2倍.问原来三堆苹果数之和的值是多少?答案解答:1、解答:用131+134=265,这是1个甲、丁和2个乙、丙的总和,因为乙、丙两班的总人数比甲、丁两班的总人数少1人,所以用265-1=264就刚好是3个乙、丙的和,264÷3=88,就是说乙丙的和是88,那么甲丁和是88+1=89,所以四个班的和是88+89=177 人.2、解答:大家想想,我如果把4个数全加起来是什么?实际上是每个数都加了3遍!大家一定要记住这种思想!(45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,我就用64减去52(某三个数和的)就是最小的数,等于12.3、解答:对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5!先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5.略作计算,不难发现:15,25,35,45是满足要求的数.4、解答:对于这种问题,如果给一个学过工程问题的学生来做的话,简直太简单了,但工程问题是六年级的内容,四年级的学生怎么办呢?我们可以这样考虑:我就假设班上有2个女生(动动脑筋,为什么不假设成有1个女生?),那么就一共有30个练习本,进而推出有3个男生,用30÷(2+3)=6,说明每人应该有6个练习本,所以每人要付3元钱.5、解答:和上个题目一样我想找到1个数,它既是12的倍数,又是15的倍数,还要是20的倍数.你能找到吗?可以找到最小的是60,那么我就假设共有60粒花生,那么可以算出来第一群猴子有5个,第二群猴子有4个,第三群猴子有3个,那就一共有5+4+3=12只猴子,60÷12=5,所以每个猴子是5粒.6、解答:首先,被除数除以除数,余数肯定小于除数.所以在这个题里,余数肯定不大于4,这就确定了原来整数只能是:154+4×0,154+4×1,154+4×2,154+4×3,154+4×4中的一个,检验一下,很快得到结果是154+4×2=162.7、解答:家长比老师多,所以老师少于22÷2=11人,也就是不超过10人,家长就不少于12人.在至少12个家长中,妈妈比爸爸多,所以妈妈要多于12÷2=6人,也就是不少于7人.因为女老师比妈妈多2人,所以女老师不少于9人,但老师最多就10个,并且还至少有1个男老师,所以老师必须是10个(9个女老师,1个男老师),家长12个人中,有7个妈妈,那么爸爸就有12-7=5人.8、解答:20个题,如果全部做对的话,可以得20×2=40分.如果不答1道题的话就要少2分,如果做错一道的话就要少3分.小明得了23分,比总分少40-23=17分.因为没有做的题是偶数,所以我们可以先想想如果有0道题没答的话,17分都是做错了少的,可是17÷3=5…2,不可能!再考虑如果有2道题没做的情况,2道题没做就少4分,还有17-4=13分是因为做错了少的,13÷3=4…1,也不可能!考虑4道题没做的话,就少了8分,还有17-8=9分是因为做错了少的,9÷3=3,所以有3道题是做错的.9、解答:先在脑袋里算一下,是不是九个7分钱最合算啊?先看小赵:50÷9=5…5,所以他有5×7+4=39分钱;再看小李:500÷9=55…5,所以他有55×7+4=389分钱,那么小李就比小赵多389-39=350分钱.千万不要认为用(500-50)÷9×7=350就可以了,比方我把500换成400,方法就不对了!10、解答:首先桔子的个数在1250(=25×50)和1500(=25×60)之间.下面大家帮我看以下两种分桔子的方法的区别是多少?(1)大班每人a+1个,中班每人a个,小班每人a-1个;(2)无论大中小班,每人a个.在第一种分法中,我让大班的孩子每人都拿出来1个去补给小班的孩子,每人补1 个,因为大班人比小班多6人,所以最后就还多6个桔子.如果我从所有桔子中拿出6个来,就可以使得原题中的第一种分法变为我的第二种分法.因为桔子的总数个位是7,减去6后的个位是1,这么多桔子可以分给所有的孩子,并且让每人一样多,所以总的人数和每人所分到的桔子数都是奇数!!但很明显每人19个是不够的,所以只能是每人17个,15个,13个等等,15个当然不可能了(因为任何数乘以15后,各位不是5就是0),下面我们来看看可不可能是13个或更少:至少有1250个桔子,1250÷13=96…2,那么至少有96人,那么大班与小班和起来就至少96-27=69人.可是小班人最少不会超过中班的27人,所以大班小班和起来不应该超过27+(27+6)=60人,这与我刚刚的结果是矛盾的!所以每人不可能是13个或者更少,这就说明了每人应该是17个苹果.现在总的苹果数个位是7-6=1,每人17个苹果,所以总的人数个位应该是3!!再看:1250÷17=73…9,1500÷17=88…4,这时就可以找到总人数一定是83.因为如果是73的话,桔子还没有分完.所以大班小班共有83-27=56人,用和差问题的公式可以很快得到小班人数是:(56-6)÷2=25人.11、解答:大家先想想,我如果用18加上24的话,得到是哪几个面的和?是4个侧面和2个顶面的和!四个侧面的和应该是:13+13=26,这时就可以计算出顶面的数是:(18+24-26)÷2=8,于是底面的数是:13-8=5.12、解答:先算黑皮子共有多少条边:12×5=60条.这60条边都是与白皮子缝合在一起的,对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的,那么白皮子就应该一共有60×2=120条边,120÷6=20,所以共有20块白皮子.13、解答:大致上可以这样想:先买161瓶汽水,喝完以后用这161个空瓶还可以换回32瓶(161÷5=32…1)汽水,然后再把这32瓶汽水退掉,这样一算,就发现实际上只需要买161-32=129瓶汽水.可以检验一下:先买129瓶,喝完后用其中125个空瓶(还剩4个空瓶)去换25瓶汽水,喝完后用25个空瓶可以换5瓶汽水,再喝完后用5个空瓶去换1瓶汽水,最后用这个空瓶和最开始剩下的4个空瓶去再换一瓶汽水,这样总共喝了:129+25+5+1+1=161瓶汽水.14、解答:这种题和第十题一样,好做但是不好讲,关键在于如何能让四年级的学生听明白! 从第一个条件开始:从每堆苹果中各取出一个,在剩下的苹果中,第一堆个数是第二堆的三倍,这时假设第二堆是1份苹果,那么第一堆就是3份苹果,差2份苹果.再看第二个条件:从每堆苹果中各取出同样多个,使得第一堆还剩34个,第二堆所剩下的苹果数是第三堆的2倍,因为是从每堆苹果中各取出同样多个,所以第二堆还是比第一堆少2份苹果,所以这个2份应该比34个要少(大家自己考虑一下为什么不能相等?)所以一份最多就16个,于是在第二个条件时,第二堆还有34-16×2=2个,第三堆还有2÷2=1个,所以回到第一个条件时,第二堆应该是1份16个苹果,第三堆少一个是15个,第一堆是3份共16×3=48个苹果,所以在最开始分别有49,17,16个,总共有49+17+16=82个。
小学六年级上册奥数练习题
奥数练习题一:
1.某家庭有10只动物,它们的腿数分别是:鸽子2条,兔子4条,
猫4条,羊4条,狗4条。
请问这个家庭有多少只脚?
解答:鸽子2只脚,兔子4只脚,猫4只脚,羊4只脚,狗4只脚。
因此,这个家庭总共有(2+4+4+4+4) = 18只脚。
奥数练习题二:
2.小明有一串彩色珠子,他想把它们穿在一根绳子上做成项链。
他
可以任意选择珠子的颜色,但要求相邻的珠子不能颜色相同。
如果他
有红、蓝、黄、绿四种颜色的珠子,请问他能组成多少种不同的项链?
解答:首先,小明可以先确定第一个珠子的颜色,有4种选择。
然后,对于第二个珠子,他不能选取和第一个珠子颜色相同的珠子,所
以只剩下3种选择。
以此类推,他在每个位置都有3种选择。
因此,
总共有4 * 3 * 3 * 3 * 3 = 324种不同的项链。
奥数练习题三:
3.有一套塔,由10个小球组成,从下往上依次递减,最上面一个小
球是最小的。
现在,小明要重新排列这些小球,科学地构建一个塔。
他的构建规则是:每次从某个位置上的两个小球中取下较大的一个,
并放在空闲的位置上。
请问,在经过一次构建后,第6个位置上的小
球是什么?
解答:在经过一次构建后,最小的小球一定会到达第6个位置。
因此,第6个位置上的小球是最小的那个。
【经典】小学六年级上册数学奥数题带答案word百度文库一、拓展提优试题1.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.2.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.3.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.4.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.7.若质数a,b满足5a+b=2027,则a+b=.8.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.9.若一个十位数是99的倍数,则a+b=.10.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?11.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)12.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.13.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.15.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.【参考答案】一、拓展提优试题1.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.2.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.3.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.4.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.7.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.8.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.9.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.10.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.11.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.12.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.13.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.14.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.15.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:300。
奥数题目六年级上册一、分数乘法相关。
1. 计算:(3)/(5)×(10)/(9)- 解析:分数乘法,分子相乘的积做分子,分母相乘的积做分母。
即(3×10)/(5×9)=(30)/(45),约分后得到(2)/(3)。
2. 一桶油重(4)/(5)千克,用去了(1)/(3),用去了多少千克?- 解析:求一个数的几分之几是多少,用乘法。
所以用去的重量为(4)/(5)×(1)/(3)=(4×1)/(5×3)=(4)/(15)千克。
3. 一个长方形的长是(5)/(6)米,宽是长的(2)/(5),这个长方形的宽是多少米?- 解析:已知宽是长的(2)/(5),长为(5)/(6)米,那么宽为(5)/(6)×(2)/(5)=(5×2)/(6×5)=(1)/(3)米。
二、分数除法相关。
4. 计算:(3)/(4)÷(6)/(7)- 解析:分数除法,除以一个分数等于乘以它的倒数。
所以(3)/(4)÷(6)/(7)=(3)/(4)×(7)/(6)=(3×7)/(4×6)=(21)/(24),约分后为(7)/(8)。
5. 一个数的(3)/(5)是18,这个数是多少?- 解析:已知一个数的几分之几是多少,求这个数用除法。
这个数为18÷(3)/(5)=18×(5)/(3)= 30。
6. 修一条路,已经修了(2)/(3),还剩10千米没修,这条路全长多少千米?- 解析:把这条路的全长看作单位“1”,没修的占全长的1 - (2)/(3)=(1)/(3),已知没修的长度是10千米,所以全长为10÷(1)/(3)=10×3 = 30千米。
三、比的相关。
7. 化简比:12:18- 解析:化简比就是把比的前项和后项同时除以它们的最大公因数。
12和18的最大公因数是6,所以12:18=(12÷6):(18÷6)=2:3。