中考数学常考易错点:4-1《角、相交线与平行线》教学文案
- 格式:pdf
- 大小:227.41 KB
- 文档页数:8
初中数学中,平行线是一个非常重要的概念。
平行线的特征、定理和公式都是数学学习的基础。
然而,对于初中生而言,平行线的概念和相关知识点往往比较抽象,容易出现一些易错点。
在本文章中,我们将带领学生一起解析一些常见的易错点,同时介绍一些关于平行线特征、定理和公式的教案,以便学生更好地掌握相关知识。
一、平行线特征平行线是指在同一平面内,不相交但在平面内的点到两条直线的距离相等的线。
学生在初学阶段,往往会对平行线与垂直线的关系混淆。
以下是学生易错点的解析。
易错点1:认为垂直线就是平行线垂直线和平行线是完全不同的概念。
垂直线是指两个线段之间的夹角为90度的线,而平行线则是指在同一个平面内,两条不相交但在平面内的点到两条直线的距离相等的线。
易错点2:忘记加“//”符号在画平行线时,需要在两条直线上方加上“//”符号,表示这两条直线是平行的。
学生常常会忘记这个符号,导致造成误解。
二、平行线定理1.平行线的基本定理平行线的基本定理是说:如果直线L1与直线L2平行,且直线L2与直线L3平行,则直线L1与直线L3也是平行的。
这个定理在初中数学学习中非常重要。
2.平行线的性质平行线的性质有许多,其中比较重要的包括连结平行线上的任意两点形成的线段平行于这两条平行线,平行线的夹角相等等。
这些性质可以帮助学生更好地理解平行线的特征和定理,以及解题方法。
易错点:理解不透彻,不知道如何应用在学习平行线的定理时,学生最容易出错的就是理解不透彻,以及应用不得当。
特别是在解题过程中,学生往往会遇到不知道如何应用定理的情况。
因此,在教学中,需要重点加强实际解题的训练,帮助学生更好地理解定理和应用方法。
三、平行线公式平行线公式是指在平行四边形中,对角线相等的公式。
平行线公式也是初中数学中比较重要的知识点。
易错点:不会正确使用公式学生在学习平行线公式时,容易出现不会正确使用公式的情况。
这主要是因为学生对相关知识点掌握不够熟练,需要加强练习和掌握。
2023初三年级数学易错知识点初三年级数学易错知识点相交线与平行线1.平行线的性质性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
2.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角内错角同旁内角:3.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
4.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
初三年级数学基础知识点轴对称知识点1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的坐标为(-x,-y)9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线底边上的高底边上的中线互相重合,简称为三线合一。
相交线与平行线知识点总结相交线和平行线是几何学中的重要概念,它们在解决平面几何问题中起着重要作用。
本文将对相交线和平行线的基本概念、性质以及相关定理进行总结。
通过深入理解这些知识点,我们可以更好地应用它们解决几何问题。
1. 相交线的基本概念和性质相交线是指在平面上有一个或多个公共点的线段。
对于两条相交线,有以下基本性质:- 相交线的交点称为交点,两条相交线的交点只有一个。
- 相交线之间不存在夹角大小的关系,夹角的大小取决于相交线的具体角度。
2. 平行线的基本概念和性质平行线是指在同一个平面内不相交且永远也不会相交的两条直线。
对于平行线,有以下基本性质:- 平行线之间的距离始终保持相等。
- 平行线之间不存在夹角,夹角大小为0°。
- 平行线的斜率相等。
3. 相交线与平行线的关系相交线与平行线之间存在一些重要的关系:- 若两条线段相交于一点,并且这两条线段中至少有一条是平行线,则其他线段也必然是平行线。
- 若两条直线与同一条直线相交而呈同侧内角,且这两条直线之一与另一条平行线,则这两条直线也必然平行。
- 若两条直线都与同一条直线相交,并且两直线的内角和为180°,则这两条直线是平行线。
4. 相关定理在相交线与平行线的研究中,存在一些重要的定理:- 同一侧内角定理:如果一条直线与另外两条直线相交,形成的两个内角,那么这两个内角要么同时是锐角,要么同时是钝角。
- 交叉线定理:如果两条平行线分别与某一第三条直线相交,那么这两条交线的内外角之和为180°。
- 锐角平分线定理:如果射线是一条直线的角平分线且与这条直线的另一射线相交,那么这两条交线将构成一对平行线。
5. 解决几何问题的应用相交线与平行线的知识在解决几何问题时起着重要作用,常见的应用包括:- 判断两条线段是否相交,并找到相交点的坐标。
- 判断两条线段是否平行或垂直。
- 证明两条线段的平行性、垂直性等。
总之,相交线与平行线是解决平面几何问题的基础概念。
教学相交线和平行线时需要注意的易错点相交线和平行线是几何学中的两个基本概念,是学生学习和掌握初中数学知识的重要环节。
但是,在教学过程中,由于知识点本身的难度和学生对知识点的疏忽,很容易出现一些易错点,影响学生的学习效果。
教师在教学相交线和平行线时需要注意哪些易错点呢?本文将从以下几个方面进行讨论。
一、易错点一:对相交线和平行线的基本概念理解不清相交线和平行线是初中数学中的两个最基本的几何概念,学生需要掌握相交线和平行线分别指哪些线段。
相交线是指彼此交叉的两条线段,交点为它们的交点;平行线是指在同一平面内两条不相交的直线,它们永远不会相交。
其中,教师需要特别注意对相交线和平行线的定义清晰化,让学生通过举例、画图等方式更好地理解这两个概念。
二、易错点二:对相交线的夹角概念理解不准确当我们掌握了相交线的定义之后,就需要了解其中的一个重要概念——夹角。
夹角是指两条相交线段之间的角度,它可以是锐角、直角、或者是钝角。
在教学过程中,教师需要引导学生正确理解夹角的概念,做到“看得懂”“说得清”,同时要教会学生利用角度计算器对夹角进行度数测量、角度转化等操作,从而巩固学生对夹角的认识。
三、易错点三:对相交线的性质理解不充分相交线是数学中的一种基本图形,除了了解它的定义和夹角的概念之外,学生还需要掌握相交线的一些重要性质。
例如,相交线夹角对应角相等;相邻角互补;垂直的两条直线互相垂直等。
在教学过程中,教师需要通过大量例题来让学生掌握这些性质,激发学生对相交线的兴趣,培养他们的观察力和思维能力。
四、易错点四:对平行线的性质理解不全面平行线是数学中的另一个基本图形,它是两条不相交的直线,它们在同一个平面上永远保持相同的间距。
在教学过程中,教师需要引导学生理解平行线的基本概念,同时也要重点强调平行线的三个重要性质——同位角相等、内错角补角相等和交叉线段成比例,让学生对平行线有更全面的认识。
五、易错点五:对平行线的证明方法掌握不熟练在初中数学中,我们需要学会如何证明平行线的性质。
知识回顾微专题相交线与平行线--中考数学必考考点总结+题型专训考点一:相交线与平行线之邻补角、对顶角1.邻补角:①定义:两条相交之间构成的四个角中,有公共顶点且有一条公共边,另一边互为反向延长线的两个角是邻补角。
②性质:邻补角互补。
2.对顶角:①定义:有公共顶点,两边均互为反向延长线的两个角是对顶角。
②性质:对顶角相等。
1.(2022•北京)如图,利用工具测量角,则∠1的大小为()A .30°B .60°C .120°D .150°【分析】根据对顶角的性质解答即可.【解答】解:根据对顶角相等的性质,可得:∠1=30°,故选:A .2.(2022•苏州)如图,直线AB 与CD 相交于点O ,∠AOC =75°,∠1=25°,则∠2的度数是()A .25°B .30°C .40°D .50°【分析】先求出∠BOD 的度数,再根据角的和差关系得结论.【解答】解:∵∠AOC=75°,∴∠AOC=∠BOD=75°.∵∠1=25°,∠1+∠2=∠BOD,∴∠2=∠BOD﹣∠1=75°﹣25°=50°.故选:D.3.(2022•自贡)如图,直线AB、CD相交于点O,若∠1=30°,则∠2的度数是()A.30°B.40°C.60°D.150°【分析】根据对顶角相等可得∠2=∠1=30°.【解答】解:∵∠1=30°,∠1与∠2是对顶角,∴∠2=∠1=30°.故选:A.4.(2022•桂林)如图,直线l1,l2相交于点O,∠1=70°,则∠2=°.【分析】根据对顶角的性质解答即可.【解答】解:∵∠1和∠2是一对顶角,∴∠2=∠1=70°.故答案为:70.考点二:相交线与平行线之垂直知识回顾微专题1.垂直的定义:两条直线相交形成的四个角中,若其中有一个角是90°,则此时我们说这两条直线垂直。
相交线与平行线重点难点相交线与平行线是初中数学中的重难点。
在这个知识点中,我们需要掌握余角、补角、对顶角等概念,以及它们之间的关系和性质。
同时,我们还需要了解平行线的定义、判定和性质。
余角是指两个角的和为直角,补角是指两个角的和为平角,对顶角是指有公共顶点且两边互为反向延长线的两个角。
它们之间有着一些重要的性质,比如互为余角的角度和为90度,互为补角的角度和为180度,对顶角相等等。
在平行线的性质中,我们需要掌握平行线的定义和平行公理,以及平行线的判定和性质。
平行线的判定有同位角相等、内错角相等和同旁内角互补三种方法,而平行线的性质则包括同位角相等、内错角相等和同旁内角互补。
在解题时,我们需要根据题目所给条件,灵活运用余角、补角、对顶角等概念,同时也要注意平行线的判定和性质。
例如,在证明三角形内角和为180度时,我们可以利用对顶角相等的性质,将三角形分解为两个三角形,再利用补角和相等的性质求解。
总之,相交线与平行线是初中数学中的重要知识点,我们需要认真掌握其中的概念、关系和性质,灵活运用于解题中。
小试牛刀一、选择题1.图2-17中,同旁内角共有(B)3对。
2.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角。
若已知∠1=35°,∠3=75°,则∠2=(D)65°。
3.如图3,把长方形纸片沿EF折叠,使D,C分别落在D',C'的位置,若∠EFB=65,则∠AED'等于(C)60°。
4.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么(B)只有这一对内错角相等。
5.如图,在ABC中,已知AB=AC,点D、E分别在AC、AB上,且BD=BC,AD=DE=EB,那么AB的度数是(B)45°。
6.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度可以是(D)第一次向右拐40°,第二次向右拐40°。
第五章相交线与平行线本章小结小结1 本章概述本章的主要内容是两条直线的位置关系——相交与平行.特别是垂直和平行关系是平面几何所要研究的基本内容之一.这一章的内容是很重要的基本知识,是几何学习的重要阶段,要引起高度重视.教材在给出对顶角、邻补角、垂线、点到直线的距离等概念的基础上又给出了对顶角、邻补角的性质、垂线的基本性质和平行线的判定和性质,最后给出平移的概念、性质以及利用平移绘制图案.小结2 本章学习重难点【本章重点】了解对顶角、余角、补角的概念;掌握等角的余角相等,等角的补角相等;掌握垂线、垂线段的概念;知道两条直线平行,同位角相等以及同位角相等,两直线平行,进一步探索平行线的性质和判定.【本章难点】掌握垂线段最短的性质,体会点到直线的距离的意义;通过具体实例认识平移;能按要求作出简单平面图形平移后的图形,利用平移进行图案设计,认识和欣赏平移在现实生活中的应用.小结3 中考透视中考所考查的内容主要体现在以下几个方面:1. 对顶角、邻补角、垂线、点到直线的距离等概念的理解,对顶角、邻补角以及垂线性质的应用,包括实际应用.2. 同位角、内错角、同旁内角的含义,能由线找出角、由角说出线.3. 平行线的识别与特征,以及在实际问题中的应用.4. 简单命题的证明.知识网络结构图专题总结及应用一、知识性专题专题1 有关基本图形的问题【专题解读】本章中主要考查数图形的个数问题,构造基本图形以及基本图形的组合,如平行线与角平分线的组合,平行线与平行线的组合等.例1 如图5-132所示,直线AB,CD,EF都经过点O,图中共有几对对顶角?分析数基本图形不能重复,不能遗漏.我们知道两条直线相交有两对对顶角,图中有3组两条直线相交,故对顶角有2×3=6(对).解:共有6对对顶角.【解题策略】数图形个数及书写时,应注意顺序性,这样不易例2 如图5-133所示,图中共有几对同旁内角?分析我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角.图形中有两个“三线八角”,即CD,EF被GH所截,形成两对同旁内角,AB,EF被GH所截,又形成两对同旁内角,所以共有4对同旁内角.解:图中共有4对同旁内角.【解题策略】注意观察同旁内角的特点.例3 如图5-134所示,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.分析此图不是我们所学的“三线八角”的基本图形,需添加一些线(辅助线)把它们转化成我们熟悉的基本图形.解:如图5-134所示,过点P作射线PN∥AB.因为AB∥CD(已知),所以PN∥CD(平行于同一条直线的两直线平行),所以∠4=∠2=25°(两直线平行,内错角相等).因为PN∥AB(已知),所以∠3=∠1=32°(两直线平行,内错角相等).所以∠BPC=∠3+∠4=32°+25°=57°.【解题策略】构造基本图形就是将残缺的基本图AB所以GM∥HN(内错角相等,两直线平行).【解题策略】此题考查平行线的性质、判定以及角平分线的综合应用.例5 如图5-136所示,已知AB∥CD,BC∥DE.试说明∠B=∠D.分析条件为直线平行,故可根据平行线的性质说明.解:因为AB∥CD(已知),所以∠B=∠C(两直线平行,内错角相等).因为BC∥DE(已知),所以∠C=∠D(两直线平行,内错角相等).【解题策略】此题重点考查了平行线的性质的应用.例6 如图5-137所示,已知AB∥CD,G为AB上任一点,GE,GF分别交CD于E,F.试说明∠1+∠2+∠3=180°.分析要说明180°问题,想到了“平角”和“两直线平行,同旁内角互补”这两个知识点,故可用它们解决问题.解:因为AB∥CD(已知),所以∠4=∠2,∠3=∠5(两直线平行,内错角相等).因为∠4+∠1+∠5=180°(平角定义),所以∠2+∠1+∠3=180°(等量代换).【解题策略】此题把说明∠2+∠1+∠3=180°转化为说明∠1+∠5+∠4=180°,应用等量代换解决了问题.例7 如图5-138所示,AB,DC相交于点O,OE,OF分别平分∠AOC,∠BOC.试说明OE⊥OF解:因为OE,OF分别平分∠AOC与∠BOC(已知),所以∠1=12∠AOC,∠2=12∠BOC(角平分线定义).所以∠1+∠2=12∠AOC+12∠BOC=12(∠AOC+∠BOC).又因为∠AOC+∠BOC=180°(邻补角定义),所以∠1+∠2=1×180°=90°,∠和°可说明∠1+∠2=90°.例9 如图5-140所示,在三角形ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC.试说明∠1=∠2.解:因为CD⊥AB,FG⊥AB(已知),所以∠CDB=∠FGB=90°(垂直定义),所以∠2=∠3(两直线平行,同位角相等).因为DE∥BC(已知),所以∠1=∠3(两直线平行,内错角相等),所以∠1=∠2(等量代换).【解题策略】多次运用平行线的性质说明∠1,∠2,∠3的关系.二、规律方法专题专题2 基本命题的计算与证明【专题解读】基本命题的计算与证明涉及的题型有(1)有关角的计算;(2)有关角相等的判定;(3)判定平行问题;(4)判定垂直问题;(5)判定共线问题.例10 如图5-141所示,已知∠4=70°,∠3=110°,∠1=46°,求∠2的度数.分析由∠3+∠4=180°,知AB∥CD,故∠2=180°-∠1.解:因为∠4=70°,∠3=110°(已知),所以∠4+∠3=180°,所以AB∥CD(同旁内角互补,两直线平行),所以∠2=180°-∠1=180°-46°=134°(两直线平行,同旁内角互补).【解题策略】此题考查由同旁内角互补判定两直线平行,由两直线平行可行同旁内角互补,从而计算相关的角.例11 如图5-142所示,AB∥CD,EB∥DF.试说明∠1=∠2.解:因为AB∥CD(已知),所以∠1+∠3=∠2+∠4(两直线平行,内错角相等).因为EB∥DF(已知),所以∠3=∠4(两直线平行,内错角相等),所以∠1=∠2(等式性质).【解题策略】判定角相等的方法有:(1)同角(等角)的余角相等;(2)同角(等角)的补角相等;(3)对顶角相等;(4)角平分线定义;(5)两直线平行,同位角相等;(6)两直线平行,内错角相等.例12 如图5-143所示,DF∥AC,∠1=∠2.试说明DE=AB.分析要说明DE∥AB,可说明∠1=∠A,而由DF∥AC,有∠2=∠A.又因为∠1=∠2,故有∠1=∠A,从而得出结论.解:因为DF∥AC(已知),所以∠2=∠A(两直线平行,同位角相等).因为∠1=∠2(已知),所以∠1=∠A(等量代换),所以DE∥AB(同位角相等,两直线平行).【解题策略】判定平行的方法有:(1)平行于同一条直线的两直线平行;(2)垂直于同一条直线的两直线平行;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行.例13 如图5-144所示,∠1=∠2,CD∥EF.试说明EF⊥AB.分析要说明EF⊥AB,可说明∠2=90°,而由CD∥EF,可得∠1+∠2=180°,又∠1=∠2,所以有∠1=∠2=90°,从而得出结论.解:因为CD∥EF(已知),所以∠1+∠2=180°(两直线平行,同旁内角互补).又因为∠1=∠2(已知),所以∠1=∠2=90°,所以EF⊥AB(垂直定义).【解题策略】判定垂直的方法有:(1)说明两条相交线的一个交角为90°;(2)说明邻补角相等;(3)垂直于平行线中的一条,也必垂直于另一条.例14 如图5-145所示,直线AB,CD相交于点O,OE平分∠AOC,OF平分∠BOD.试说明E,O,F三点在一条直线上.分析要说明E,O,F三点共线,只需说明∠EOF=180°.解:因为AB,CD相交于点O(已知),所以∠AOC=∠BOD(对顶角相等).因为OE,OF分别平分∠AOC与∠BOD(已知),已知的.例15 如图5-146所示,直线AB,CD相交于点O,OD平分∠AOE,且∠COA:∠AOD=7:2,求∠BOE的度数.分析欲求∠BOE,因为∠BOE与∠AOE互为邻补角,所以可先求∠AOE,而∠AOE=2∠AOD,所以只需求∠AOD即可,由已知条件可求得∠AOD.解:∵∠COA+∠AOD=180°,∠COA:∠AOD=7:2,∴∠COA=79×180°=140°,∠AOD=29×180°=40°.∵OD平分∠AOE,∴∠AOE=2∠AOD=2×40°=80°,∴∠BOE=180°-∠AOE=180°-80°=100°.【解题策略】互为邻补角的两个角的和为180°、对顶角相等是在有关求角的大小的问题中常用的两个等量关系,要注意发现图形中的这两种角,它们常隐藏在直线条件的背后.2011中考真题相交线与平行线精选一、选择题1.(2011云南保山2,3分)如图,l1∥l2,∠1=120°,则∠2= .考点:平行线的性质;对顶角、邻补角。
相交线与平行线重点难点在几何学中,相交线与平行线是学习的重点难点之一。
相交线与平行线不仅在平面几何中有重要的应用,也是解题和证明的基础。
本文将重点介绍相交线与平行线的定义、性质和相关应用。
一、相交线与平行线的定义相交线是指在同一平面内两条直线相交于一点的情况。
平行线是指在同一平面内没有相交点的两条直线。
二、相交线与平行线的性质1. 相交线的性质:a. 相交线的交点称为交点或交点。
b. 相交线的夹角称为相交线夹角,可以分为内角和外角。
c. 相交线夹角的性质:- 内角性质:相交线内角互补,即内角的和等于180度。
- 外角性质:相交线外角相等。
d. 相交线构成的补角:互相补角是指两个角的和等于180度。
2. 平行线的性质:a. 平行线的符号表示为“∥”。
b. 平行线的性质:- 平行线上的任意两个点和一直与这两点在同平行线上的点连线的两直线垂直。
- 平行线夹角的性质:平行线夹角相等。
- 平行线的传递性:若两条直线分别与第三条直线平行,则这两条直线之间也平行。
三、相交线与平行线的应用1. 构建平行线:有时候,需要在给定的条件下构建一条平行线。
根据平行线的性质,我们可以使用尺规作图法或者使用已知的平行线来构建平行线。
2. 利用平行线证明等式:平行线的性质在证明等式时经常被使用。
当两条平行线被一条截线交叉时,所形成的对应角、同位角、内错角等可以用来证明等式的成立。
3. 平行线交截线:平行线与一条截线相交时,会形成一系列特殊的角,如同位角、内错角、对应角等。
利用这些角的性质可以解决与平行线相关的问题。
4. 解题技巧:在解决与相交线和平行线相关的问题时,可以运用以下一些解题技巧:a. 注意观察图形中的平行线和相交线的角,找到对应的角或同位角等。
b. 利用平行线的性质,找到相应的等式或平行线之间的关系。
c. 运用逆否命题、反证法等证明方法,进行推理和证明。
总结:相交线与平行线是几何学中的重点难点,对于理解几何学的基本概念和解题有着重要的作用。
角、相交线与平行线
易错清单
1.平行线的性质.
【例1】(2014·湖北襄阳)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于().
A. 35°
B. 45°
C. 55°
D. 65°
【解析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠A=35°.
【答案】∵BC⊥AE,
∴∠ACB=90°.
∴∠A+∠B=90°.
又∵∠B=55°,
∴∠A=35°.
又CD∥AB,
∴∠1=∠A=35°.
【误区纠错】本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.
【例2】(2014·广东梅州)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是().
A. 15°
B. 20°
C. 25°
D. 30°
【解析】根据两直线平行,内错角相等求出∠3, 再求解即可.
【答案】∵直尺的两边平行,∠1=20°,
∴∠3=∠1=20°.
∴∠2=45°-20°=25°.
【误区纠错】误认为∠1与∠2是内错角来解题.
【例3】(2014·湖北孝感)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数().
A. 46°
B. 44°
C. 36°
D. 22°
【解析】根据两直线平行,内错角相等可得∠3=∠1, 再根据直角三角形两锐角互余列式计
算即可得解.
【答案】∵l1∥l2,
∴∠3=∠1=44°.
∵l3⊥l4,
∴∠2=90°-∠3=90°-44°=46°.
故选A.
【误区纠错】本题考查了平行线的性质,垂线的定义,要熟记性质并准确识图.例外识别∠3与∠1是同位角很重要.
2.平行线的判定.
【例4】(2014·湖南湘潭)如图,直线a,b被直线c所截,若满足,则a,b平行.
【解析】根据同位角相等两直线平行可得∠1=∠2时,a∥b.其他合理答案亦可.
【答案】∵∠1=∠2,
∴a∥b(同位角相等两直线平行).
故可填∠1=∠2.
【误区纠错】分不清三线八角,以及平行线的判定方法是解题的误区,本题属条件开放性题.
名师点拨
1.能记住点、线、面的概念.
2.能利用角的概念判断角的大小及角的表示方法;会进行角的换算;能正确区分角的大小;会进行角的和、差运算.
3.能区分补角、余角的概念,记住补角、余角的性质.
4.掌握角平分线定理和线段垂直平分线定理并能正确使用.
5.会画直线的垂线;能区分垂线、垂线段的联系与区别.
6.掌握平行的概念,会进行平行线的判断.
7.能利用直尺画直线的平行线;会作两平行线间的距离;能确定并准确度量两平行线间的距离.
提分策略
1.直线平行与垂直的判定及简单应用.
计算角度问题时,要注意挖掘图形中的隐含条件(三角形内角和、互为余角或补角、平行性质、垂直)及角平分线知识的应用.
【例1】如图,△ABC中,∠A=90°,点D在边AC上,DE∥BC.若∠1=155°,则∠B的度数为.
【解析】由∠1=155°,可求得∠BCD=∠CDE=25°,最后求∠B=65°.
【答案】65°
2.平行线的性质和判定的应用.
主要理解和掌握:(1)平行线的性质;(2)平行线的判定.
【例2】如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得到的关系中任选一个加以证明.
【解析】①∠APC=∠PAB+∠PCD;
②∠APC=360°-(∠PAB+∠PCD);
③∠APC=∠PAB-∠PCD;
④∠APC=∠PCD-∠PAB.
如证明①∠APC=∠PAB+∠PCD.
证明:过点P作PE∥AB,所以∠A=∠APE.
又因为AB∥CD,所以PE∥CD.
所以∠C=∠CPE.
所以∠A+∠C=∠APE+∠CPE.
所以∠APC=∠PAB+∠PCD.
同理可证明其他的结论.
专项训练
一、选择题
1.(2014·四川峨眉山二模)如图,已知直线AB,CD相交于点O,OE平分∠CPB.若∠BOD=70°,则∠COE的度数是().
A. 45°
B. 70°
C. 55°
D. 110°
(第1题)
(第2题)
2. (2014·北京平谷区模拟)如图,AB∥CD,O为CD上一点,且∠AOB=90°.若∠B=33°,则∠AOC的度数是().
A. 33°
B. 60°
C. 67°
D. 57°
3. (2014·山东日照模拟)将一副三角板按图中的方式叠放,则∠α等于().
A. 75°
B. 60°
C. 45°
D. 30°
(第3题)
(第4题)
4. (2013·广东广州海珠区毕业班综合调研)如图,∠1与∠2是同位角,若∠2=65°,则∠1的大小是().
A. 25°
B. 65°
C. 115°
D. 不能确定
5. (2013·浙江温州一模)如图,在△ABC中,DE∥BC,AD=2,AB=6,DE=3,则BC的长为().
A. 9
B. 6
C. 4
D. 3
(第5题)
(第6题)
6. (2012·湖北荆门东宝区模拟)如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3等于().
A. 100°
B. 60°
C. 40°
D. 20°
二、填空题
7. (2014·广东模拟)将三角板ABC按下图放置,使其三个顶点分别落在三条平行直线上,其中∠CAB=90°,且CF恰好平分∠ACB.若∠CBA=40°,则∠DAC的度数是.
(第7题)
(第8题)
8. (2014·河南鹿邑一模)如图,∠1=∠2,∠3=40°.则∠4= .
9. (2014·湖北鄂州二模)如图AB∥CD,∠1=50°,∠2=110°,则∠3= .
(第9题)
(第10题)
10. (2013·湖北孝感模拟)如图, 直线AB,CD相交于点E,EF⊥AB于点E,若∠CEF=59°,则∠AED的度数为.
三、解答题
11. (2014·河南安阳模拟)已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:
(1)如图(1),当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;
(2)如图(2),当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;
(3)如图(3),当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数.
(第11题)
参考答案与解析
1. C[解析]
2. D[解析] ∠AOC=90°-33°=57°.
3. A[解析] ∠α=45°+(90°-60°)=75°.
4. D[解析]两直线平行同位角相等,如果不能确定两直线是平行线则不能确定同位角之间
的关系.
5. A[解析]首先利用平行线判定两三角形相似,然后利用相似三角形对应边的比等于相似
比求得线段BC的长即可.
6. A[解析]∠3=∠1+∠2=100°.
8.140°[解析] ∠4=180°-∠3=140°.
9.60°[解析] ∠3=180°-(∠1+180°-∠2)=60°.
10.149°[解析]∵EF⊥AB于点E,∠CEF=59°,
∴∠AEC=90°-∠CEF=90°-59°=31°.
∴∠AED=180°-∠AEC=180°-31°=149°.
11.
(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点 E.连接AE,CE.∴CD=ED,∠CDE=60°,AE=CB=a.
∴△CDE为等边三角形.
∴CE=CD.
如图(1),当点E,A,C不在一条直线上时,
;
有CD=CE<AE+AC=a+b
如图(2),当点E,A,C在一条直线上时,
CD有最大值,CD=CD=a+b.
此时∠CED=∠BCD=∠ECD=60°,
∴∠ACB=120°.
因此当∠ACB=120°时,
CD有最大值a+b.
(第11题)。