短时间高效率复习高数(上)
- 格式:doc
- 大小:134.00 KB
- 文档页数:4
高数上知识点总结(zǒngjié)高数上知识点总结(zǒngjié)高等数学(shùxué)是考研数学的重中之重,所占分值较大,需要复习的内容也比拟(bǐnǐ)多。
主要包括8方面(fāngmiàn)内容。
1、函数、极限与连续。
主要考查分段函数极限或极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比拟;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2、一元函数微分学。
主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法那么求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。
3、一元函数积分学。
主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4、向量代数和空间解析几何。
主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。
5、多元函数微分学。
主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
6、多元函数的积分学。
这局部是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7、无穷级数。
高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。
(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。
(3)*无穷小乘以有界函数仍为无穷小。
二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。
1. 函数11x x a y x a -=+ ()1a 是( )。
A :偶函数B :奇函数C :非奇非偶函数D :奇偶函数2、极限201sinlimsin x x x x→的值为( )A :1B :0C :不存在D :∞ 3、若()03f x '=-,则()()0003limh f x h f x h h→+--=( )A :-3B :-6C :-9D :-12 4、已知()()f x dx F x c =+⎰,则()f b ax dx -=⎰( )A :()F b ax c -+B :1a -()Fb axc -+ C :a ()F b ax c -+ D :1a()F b ax c -+5、下列广义积分收敛的是( ) A :1cos xdx +∞⎰B :311dx x+∞⎰C :1ln xdx +∞⎰D :1xe dx +∞⎰ 6、设()f x 是奇函数,且()()11212xg x f x ⎛⎫=-⎪+⎝⎭,则()g x 是( ) A :偶函数 B :奇函数 C :非奇非偶函数 D :无定义 7、函数()f x 在0x 处连续是()f x 在0x 处有定义的( ) A :必要条件 B :充分条件 C :充要条件 D :无关条件 8、两条曲线1y x =和2y ax b =+在点12,2⎛⎫ ⎪⎝⎭处相切,则常数,a b 为( ) A :13,164a b == B :13,164a b =-= C :11,164a b == D :11,164a b =-= 9、若()()0tan 1cos lim 1ln 12x a x b x c x →+-=-,其中0c ≠,则下列结论正确的是( )A :2b c =B :2b c =-C :2a c =D :2a c =-《高等数学》(上)复习题10、若()11xxf x edx e c --=-+⎰,则()f x 为( )A :1x -B :21x -C :1xD :21x二. 填空 1、函数()f x =的连续区间为2、设()()()()()1234f x x x x x x =----,则()0f '=3、已知()22xf x dx x ec =+⎰,则()f x =4、要使点()1,3为曲线32y ax bx =+的拐点,则,a b 的值分别为 。
高数〔上册〕期末复习要点第一章:1、极限〔夹逼准则〕2、连续〔学会用定义证明一个函数连续,判断间断点类型〕第二章:1、导数〔学会用定义证明一个函数是否可导〕注:连续不一定可导,可导一定连续2、求导法则〔背〕3、求导公式也可以是微分公式第三章:1、微分中值定理〔一定要熟悉并灵活运用--第一节〕2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值〔高中学过,不需要过多复习〕5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法〔变dx/变前面〕2、分部积分法〔注意加C 〕〔最好都自己推导一遍,好记〕定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线〔两直线的夹角、线面夹角、求直线方程〕 3、空间平面4、空间旋转面〔柱面〕高数解题技巧。
〔高等数学、考研数学通用〕高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,假设被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:假设涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE 再说。
高考数学怎样复习最快提高成绩高考数学最后应该怎么复习一、做好专题训练,不要超时高考数学选择题和填空题占了很大的比重,这两类题目能不能拿高分,决定了高考数学成绩的好坏!在高考数学的最后复习中,高考生要加强选择题和填空题的训练,把握好练习时间,在规定的时间内答好题!二、重点梳理基础知识在历届高考生中,很多同学都是基础题丢分太多,导致成绩不及格!所以在最后的冲刺复习中,大家要重视基础知识,梳理知识脉络和各类数学解题方法!天天练习一定量的基础知识!争取把基础知识做对,拿理想的分数!三、重点题型要经常翻看要想短时间内复习好高考数学,你就要时常翻看重点题型,做到温故而知新!四、有规划地把平时整理的错题做一遍,思考一下为什么错了!如果又做错了就重点标记,一直做到对了为止!五、考前最后一个也坚持做高考数学真题,检查自己掌握了多少知识,在考场上尽量不要放过任何一个能做对的题目!高考考前数学冲刺复习技巧一、基础知识再三强调,选择题强化并且提高准确率根据去年全国卷高考数学分析,基础知识仍然是高考数学的重中之重。
在这再三强调基础知识一定要抓牢。
基础知识从回归课本,高考真题的基础题考点归纳两个方面去把握。
回归课本的时候注重公式运用,高考真题的基础题考点归纳可以根据真题答案解析把握出题思路及解题思路。
选择题始终是高考数学的重要把握题型,在最后一百天复习阶段,强化选择题练习,难度从简单过渡到中上,主要抓简单和中等难度选择题题型。
总结选择题应试技巧及考点,对照之前错题本,整理选择题错题,分析思路,不断提高做题准确率。
二、数学刷题抓技巧,规范解题过程,结合真题及各种大考,总结大题考查方式及解答思路数学刷题是提分必不可少的途径。
刷题过程中主要抓住技巧,对照答案,不断规范解题过程。
形成自己正确答题步骤。
在刷真题及复习各种大考题型中注意大题的考查方式,归纳大题重要考点,把握思考过程及答题思路。
数学刷题主要是抓做题思路四字,思路形成正确性,答案就更接近标准,分数也就随之提高。
成人高考高等数学(一)复习方法数学的学习虽然我们不能死记硬背,但是我们还是可以掌握方法的。
下面是为大家出来的有关于成人高等数学(一)复习方法,希望可以帮助到大家!考生复习高等数学(一)时,可遵循以下复习方法:高等数学(一)的知识网络图如下:把握住这个知识网络,即可把握高等数学(一)的根本内容。
“极限”是高等数学中一个极为重要的根本概念,无论是导数,还是定积分、广义积分、曲线的渐近线,乃至无穷级数等概念无不建立在极限的根底上,根限是研究微积分的重要工具。
但极限的概念与理论只是高等数学的根底知识,并不是复习的重点,复习的重点是高等数学的核心内容——微分学与积分学,特别是一元函数的微积分,对微分与积分的根本概念、根本理论、根本运算和根本应用要多下功夫。
考生应深刻理解高等数学中的根本概念,特别是导数与微分的定义、原函数与不定积分的定义、定积分的定义等概念。
要熟练掌握根本方法和根本技能,特别是函数极限的计算,函数的导数与微分的计算,不定积分与定积分的计算,这是高等数学中一切运算与应用的根底。
复习中应当狠抓根本功,从熟记根本公式做起,如根本初等函数导数公式,不定积分根本公式。
要熟练掌握导数的四那么运算法那么及复合函数求导法那么。
要熟练掌握计算不定积分与定积分的根本方法,特别是凑微分法及分部积分法。
考题中会有相当数量的关于导数与微分,不定积分与定积分的根本计算题,试题并不难,考生只要到达上述要求,都能正确解答这些试题。
同时,要高度重视导数与定积分的应用,如利用导数讨论函数的性质和曲线形状,利用导数的几何意义求曲线的切线方程与法线方程,利用函数的单调性证明不等式,利用定积分的换元积分法证明等式,利用定积分的几何应用求平面图形的面积和平面图形绕坐标轴旋转得到的旋转体的体积,以及二元函数的无条件极值与条件极值等。
要加强练习,注重解题思路和解题技巧的训练,对根本概念、根本理论、根本性质进行多侧面、多层次、由此及彼、由表及里的辨析。
10分钟掌握高数上不定积分问题(考研、期末复习均可以用)好久没有更新高数的内容了,之前一直更新的是概率论和线性代数的内容,其中概率基本更完了,线性代数还没,知识点有点多,道阻且长,哭唧唧T_T!!下面是之前更新的内容,请自取10分钟掌握高等数学上册函数极限求解问题(考研、期末复习均可以用)10分钟掌握高等数学上册导数及微分问题(考研、期末复习均可以用)10分钟掌握高等数学上册函数图像绘制问题(考研、期末复习均可以用)10分钟掌握中值定理相关问题(考研、期末复习均可以用)码字不易,观看后的同学请给个赞+关注如果有考研或是期末复习方面问题的话可以随时留言或者私信【答学百科】,更多期末复习资料更多更新内容也可以点击下方链接加入社群--------------分割线---------------首先简单介绍下积分,积分是导数的一个反向求解过程,很多人在高中的时候是学过导数的,所以在大学再学的时候会觉得比较简单,但是到了积分这一节,会突然卡住,发现怎么那么难,正着做会,反着就不会了,那么下面重点讲讲不定积分的求解吧一、原函数与不定积分的基本概念1、原函数设 f(x),F(x) 为定义在区间 I 上的函数,若对一切的 x\in I ,有 F'(x)=f(x) ,则称 F(x) 为 f(x) 的原函数备注:(1)函数 f(x) 是否存在原函数与区间 I 有关(2)连续函数一定存在原函数,反之不对(3)有第一类间断的函数一定不存在原函数,但有第二类间断点的函数可能有原函数(这句话还有另一种表达方式:即某个函数的导函数不一定连续),如F(x)=x^{2}sin\frac{1}{x}(x\ne0) ,F(x)=0(x=0)f(x)=2xsin\frac{1}{x}-cos\frac{1}{x}(x\ne0) ,f(x)=0(x=0)显然 F'(x)=f(x) ,但 x=0 为 f(x) 的二类间断点,即导函数不连续(4)若 f(x) 有原函数,则一定有无数个原函数,且任意两个原函数之差为常数(5)原函数、函数及导函数对比2、不定积分设 F(x) 为 f(x) 的一个原函数,则 f(x) 的所有原函数F(x)+C 称为 f(x) 的不定积分,记为 \int f(x)dx=F(x)+C注解:(1)\int [f(x)\pm g(x)]dx=\int f(x)dx\pm \int g(x)dx (2) \int kf(x)dx=k\int f(x)dx【例题】\int (x+\frac{1}{x})dx=\int xdx+\int\frac{1}{x}dx=\frac{1}{2}x^{2}+ln\left| x\right|+C\int 5xdx=5\intxdx=5\times\frac{1}{2}x^{2}=\frac{5}{2}x^{2}+C二、不定积分基本公式1、常数函数积分\int kdx=kx+C2、幂函数积分\int x^{n}dx=\frac{1}{n+1}x^{n+1}+C ,\int\frac{1}{x}dx=ln\left| x \right|+C3、指数函数积分\int a^{x}dx=\frac{1}{lna}a^{x}+C ,\inte^{x}dx=e^{x}+C4、三角函数积分\int sinxdx=-cosx+C ,\int cosxdx=sinx+C,\inttanxdx=-ln\left| cosx \right|+C, \int cotxdx=ln\left| sinx \right|+C , \int secxdx=ln\left| secx+tanx\right|+C , \int cscxdx=ln\left| cscx-cotx\right|+C , \int sec^{2}xdx=tanx+C , \intcsc^{2}xdx=-cotx+C , \int secxtanxdx=secx+C , \int cscxcotxdx=-cscx+C5、特殊函数积分\int \frac{1}{\sqrt{1-x^{2}}}dx=arcsinx+C , \int\frac{1}{1+x^{2}}dx=arctanx+C三、不定积分的积分法不定积分的积分方法主要有五种:一类换元法、二类换元法、分步积分法、有理函数积分法、三角函数积分法,课本上一般只介绍了前三种,不够全面,下面具体来看看(一)一类换元法(凑微法)1、定义设 f(u) 的原函数为 F(u) , \varphi(x) 为可导函数,则\int f[\varphi(x)]\varphi'(x)dx=\intf[\varphi(x)]d\varphi(x)令 \varphi(x)=u ,则原式 =\intf(u)du=F(u)+C=F[\varphi(x)]+C在微凑法里面,很多同学会懵逼:d后面那个是怎么来的,完全没有思路实际上,一类换元法的话会涉及到微分的知识,如果对微分熟悉的同学应该还是可以看懂的,下面简单讲解一下回顾下微分的内容, dy=f'(x)dx ,其中 y=f(x) ,基于这个点,看下几个例子y=x^{2},dy=2xdx\Rightarrowdx^{2}=2xdxy=sinx,dy=cosxdx\Rightarrowdsinx=cosxdx【例题】\int 2xdx=\int d(x^{2})=x^{2}+C\intcosxdx=\int d(sinx)=sinx+C上述两道题从第一步到第二部的变化现在应该可以看懂了,主要就是利用微分的形式进行变化的2、凑微法基本公式以下列举了一些凑微法中常用的公式,不过不建议大家去背下来,主要还是要靠题目去巩固【例题】\int \frac{arcsinx}{\sqrt{1-x^{2}}}dx=\intarcsinxdarcsinx=\frac{1}{2}(arcsinx)^2+C(二)二类换元法1、定义设 \varphi(t) 为单调可导函数,且\varphi'(t)\ne0, f(x) 有原函数,则令 x=\varphi(t)\int f(x)dx=\int f[\varphi(t)]\varphi'(t)dt=\intg(t)dt=G(t)+C =G[\varphi^{-1}(x)]+C2、适用范围(1)二类换元法经常使用在根号下的平方相加减的积分计算中,这时候就利用三角替换进行解答主要利用两个三角函数公式的变换:sin^{2}x+cos^{2}x=1 , tan^{2}x+1=sec^{2}x ,利用三角函数的变化,去掉根号,再进行计算,常用的替换如下:情形一:若函数中含有 \sqrt{a^{2}-x^{2}} ,变换 x=asint情形二:若函数中含有 \sqrt{a^{2}+x^{2}},变换 x=atant情形三:若函数中含有 \sqrt{x^{2}-a^{2}},变换 x=asect(2)无理函数化成有利函数的积分【例题1】求解\int \frac{dx}{\sqrt{x}+1}解答:令 \sqrt{x}=t,x=t^{2},dx=2tdt原式为 \int\frac{dx}{\sqrt{x}+1}=\int\frac{2tdt}{t+1}=\int \frac{2t+2-2}{t+1}dt=2-\int \frac{2}{t+1}dt=2t-2ln\left| t+1\right|+C最后将 t 换回 x 即可,即原函数为2\sqrt{x}-2ln\left| \sqrt{x}+1 \right|+C【例题2】求解 \int \frac{dx}{\sqrt{1+x^{2}}}解答:令 x=tant,dx=sec^{2}t原式为 \int\frac{sec^{2}tdt}{\sqrt{1+tan^{2}t}}=\int\frac{sec^2t}{sect}dt=\int sectdt=ln\left|tant+sect \right|+C做到这边很多人又有疑问了,tant 可以换回去 x ,那么 sect 呢,如何换成 x的表达式,这里介绍一种图像结合的方法,大家看下下面这张三角形结合直角三角形及t和x的函数关系,即可推导出其余三角函数的公式所以原式为 =ln\left|x+\sqrt{1+x^{2}} \right|+C(三)分部积分法1、定义设 u(x),v(x) 连续可导,则分部积分法公式为 \intu(x)dv(x)=u(x)v(x)-\int v(x)du(x)2、适用情况以下几种形式可以采用分部积分法进行计算:(1)被积函数为幂函数与指数函数之积,如\int x^ne^{x}dx (2)被积函数为幂函数与指数函数之积,如\int x^nlnxdx (3)被积函数为幂函数与三角函数之积(4)被积函数为幂函数与反三角函数之积(5)被积函数为指数函数与三角函数之积(6)被积函数含有 sec^nx 或 csc^nx ( n 为奇数)备注:用分部积分法时一定要注意,哪个函数设为 u(x) ,哪个函数为 v(x) ,下列简述下不同的设法最后的结果是怎么样的【例题】求解 \int xe^{x}dx解答一:u(x)=e^{x},v'(x)=x 则u'(x)=e^{x},v(x)=\frac{1}{2}x^2\intxe^{x}dx=\inte^{x}d\frac{1}{2}x^2=\frac{1}{2}x^2e^{x}-\int\frac{1}{2}x^2e^{x}dx做到这发现一个问题,原来的积分仅为一次方,而用了一次分部积分后发现变成了二次方,解答难度变得更大了,这说明在函数的假设过程中是有问题的,若利用该方法继续往下算,会发现永远算不出来解答二:u(x)=x,v'(x)=e^{x} 则 u'(x)=1,v(x)=e^{x}\intxe^{x}dx=\int xde^{x}=xe^{x}-\inte^{x}dx=xe^{x}-e^{x}+C做到这里会发现分部积分法最重要的就是要将 u,v 设正确了,只要假设正确了,一般就能做出来(四)有理函数积分1、形式设 R(x)=\frac{P(x)}{Q(x)} ,其中 P(x),Q(x) 为多项式,此处仅考虑P(x)的次数比 Q(x) 次数低时的情况(若P(x)的次数比 Q(x) 次数高时,可对 P(x) 进行拆分)(1) \int \frac{dx}{(x+a)(x+b)}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}dx(2) \int \frac{dx}{(x+a)(x+b)^2}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+b)^2}dx(3)\int \frac{dx}{(x+a)(x^2+bx+c)}=\int\frac{A}{(x+a)}+\frac{Bx+C}{(x^2+bx+c)}dx将有理函数设成上面带有 A,B,C 的函数,通过与原式对比,解答出 A,B,C ,再进行计算【例题】求解 \int \frac{x+1}{x^2-x-6}dx分析:\frac{x+1}{x^2-x-6}=\frac{x+1}{(x+2)(x-3)}=\frac{A}{(x+2)}+\frac{B}{(x-3)}由 A(x-3)+B(x+2)=(A+B)x+(2B-3A)=x+1A+B=1 , 2B-3A=1\RightarrowA=\frac{1}{5} , B=\frac{4}{5}解答:\int \frac{x+1}{x^2-x-6}dx=\int\frac{1}{5}\frac{1}{x+2}+\frac{4}{5}\frac{1}{x-3}dx\frac{1}{5}ln\left| x+2\right|+\frac{4}{5}ln\left| x-3 \right|+C(五)三角函数积分三角函数的积分一般利用几个基础的三角变换公式进行化简,化简后再进行积分求解:1、倍角公式:sin2x=2sinxcosx , cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2、半角公式:利用背角公式进行推导,此处不进行列举3、和积化差公式:sin\alpha+sin\beta=2sin(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})sin\alpha-sin\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{2})sin(\fr ac{\alpha}{2}-\frac{\beta}{2})cos\alpha+cos\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})cos\alpha-cos\beta=-2sin(\frac{\alpha}{2}+\frac{\beta}{2})sin(\frac{\alpha }{2}-\frac{\beta}{2})4、万能公式法令 tan\frac{x}{2}=u ,则 sinx=\frac{2u}{1+u^2} ,cosx=\frac{1-u^2}{1+u^2} , dx=\frac{2}{1+u^2}du利用万能公式便可将三角函数积分变换成有理函数积分进行求解,不过该解法相对比较麻烦,很少会采用该方法进行计算不定积分的解答方法基本就是这些了,方法比较多,但是不同方法有对应的积分形式,只要熟悉了积分形式,解答的时候也相对快捷--------------分割线---------------码字不易,请大家点个赞吧~另外如果有考研或者数学方面问题的话可以随时留言或者私信,有问必答哈~也可以点击头像加入社群进行交流~。
超实用高三数学一、二、三轮、冲刺复习
计划(详细时间安排)
本文档旨在为高三学生提供一份超实用的数学一、二、三轮、冲刺复计划,帮助他们合理安排时间,有效备考。
以下是详细的时间安排:
第一轮复 (2个月)
- 第1周:复数学基础知识,包括数学公式、常用函数等。
- 第2-4周:逐章复高中数学各个单元,重点关注基础知识和常见题型。
- 第5-6周:进行第一次全书综合测试,查漏补缺。
- 第7-8周:针对薄弱知识点进行有针对性的强化训练。
第二轮复 (1个月)
- 第9-11周:全面复高中数学各个单元,重点关注难点和高频考点。
- 第12周:进行第二次全书综合测试,检验复效果。
- 第13周:针对测试结果进行重点复和强化练。
第三轮复 (2周)
- 第14周:集中复高考重点知识点,总结归纳解题技巧。
- 第15周:进行模拟考试,熟悉考试环境和节奏。
- 第16周:进行第三次全书模拟考试,检验复成果。
冲刺复 (2周)
- 第17-18周:针对模拟考试结果进行重点复和错题集训练。
- 第19-20周:进行模拟高考,模拟真实考试流程和答题方式。
通过以上的复习计划,学生们可以全面系统地复习数学知识,
强化难点和考点,提升解题能力和应考技巧。
希望这份复习计划能
够帮助他们在高考中取得优异的成绩!。
高数复习的最佳时间分配方案复习高等数学的过程中,合理的时间分配方案是关键。
无论你面对的是微积分、线性代数还是其他高数课程,制定一个科学的复习计划可以帮助你更高效地掌握知识。
让我们来看看如何通过合理的时间分配,最大限度地提升你的复习效果。
首先,了解高数复习的基本内容和重点是制定时间分配方案的第一步。
高数的知识点复杂且层次分明,涉及函数、极限、导数、积分、矩阵等多个方面。
为了不在复习中迷失方向,你需要将这些知识点进行分类,并按照重要性和难度进行排序。
优先级较高的内容应分配更多的时间进行复习,而基础较为扎实的部分可以适当减少时间。
在制定复习计划时,建议将每天的复习时间分成几个时段。
每个时段应专注于不同的内容,避免长时间集中复习某一部分内容而感到疲惫。
研究表明,人的注意力在长时间内会逐渐下降,因此短时高效的学习方式更具效果。
例如,你可以将一天分成两个小时的复习时间,每次复习一个特定的主题,并安排短暂的休息时间。
这样可以保持较高的学习效率。
此外,复习过程中应设立明确的目标和任务。
每次复习前制定一个清晰的目标,比如掌握某个公式的应用或解决一定数量的习题。
通过设定短期目标,你可以更有针对性地进行学习,避免泛泛而学。
完成目标后,要对所学内容进行总结和反思,找出自己在理解和应用上的不足之处,从而进行针对性的加强。
合理的时间分配不仅仅是分配学习时间,还包括调整复习策略。
高数的学习需要不断地做题和进行实际操作,通过实践巩固理论知识。
因此,你应当在复习计划中加入一定比例的练习时间。
做题不仅可以帮助你加深对知识点的理解,还能提高解决实际问题的能力。
建议在每天的复习时间中,预留一部分时间专门用于解题和模拟考试。
在复习的过程中,适当的休息和调整也是不可忽视的。
长时间的学习容易导致疲劳和注意力分散,因此,科学安排休息时间能够帮助你保持良好的精神状态。
每完成一个学习时段后,进行适当的放松,如散步、听音乐等,有助于提高下一时段的学习效率。
数学最高效的五种复习方法数学作为一门理科学科,在学习过程中需要积累大量的知识点和技巧。
当考试临近时,必须进行高效的复习以保证取得好成绩。
以下是数学最高效的五种复习方法。
一、制作笔记制作笔记是一种非常有效的复习方法,因为它有利于概括和整理数学知识点,使其更加简洁和易于理解。
制作笔记的过程可以帮助巩固课程中掌握的知识点和技巧,这有助于记忆和加深对数学的理解。
此外,制作笔记还有另外一个好处,即方便回顾和翻阅。
二、解决练习题对于数学来说,最好的学习方法就是不断的练习。
这一点同样适用于复习。
解决练习题可以巩固和加强掌握的知识点和技巧,增强对数学的理解。
它也可以帮助准备考试时增强信心,因为通过练习,可以很快看到成果。
三、利用工具箱现在,在线学习社区和软件都提供了大量的工具箱,可以帮助学生更好地了解数学的基础知识点和相关技巧。
这些工具箱中包含了诸如数学符号、公式、习题摘要等极为有用的信息,学生可以利其优势,查找和确认课程内容,为备考打下基础。
四、参加学习小组加入学习小组可以帮助学生交流彼此的知识和技巧。
每个人都有自己的强项和弱项,在小组的互动讨论中,可以帮助发现并解决学习问题。
还可以找到一些更有经验的学生,更加深入了解复习的方法和技巧。
五、利用前一次考试的经验利用前一次考试的经验是提高考试成绩的一种有效方法。
当差错和失误被发现,应该做好记录并总结起来。
利用这些记录和总结,可以了解哪些知识点需要重新学习,哪些方面需要加强,从而做出更加高效的学习计划。
总之,在准备数学考试时,不同的学生需要采取不同的复习方法。
但是,五种最高效的复习方法灵活应用,既能够保证复习质量,又能够节省时间和精力,为考试取得好成绩奠定坚实基础。
怎样复习考研高数〔考研〕数学的复习效率不高的原因,不仅仅是因为我们的数学能力不够,更多的是我们没能掌握的正确的考研数学复习技巧。
贵阳新文道考研我整理怎样复习考研高数,一起来看吧。
怎样复习考研高数(1)第一、理解概念掌握定理数学中有很多概念。
概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才干真正地理解一个概念。
所有的问题都在理解的基础上才干做好。
定理是一个正确的命题,分为条件和结论两部分。
关于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第二、教材习题要做熟要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。
作题时要善于总结---- 不仅总结方法,也要总结错误。
这样,作完之后才会有所收获,才干举一反三。
第三、从宏观上理清脉络要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。
其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。
微积分的理论,是由牛顿和莱布尼茨完成的。
(当然在他们之前就已有微积分的应用,但不够系统)数学备考一定要有一个复习时间表,也就是要有一个严密可行的计划。
按照计划,按部就班,切忌搞突击,临时抱佛脚。
怎样复习考研高数(2)第一,按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学是一门演绎的科学,靠侥幸押题是行不通的。
只有对基本概念有深入理解,对基本定理和公式牢铭记住,才干找到解题的突破口和切入点。
分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。
第二,要强化解综合性试题和应用题能力的训练,力求在解题思路上有所突破。
在解综合题时,迅速地找到解题的切入点是关键一步,为此必须要熟悉规范的解题思路,考生应能够看出面前的题目与他曾经见到过的题目的内在联系。
高数考试前的知识点快速复习在高数考试前的最后冲刺阶段,复习工作显得尤为重要。
你像是站在山顶,俯瞰整个知识的领域,想要在最后的时间内迅速梳理、整合,才能在考试中稳健地迈过每一个关卡。
如何高效复习,确保知识点的掌握?这需要策略与技巧,才能让你在有限的时间里发挥出最大的效能。
首先,要对自己所掌握的知识点进行分类。
将知识点按照重要性和难度进行排序,优先复习那些占分比例大、自己掌握不牢的部分。
例如,微积分中的极限、导数、积分等概念,不仅是基础,还是考试中常见的题型。
在这些知识点的复习中,可以从基础概念开始,逐步深入到复杂的应用题。
这样,有助于你在考试中更好地理解和运用这些知识。
其次,复习过程中,做题是必不可少的环节。
通过做题,可以有效检测自己对知识点的掌握程度,并发现自己在解题过程中存在的薄弱环节。
可以从历年真题开始,逐步过渡到模拟题。
这种方式不仅能帮助你熟悉考试的题型和难度,还能提高解题的速度和准确性。
在做题过程中,尤其要注意总结错题的原因,分析错误的类型,找到知识点的盲区,并进行针对性的强化。
此外,将知识点进行归纳总结,也是复习中的一个重要环节。
整理各类公式、定理、解题方法,并用自己的语言进行解释,可以帮助你更好地记忆和理解这些知识。
制作简明的复习笔记或者思维导图,将复杂的知识结构化,能够帮助你在考试前迅速回顾和复习。
要确保这些笔记简洁明了,重点突出,便于在考前快速翻阅。
在复习的过程中,保持良好的心态和适当的休息也是至关重要的。
长时间的高强度复习容易导致疲劳,影响学习效果。
合理安排复习时间,适当休息和放松,可以保持大脑的清醒和高效。
考试前夕,可以做一些轻松的活动,如散步或听音乐,帮助缓解紧张情绪,保持平稳的状态迎接考试。
另外,复习时还要注意时间的合理分配。
不要过于纠结于某一个难题而浪费大量时间。
每一个知识点的复习时间要有计划,确保在考试前能够全面覆盖所有的知识点。
通过制定详细的复习计划,并严格按照计划执行,可以有效提高复习效率。
高数复习如何提高效率高等数学作为大学中的一门重要课程,对于学生来说常常是一座高山。
如何在有限的时间内有效复习,提高复习效率成为了每位学生关心的问题。
以下是一些提升高等数学复习效率的建议:首先,要像对待一位好朋友那样对待高数。
不要畏惧它,而是要与它建立起亲密的关系。
理解高数的每一个概念,就像理解一个朋友的想法一样。
通过细致入微的分析,你将能够更深入地理解每一个定理和公式背后的逻辑。
其次,高数是一个需要不断练习的学科。
就像学习一项新技能一样,反复练习是掌握高数的关键。
不要只是死记硬背公式,而是要通过大量的练习题,将理论知识转化为实际运用能力。
这种通过练习提高的过程,就像锻炼身体一样,需要持之以恒,才能见到显著的进步。
进而,要学会与高数对话。
不要让高数变成一种抽象的概念,而是要学会用自己的语言去表达数学的思想。
通过与同学讨论,或者尝试向老师寻求帮助,你将能够更清晰地理解复杂的数学概念。
这种交流与互动,能够帮助你在思维上更加灵活和开放。
此外,要善于利用现代技术手段。
在互联网的时代,有大量的高质量资源可以帮助你学习和复习高等数学。
比如,通过在线视频课程可以直观地理解复杂的数学问题,通过数学软件可以更加高效地进行计算和模拟。
这些技术手段不仅能够节省时间,还能够使学习过程更加生动和有趣。
最后,要保持良好的学习习惯和心态。
制定合理的学习计划,每天保持一定的学习时间,不要等到临近考试才仓促复习。
保持积极的心态,相信自己的能力,相信通过努力学习一定能够掌握高等数学这门学科。
总之,提高高等数学复习效率并不是一蹴而就的事情,而是需要长期的坚持和不懈的努力。
通过建立良好的学习习惯,善于利用资源,与数学进行深入的对话,相信每一位学生都能够在高等数学的学习道路上走得更远。
高数上第一章 复习题1. 计算下列极限:(1)2)1( 321lim nn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n .(2)35)3)(2)(1(lim nn n n n +++∞→; 解515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比). 或51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(3))1311(lim31x x x ---→; 解112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . (4)xx x 1sin lim 20→; 解01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x1sin 是有界变量).(5)xx x arctan lim ∞→. 解0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x1是无穷小, 而arctan x 是有界变量). (6)145lim1---→x x x x ;解)45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→214154454lim1=+-⋅=+-=→xx x .(7))(lim22x x x x x --++∞→.解)())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .(8)xx x sin ln lim 0→;解 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(9)2)11(lim xx x+∞→;解[]e e xx x x xx ==+=+∞→∞→21212)11(lim )11(lim(10))1(lim 2x x x x -++∞→; 解 )1()1)(1(lim)1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→ 211111lim 1lim22=++=++=+∞→+∞→x x x x x x . (11)1)1232(lim +∞→++x x x x ;解 2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x 21212)1221()1221(lim ++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(12)30sin tan lim x x x x -→; 解 xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换) . 2. 证明: 当x →0时, arctan x ~x ;证明 因为1tan lim arctan lim0==→→yyxxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .3. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续: (1)23122+--=x x x y , x =1, x =2;(2)x x y tan =, x =k , 2ππ+=k x(k =0, ±1, ±2, ⋅ ⋅ ⋅);解(1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点. 因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx , 0tan lim2=+→xxk x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.4. 设函数⎩⎨⎧≥+<=00 )(x x a x e x f x 应当如何选择数a , 使得f (x )成为在(-∞,+∞)内的连续函数?解 要使函数f (x )在(-∞, +∞)内连续, 只须f (x )在x =0处连续, 即只须a f x f x f x x ===+→-→)0()(lim )(lim 0.因为1lim )(lim 00==-→-→x x x e x f , a x a x f x x =+=+→+→)(lim )(lim 0, 所以只须取a =1.5. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b .证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根;若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0,a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根.总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b .6. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim2=+=+∞→∞→nn n n n n , 1111lim 1lim 22=+=+∞→∞→n n n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 7. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ; 当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim00=-=--→-→xx x f x f x x , f +'(0)=10lim )0()(lim00=-=-+→+→x x x f x f x x , 所以f '(0)=1, 从而f '(x )=⎩⎨⎧≥<0 10cos x x x . 8*、证明: 函数xxy 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xxy 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xxy 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .第二章 复习题1. 求下列函数的导数: (1) y =ln(1+x 2); 解 222212211)1(11xx x x x x y +=⋅+='+⋅+='.(2) y =sin 2x ;解 y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(3)22x a y -=;解[]22212222121222122)2()(21)()(21)(xa x x x a x a x a x a y --=-⋅-='-⋅-='-='--.(4)xx y ln 1ln 1+-=;解 22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x xy +-=+--+-='.(5)xx y 2sin =;解222sin 2cos 212sin 22cos xx x x x x x x y -=⋅-⋅⋅='.(6)x y arcsin =;解2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(7))ln(22x a x y ++=;解])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++⋅++=.(8)xx y +-=11arcsin .解 )1(2)1(1)1()1()1(1111)11(11112x x x x x x xx x x x x y -+-=+--+-⋅+--='+-⋅+--='.(9)xx y -+=11arctan ;解222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(10)x x x y tan ln cos 2tan ln ⋅-=; 解)(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(11))1ln(2x x e e y ++=;解xx x x x x x x x x x e ee e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.2. 求下列函数的n 阶导数的一般表达式: (1) y =sin 2 x ;解y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(2) y =x ln x ;解1ln +='x y ,11-==''x xy , y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n xn xn . (3) y =x e x .解 y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dxyd .解 方程两边求导数得 y '=e y +x e y y ', ye y e xe e y yy y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4. 求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dxyd :解t tt t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=,t t tt t dx yd 4112)21(2222+=+'=,3422338112)41(tt t t t t dx yd -=+'+=. 5. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dtdh h dt dV ⋅⋅=2312π, dtdVh dt dh ⋅=24π.已知h =5(m ),4=dtdV (m 3/min), 因此πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).6. 求下列函数的微分: (1)21arcsin x y -=;解 dx xx x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=.(2) y =tan 2(1+2x 2); 解dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x2)=2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx . (3)2211arctan xx y +-=;解)11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-=dx x x dx x x x x x xx 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. 7. 讨论函数⎪⎩⎪⎨⎧=≠=000 1sin )(x x xx x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim000→→→=-=-不存在, 所以f (x )在x =0处不导数.第三章 复习题1. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cotξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x . 3. 用洛必达法则求下列极限:(1)xe e xx x sin lim0-→-;解2cos lim sin lim 00=+=--→-→xe e x e e x x x x x x . (2)22)2(sin ln lim x x x -→ππ;解 812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ.(3)xx x x cos sec )1ln(lim20-+→;解 x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2)1sin lim )sin (cos 22lim00==--=→→xxx x x x x .4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;解 设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的.因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x xx xx xx x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1ln(122>+-+++x x x x ,也就是221)1ln(1x x x x +>+++.5. 判定曲线y =x arctan x 的凹凸性: 解21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.6. 求下列函数图形的拐点及凹或凸的区间: (1) y =xe -x ;解 y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2. 因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2). (2) y =ln(x 2+1); 解122+='x x y ,22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1.列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的,在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0. 8. 求数列}{n n 的最大项. 解 令xx x x x f 1)(==(x >0), 则x x x f ln 1)(ln =,)ln 1(1ln 11)()(1222x xx x x x f x f -=-='⋅,)ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x <e 时, f '(x )>0; 当x >e 时, f '(x )<0, 所以唯一驻点x =e为最大值点.因此所求最大项为333max{ .,2}3第四、五、六章 复习题1. 求下列不定积分: (1)⎰dx e x x 3; 解C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(2)⎰+++dx x x x 1133224;解 C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(3)⎰dt tt sin;解 ⎰⎰+-==C t t d t dt t t cos 2sin2sin .(4)⎰-+dx e e xx 1; 解 ⎰-+dx e e xx 1C e de e dx e e xx xx x +=+=+=⎰⎰arctan 11122.(5)⎰--dx xx 2491;解 dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21. (6)⎰-+dx x x )2)(1(1;解 C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (7)⎰-12x x dx ;解 C xC t dt tdt t t t tx x x dx+=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或 C x x d x dx x x x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(8)⎰-dx xx 92; 解 ⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(9) ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=xx x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .(10)⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x⎰--+=dx x x x x 2arcsin 12)(arcsin 22C x x x x x +--+=2arcsin 12)(arcsin 22.(11)⎰xdx e x 2sin .解 ⎰⎰⎰-=-=xdx e e dx x e xdx e x x x x 2cos 2121)2cos 1(21sin 2,而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos , 所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2(12)dx x x )1(12+⎰;解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得 xx f y 1)(='=',所以C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|+C =2+C , C =3-2=1. 于是所求曲线的方程为 y =ln|x |+1.3. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=xadt t f a x x F )(1)(.证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有))(()(1)(1)(1)()(1)(22a x f a x x f a x x f a x dt t f a x x F xa----=-+--='⎰ξ)]()([1ξf x f ax --=.由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内0)]()([1)(≤--='ξf x f ax x F .4. 计算下列定积分:(1)⎰-πθθ03)sin 1(d ;解 ⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(2)dx x ⎰-2022; 解 dt t tdt t tx dxx ⎰⎰⎰+=⋅=-2020202)2cos 1(cos 2cos 2sin 22ππ令2)2sin 21(20ππ=+=t t .6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a=++-=⎰.7. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为 ⎰⎰==ba ba dx x xf dx x xf V )(2)(2ππ.8. 利用题7的结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 20002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V . 9. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式.θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2 a d a 82cos 40==⎰πθθ.第七章 复习题1、设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k , 所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j . 2. 设a =3i -j -2k ,b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i kj i b a 75121 213++=---=⨯.(2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18, a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k . (3)21236143||||||) ,cos(^==⋅=b a b a b a .3. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a . 解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0, 于是23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .4、设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c ); (3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8, (a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132,(a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.5、一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为k j i k j i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.6、用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x . 解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1,1), 所求直线的方向向量为k j i k j i n n s 3211211121++-=-=⨯=.在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ;参数方程为x =3-2t , y =t , z =-2+3t .7、求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程. 解 过直线⎩⎨⎧=---=+-0923042z y x z y x 的平面束方程为 (2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得 17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x . 8、设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π,|a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π.设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.。
怎样高效地复习高数?我高考数学很差,大学本想放弃数学,可是天不遂人愿,我想进一步深造。
所以准备考研,准备的是C9的学校,由于我是工科生,考的是数一,据传数一特别难,然后上考研论坛,有看到帖子有什么考上120分是绝对没问题的,才发现原来考120也这么难,还要发个帖子鼓励一下。
于是怀着被虐千百遍的心态开始复习了。
以下是我个人的复习经历:高数高数书(同济版)中所有的定理只要有的证明都看过二到三遍,然后做过两本书上的课后题大部分,这样对大部分的定理基本概念都会熟悉的,然后开始做复习全书(二李),当时第一遍做的时候是打死也不看答案,其中前面的解析和例题也要好好看,我都差不多整理出了二李全书的另一套解法(当然其中的过程还是很痛苦的,有几道题可能几天才反应过来,有些可能根本没法做出来)。
其实后来我发现没必要一直纠结这些问题,很多时候知道就好。
线性代数和概率线代还是不难的,推荐跳过全书上的线代部分,直接做线代讲义李永乐另外编的。
其中可以配合同济教材的书蓝皮的那本,可以先看一节书做一节练习题,线代不是很难所以可以做到看完当场就练习,做完线代之后开始看概率,由于概率本身内容少,可以从全书为主干然后配合教材基本上全书就够了。
到做概率的阶段时可能你一开始复习的高数忘了不少,所以可以看一下视频放松一下同时复习高数知识,这里我推荐的视频是汤家凤老师强化班(我有同学报了考研班也是看视频,大约几千左右,最后他告诉我还没汤老师讲的好)。
这时候可以开始做第二遍高数部分,如果时间来不及可以跳过一些不重要的章节,一些计算量大的题目可以选几题做做。
这时候要开始看看是否离考试时间不够,最后要留出充分的时间去做真题,看历年出卷老师的思路有些考点是几年出现(比如傅里叶之类的),有些是每年必考的知识点(极限,曲面积分之类的吧),虽然有很多人说真题越早看越好,其实你要是有扎实的基础,真题可能没有想象的那么重要。
真题是让你适应出题人的难度系数和知识框架,貌似有个考点一直没考过,相当怀疑是出题老师都忘了这个考点。
万变不离其宗!复习就是要理清思路查漏查缺然后对症下药。
短短一个月后,就要考试了,面对复习不能手足无措,要有目的地复习。
主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。
掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。
复习自然离不开大量的练习,熟悉公式然后才能熟练任用。
结合课后习题要清楚每一道题用了哪些公式。
没有用到公式的要死抓定义定理!
一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分五.定积分六定积
分的应用浏览目录了解真正不熟悉的章节然后有针对的复习。
一函数与极限
熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理
本章公式:
两个重要极限:
常用的8个等价无穷小公式:当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~1/2*(x^2)
(e^x)-1~x
ln(1+x)~x
[(1+x)^1/n]-1~(1/n)*x
二.导数与微分
熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参
数方程确定的函数的导数
三.微分中值定理与导数的应用:
洛必达法则:
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:
①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时
(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限.
②洛必达法则可连续多次使用,直到求出极限为止.
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因
此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等.
曲线的凹凸性与拐点:
注意:首先看定义域然后判断函数的单调区间
求极值和最值
利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号)
四.不定积分:(要求:将例题重新做一遍)
对原函数的理解
原函数与不定积分
1 基本积分表基本积分表(共24个基本积分公式)
不定积分的性质
2第一类换元法(凑微分法)
2第二类换元法(三角代换无理代换倒代换)
3分部积分法
故
f(x)中含有考虑用代换。