考研线性代数复习-1
- 格式:doc
- 大小:431.00 KB
- 文档页数:6
数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
吉林省考研数学复习资料线性代数重点知识点总结线性代数是数学中的一个分支,广泛应用于科学和工程领域。
在吉林省考研数学考试中,线性代数是一个重要的考点。
下面将对线性代数的一些重点知识点进行总结,以帮助考生复习备考。
1. 向量和矩阵向量是线性代数中最基本的概念之一。
向量可以表示为一组有序的数,常用字母表示,如a,b,c。
向量有多种运算,包括加法、减法和数乘等。
矩阵是由数按一定规则排列成的矩形阵列。
矩阵也有加法、减法和数乘等运算,矩阵之间还有乘法运算。
常见的矩阵包括单位矩阵、对角矩阵和方阵等。
2. 线性方程组线性方程组是线性代数中的一个重要内容。
线性方程组可以表示为多个线性方程组成的方程组。
线性方程组有三种基本操作:互换两个方程的次序、用非零常数乘以一个方程、用一个方程的倍数加到另一个方程上。
解线性方程组的方法主要有高斯消元法和矩阵求逆法。
高斯消元法通过对增广矩阵进行一系列行变换,将方程组转化为简化的阶梯形方程组。
矩阵求逆法通过求解增广矩阵的逆矩阵来得到方程组的解。
3. 向量空间和子空间向量空间是数域上的一组向量的集合,满足加法和数乘的封闭性、加法和数乘的结合律、存在零向量和负向量、数乘的分配律等性质。
子空间是向量空间的一个子集,本身也是向量空间。
子空间必须满足加法和数乘的封闭性,以及包含零向量等要求。
4. 线性相关与线性无关一组向量中,如果存在一个向量可以由其他向量线性表示,则称这组向量线性相关;如果不存在这样的情况,则称这组向量线性无关。
线性相关的向量组会存在一些冗余信息,可以通过高斯消元法等方法进行简化。
线性无关的向量组具有更好的性质和应用。
5. 矩阵的特征值与特征向量特征值与特征向量是矩阵的重要性质。
矩阵A的特征值是使得A 减去特征值倍单位矩阵后的矩阵A'奇异的所有特征向量。
矩阵的特征值和特征向量可以用于分析矩阵的性质和应用于线性系统的解与稳定性等问题。
6. 线性变换和矩阵的相似性线性变换是一种保持向量空间运算的映射关系。
考研数学一大纲重点内容回顾线性代数部分知识点汇总线性代数是考研数学一科目中非常重要的一部分。
在考试中,线性代数占据了相当大的比重,因此熟练掌握线性代数的知识点是非常重要的。
本文将回顾考研数学一大纲中线性代数部分的重点知识点,帮助考生在备考中能够有针对性地进行复习,并为考试发挥出最佳水平做准备。
知识点1:向量空间向量空间是线性代数中最基础的概念之一。
考生需要掌握向量空间的定义、性质和基本运算法则。
此外,需要掌握向量空间的子空间、线性相关性和线性无关性等概念。
知识点2:矩阵与行列式矩阵和行列式也是考研数学一线性代数部分的重要内容。
考生需要掌握矩阵的运算法则,包括矩阵的加法、乘法和转置等运算。
同时,需要了解矩阵的秩以及矩阵可逆的条件。
在行列式方面,需要熟悉行列式的性质,以及行列式的计算方法和展开式。
知识点3:线性方程组线性方程组是线性代数中的一个重要应用,也是考研数学一中的常见考点。
考生需要掌握线性方程组的解法,包括消元法、矩阵法和特征值法等。
同时,还需要了解线性方程组解的存在唯一性条件,以及齐次线性方程组和非齐次线性方程组的关系。
知识点4:特征值和特征向量特征值和特征向量是线性代数中的重要概念,也是考研数学一中的热点内容。
考生需要了解特征值和特征向量的定义、性质和计算方法。
同时,需要掌握矩阵的对角化和相似对角化的相关知识。
知识点5:线性变换线性变换是线性代数的核心内容之一。
考生需要了解线性变换的定义和性质,以及线性变换的矩阵表达式和几何意义。
此外,还需要了解线性变换的基矩阵和过渡矩阵的计算方法。
知识点6:内积空间内积空间是线性代数中的高级内容,也是考研数学一中的难点。
考生需要了解内积空间的定义和性质,以及内积空间的标准正交基和正交投影的相关知识。
同时,还需要了解内积空间的正交补和正交矩阵的概念和计算方法。
综上所述,考研数学一大纲重点内容回顾线性代数部分的知识点汇总包括了向量空间、矩阵与行列式、线性方程组、特征值和特征向量、线性变换以及内积空间等内容。
吉林省考研数学复习资料线性代数重点概念详解一、线性代数基本概念线性代数是数学的一个重要分支,研究向量空间及其线性变换以及矩阵和行列式等代数结构。
在数学的应用领域中,线性代数也被广泛运用于解决实际问题。
1. 向量及其运算向量是线性代数的基本元素,它具有大小和方向两个特征。
向量之间可以进行加法和数乘运算。
2. 行列式的定义与性质行列式是一个矩形数组,由元素构成。
它具有许多重要的性质,如行列式的性质与元素的交换顺序无关、行列式的性质与行列式相似性质等。
3. 矩阵及其运算矩阵是数的矩形排列,它是线性代数研究的重要工具。
矩阵之间可以进行加法、数乘和乘法运算。
4. 线性方程组与矩阵的关系线性方程组是线性代数的一个重要研究对象,它可以用矩阵的形式表示。
通过矩阵的运算,可以解决线性方程组的求解问题。
二、线性代数常用定理与方法在线性代数的学习中,掌握一些常用的定理和方法可以帮助我们更好地理解和解决问题。
1. 基本定理线性代数中的基本定理有行列式的性质、向量的线性相关与线性无关性质等。
2. 矩阵的特征值与特征向量矩阵的特征值与特征向量是线性代数中非常重要的概念。
通过求解特征值和特征向量,可以得到矩阵的一些重要性质。
3. 线性变换线性变换是线性代数的核心内容之一,它是指由一个向量空间到另一个向量空间的映射,保持向量空间的线性运算。
4. 线性代数的应用线性代数在数学的各个领域都有广泛的应用,如图像处理、机器学习、密码学等。
掌握线性代数的一些基本概念和定理,可以帮助我们在实际问题中运用线性代数的知识。
三、线性代数的拓展知识在学习线性代数的过程中,可以进一步拓展相关知识,从而深化对线性代数的理解。
1. 向量空间的正交性与正交变换正交性是向量空间中一个重要的性质,它可以用于解决一些特殊问题。
正交变换是一种保持向量内积关系不变的线性变换。
2. 广义逆矩阵与线性最小二乘法广义逆矩阵是矩阵的一种扩展,它可以解决矩阵不可逆的情况下的求逆问题。
考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。
线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。
以下是为大家梳理的线性代数复习要点。
一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。
1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。
对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。
2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。
这些性质在行列式的计算中经常用到。
3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。
二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。
1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。
要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。
2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。
3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。
矩阵的秩在判断线性方程组解的情况等方面有重要应用。
4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。
三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。
1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。
2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。
3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。
4、向量空间了解向量空间的基本概念,如基、维数等。
四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。
1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。
考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
考研数学线性代数的知识点怎么复习范本三份知识点一:矩阵1.矩阵的定义:矩阵是一个由数域中的元素排列成的矩形阵列。
2.矩阵的运算:包括矩阵的加法、减法、数乘、乘法等。
3.矩阵的类型:包括列矩阵、行矩阵、方阵、行满秩矩阵、列满秩矩阵等。
4.矩阵的转置:行变为列,列变为行。
5.矩阵的逆:满足矩阵乘法交换律的方阵,存在逆矩阵。
6.矩阵的秩:线性无关行(列)向量的最大个数。
知识点二:行列式1.行列式的概念:一个由n*n个元素构成的方阵,与其他方阵不同的一个特殊数。
2.行列式的性质:包括行互换、列互换、其中一行(列)乘以一个非零常数、其中一行(列)加上另外一行(列)的k倍等运算。
3.行列式的计算:包括按定义计算、按行(列)展开、按行列式的性质计算等方法。
4.行列式的性质与结论:含有零行(列)的行列式为零、对调两行(列)行列式变号、行列式与其转置行列式相等等。
知识点三:向量空间1.向量空间的定义:满足一定条件的集合,其中的元素可以进行向量运算。
2.向量空间的性质:包括封闭性、线性组合、线性无关、向量子空间等性质。
3.线性相关与线性无关:一组向量之间的线性组合关系。
4.基、维数与坐标:向量空间的基、维数与坐标之间的关系。
5.线性映射:保持向量空间的线性性质的映射。
6.矩阵的秩与线性方程组的解:矩阵的秩与方程组解的个数及解的性质之间的关系。
知识点四:特征值与特征向量1.特征值与特征向量的定义:对于一个n*n矩阵A,如果存在常数λ和非零向量x,使得Ax=λx,则称λ为矩阵A的特征值,x为矩阵A的特征向量。
2.特征值与特征向量的计算:包括求解特征方程、求解特征向量的过程。
3.特征值与特征向量的性质:特征值的和等于矩阵的迹,特征向量对应不同特征值的特征向量线性无关等。
知识点五:二次型1.二次型的定义:一个含有二次项和线性项的多项式。
2.二次型的矩阵表示:用矩阵表示二次型。
3.二次型的规范化:将二次型化为标准形,即去除二次项的干涉项。
考研数学一2024线性代数历年题目全解考研数学一考试是以线性代数为主要内容的学科,对于考生而言,熟练掌握历年的线性代数题目并进行全面解析和讲解是提高题目解答水平的重要方法。
本文将全面解析考研数学一2024年线性代数历年题目,并通过详细的解题过程和讲解,帮助考生深入理解线性代数的基本概念和解题方法。
1. 第一题解析:首先,我们需要明确题目所给的条件和要求。
根据题目中提供的条件,我们可以得到...2. 第二题解析:题目中要求我们...通过以上的解析和讲解,我们可以发现,在解题过程中,需要注意的是...3. 第三题解析:对于此题,我们可以运用...通过以上的解析和讲解,我们可以总结出...4. 第四题解析:题目要求我们...通过以上的解析和讲解,我们可以发现,在解题过程中,需要注意的是...5. 第五题解析:对于此题,我们可以运用...通过以上的解析和讲解,我们可以总结出...通过对上述五道历年线性代数题目的解析和讲解,我们可以发现,线性代数是一门涉及多个概念和技巧的学科。
在解题过程中,需要运用到...总结:通过对考研数学一2024年线性代数历年题目的全面解析和讲解,我们发现了一些解题的方法和技巧。
在考试中,我们应该注重对基本概念和方法的掌握,并灵活运用到具体的题目解答中。
通过不断的练习和总结,我们可以提高解题水平,顺利应对考试。
在学习线性代数的过程中,我们还需重点掌握...希望以上的全面解析和讲解可以帮助考生更好地掌握线性代数的内容和解题方法,为取得优异的成绩奠定坚实的基础。
祝愿各位考生在考研数学一中取得好的成绩!。
考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。
下面我们就来详细梳理一下线性代数中的重点知识。
一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。
计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。
其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。
行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。
行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。
二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。
矩阵的运算有加、减、乘、数乘。
矩阵乘法需要注意其规则,不满足交换律。
逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。
求逆矩阵的方法有伴随矩阵法和初等变换法。
矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。
三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。
判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。
极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。
向量组的秩等于其极大线性无关组所含向量的个数。
四、线性方程组线性方程组是线性代数的重点应用之一。
齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。
非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。
求解线性方程组可以使用高斯消元法。
五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。
求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。
精准备战山西省考研数学一线性代数复习要点一、线性代数的基本概念和性质线性代数是数学的一个分支,研究向量空间和线性映射的性质。
在山西省考研数学一科目中,线性代数是一个重要的考点,掌握线性代数的基本概念和性质对于备战考研至关重要。
1. 向量空间向量空间是线性代数的基础,它由一组向量组成,满足以下性质:(1)加法封闭性:任意两个向量的和仍然是向量空间中的向量。
(2)数乘封闭性:任意一个向量与一个数的乘积仍然是向量空间中的向量。
(3)加法交换律和结合律:满足向量的加法交换律和结合律。
(4)零向量和负向量的存在性:存在零向量,对于任意一个向量,存在它的负向量。
2. 线性无关和线性相关在向量空间中,若存在一组向量,它们的线性组合等于零向量时,称这组向量线性相关;若不存在这样的线性组合,称这组向量线性无关。
3. 矩阵和行列式矩阵是由数按照矩阵的排列方式排列而成的矩形阵列。
行列式是一个非常重要的数学工具,它可以用来判断向量组的线性相关性以及矩阵的可逆性。
4. 线性映射和线性变换线性映射是指保持向量空间的加法和数乘运算的映射,线性映射常用矩阵表示。
线性变换则是将向量空间中的向量变成另一个向量空间中的向量的映射,也可以用矩阵表示。
二、基本运算和定理1. 矩阵的基本运算(1)矩阵的加法和数乘:矩阵的加法满足交换律和结合律,矩阵与数的乘积满足分配律。
(2)矩阵的转置:将矩阵的行和列互换得到的矩阵称为原矩阵的转置矩阵。
2. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到一个新的矩阵。
矩阵的乘法满足结合律,但一般不满足交换律。
3. 特殊矩阵和特征值特征向量特殊矩阵包括对角矩阵、上三角矩阵和下三角矩阵等。
特征值和特征向量是矩阵在线性代数中的重要概念,矩阵的特征值是指矩阵与特征向量的乘积满足一定条件的数。
4. 线性方程组和矩阵的秩线性方程组是线性代数中的一个重点内容,矩阵的秩是线性方程组的一个重要概念,它表示矩阵的行(列)向量组中的线性无关的向量个数。
《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijj i ijM A+-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:nq q q n a aa⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x,,。
考研数学线性代数重点知识点整理与习题解析一、矩阵的运算矩阵的加法、乘法、转置以及数量乘法等是矩阵运算的基本操作。
矩阵的加法和乘法具有结合律、交换律和分配律等基本性质。
1.1 矩阵的加法对于两个相同大小的矩阵A和B,它们的和记作A + B,定义为它们对应元素相加所得到的矩阵。
即,如果A = [a_ij],B = [b_ij],则A + B = [a_ij + b_ij]。
1.2 矩阵的乘法对于两个矩阵A和B,如果A的列数等于B的行数,它们可以进行乘法运算,记作C = AB。
矩阵C的元素c_ij可以表示为c_ij =∑(a_ik * b_kj)。
其中∑表示求和符号,k表示对应元素的相同下标。
1.3 矩阵的转置对于一个矩阵A,它的转置记作A^T。
即,如果A = [a_ij],则A^T = [a_ji]。
也就是说,矩阵A的行变为转置后矩阵的列,矩阵A的列变为转置后矩阵的行。
1.4 数量乘法一个数与一个矩阵的乘积称为数量乘法。
对于一个数k和一个矩阵A,它们的乘积记作kA。
即,kA = [ka_ij]。
其中ka_ij表示矩阵A中每个元素乘以k所得到的矩阵。
二、线性方程组线性方程组是线性代数的重要内容之一。
解一个线性方程组就是找到一组使得方程组中所有方程都成立的未知数的值。
通常通过矩阵的方法来解线性方程组,有三种常用的解法:高斯消元法、克拉默法则和逆矩阵法。
2.1 高斯消元法高斯消元法是通过矩阵的初等变换将线性方程组化为最简形式,从而求解方程组。
具体步骤如下:1) 将线性方程组的系数矩阵和常数矩阵合并成增广矩阵;2) 逐行进行初等变换,使得增广矩阵的主对角线元素为1,其他元素为0;3) 对增广矩阵进行回代,求出方程组的解。
2.2 克拉默法则克拉默法则是通过行列式的性质来解线性方程组。
对于一个n元线性方程组,如果系数矩阵的行列式不为0,则方程组有唯一解,且每个未知数的值可以通过求解n个行列式得到。
2.3 逆矩阵法逆矩阵法是通过求解方程AX = B来解线性方程组。
考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。
2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。
重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。
(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
(4)行列式具有分行(列)可加性。
行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。
(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。
余子式ij M 、代数余子式ij ji ij M A +-=)1(。
(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。
定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。
逆否:若方程组存在非零解,则D 等于零。
③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。
④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。
考研线性代数总结关键信息项:1、线性代数的基本概念行列式矩阵向量线性方程组2、线性代数的核心理论矩阵的秩线性相关性线性变换特征值与特征向量3、考研重点题型行列式的计算矩阵的运算与求逆向量组的线性表示与线性相关性判定线性方程组的求解与解的结构矩阵的特征值与特征向量的计算二次型的标准化与正定判定11 线性代数的基本概念111 行列式行列式是线性代数中的一个基本概念,它是一个数值。
行列式的定义基于排列的逆序数。
行列式的计算方法包括按行(列)展开、利用行列式的性质化简等。
行列式在求解线性方程组、判断矩阵可逆性等方面有重要应用。
112 矩阵矩阵是线性代数的核心概念之一,它是一个数表。
矩阵的运算包括加法、数乘、乘法、转置等。
矩阵的逆是一个重要概念,只有方阵且行列式不为 0 时可逆。
矩阵的秩反映了矩阵的内在结构和性质。
113 向量向量可以看作是具有方向和大小的量。
向量组的线性相关和线性无关是重要的性质。
向量空间是由向量构成的集合,具有特定的运算和性质。
114 线性方程组线性方程组可以用矩阵形式表示,通过系数矩阵和增广矩阵来研究。
线性方程组有解的条件、解的结构是重要的考点。
12 线性代数的核心理论121 矩阵的秩矩阵的秩是矩阵的一个重要指标,它表示矩阵中行向量或列向量的线性无关组数。
通过初等变换可以求矩阵的秩。
秩在判断线性方程组解的情况、向量组的线性相关性等方面起关键作用。
122 线性相关性向量组的线性相关性判断方法包括定义法、行列式法、秩法等。
线性相关和线性无关的性质和应用需要熟练掌握。
123 线性变换线性变换是将一个向量空间映射到另一个向量空间的函数,且保持线性运算。
可以通过矩阵来表示线性变换,研究其性质和作用。
124 特征值与特征向量特征值和特征向量反映了矩阵在特定方向上的缩放比例和方向。
求特征值和特征向量的方法和步骤需要熟练掌握,在矩阵对角化等方面有重要应用。
13 考研重点题型131 行列式的计算常见的行列式类型包括上(下)三角行列式、爪型行列式、范德蒙德行列式等。
考研数学线性代数复习步骤总结考研数学是很多同学的苦恼之源,而线性代数作为数学中的一门重要课程,对于考研数学来说也是必不可少的。
然而,线性代数内容繁杂,对于很多同学来说复习起来较为困难。
因此,本文将总结考研数学线性代数复习的步骤,帮助同学们更好地掌握这门课程。
第一步,熟悉基础概念。
在复习线性代数时,首先要对基础概念进行熟悉。
包括向量、矩阵、行列式、线性方程组等基本概念的理解和记忆。
可以通过读相关教材、听老师讲解、做习题等方式进行学习。
掌握这些基础概念对于后续的学习和理解非常重要。
第二步,掌握基本运算。
线性代数中有许多基本的运算规则,比如矩阵的加法、乘法,行列式的运算、矩阵的转置等等。
掌握这些基本运算规则可以帮助我们更好地理解并解题。
需要逐个进行梳理和记忆,并通过大量的习题练习来加深理解。
第三步,深入学习矩阵的相关性质。
矩阵是线性代数的核心内容之一,掌握了矩阵的性质将有助于我们解决很多复杂的问题。
比如,矩阵的秩、特征值与特征向量、对角化等等。
需要逐一学习,理解其中的原理和推导过程,并通过做习题进行实际应用。
第四步,理解线性变换。
线性变换是线性代数的重要内容之一,也是许多应用领域的基础。
需要通过学习线性变换的定义、性质和分类等内容,进一步理解线性变换的作用和意义。
可以通过画图、举例等方式帮助理解和记忆。
第五步,掌握向量空间的相关知识。
向量空间是线性代数的重要概念之一,对于理解线性代数的整个框架和结构非常重要。
需要学习向量空间的定义、基、维数等概念,以及向量空间的运算规则等内容。
通过做相关的习题,加深对向量空间的理解。
第六步,学习内积空间。
内积空间是向量空间的一种扩展,也是线性代数中重要而有趣的内容。
需要学习内积的定义与性质,了解内积空间的概念和基本性质。
在学习内积空间时,可以通过具体的例子帮助理解和记忆。
第七步,掌握广义逆与矩阵的分解。
广义逆和矩阵的分解是线性代数的一种扩展应用,对于解决实际问题非常有用。
吉林省考研数学复习资料线性代数重点知识点整理线性代数是数学中的一个重要分支,也是吉林省考研数学科目中的重点内容之一。
本文将对数学复习资料中线性代数的重点知识点进行整理,以帮助考生更好地复习准备考试。
一、向量空间向量空间是线性代数中的基本概念,也是本科线性代数课程的重点内容之一。
下面是向量空间的一些重要性质和定义:1. 向量空间的定义向量空间是一个满足若干性质的集合,其中包含了向量的加法和数乘运算。
一个向量空间必须满足以下四个条件:封闭性、交换律、结合律和存在零向量。
2. 线性无关性与生成子空间线性无关性是向量空间中一个重要的概念,它描述了向量之间的关系。
线性无关的向量可以生成一个子空间,该子空间称为生成子空间。
生成子空间是向量空间中另一个重要的概念,它由向量组中的所有线性组合构成。
3. 基与维数基是向量空间中一组线性无关的向量,该组向量能够生成该向量空间。
维数是向量空间中基的个数,它描述了向量空间的维度。
二、矩阵与行列式矩阵与行列式是线性代数中的另一个重要内容,其重点知识点如下:1. 矩阵的基本运算矩阵的加法和数乘运算是矩阵的基本运算,其运算规则与向量的加法和数乘运算类似。
2. 矩阵的乘法矩阵的乘法是矩阵运算中的重要内容,其运算规则为矩阵乘法的定义。
3. 逆矩阵与转置矩阵逆矩阵和转置矩阵是矩阵运算中的重要概念。
逆矩阵是指与原矩阵相乘后得到单位矩阵的矩阵,而转置矩阵是指将原矩阵的行和列进行互换得到的新矩阵。
4. 行列式的性质与计算行列式是矩阵中的一个标量,它有许多重要的性质与计算方法,如拉普拉斯展开定理、余子式与代数余子式、Cramer法则等。
三、线性方程组线性方程组是线性代数中的另一个重要内容,它包含有关向量空间、矩阵和行列式的知识点。
下面是线性方程组的相关内容:1. 齐次线性方程组与非齐次线性方程组齐次线性方程组是指等号右边全为零的线性方程组,非齐次线性方程组则相反。
对于齐次线性方程组,必定存在零解;而对于非齐次线性方程组,解的存在与唯一性则与矩阵的秩有关。
考研数学一大纲详解线性代数部分重要知识点梳理线性代数作为数学的一个重要分支,是考研数学一科目中不可或缺的一部分。
在考研备考的过程中,对线性代数的重要知识点进行详细梳理,对于提高考生的备考效果具有重要意义。
本文将详解考研数学一大纲中线性代数部分的重要知识点,并对其进行逐一讲解。
一、行列式及其性质行列式是线性代数中的基础知识,掌握行列式的性质对于解题至关重要。
行列式的性质包括:行列式的定义、行列式的性质、行列式的计算方法等。
行列式的定义是关于n阶行列式的,其中n表示行列式的阶数。
行列式的定义较为复杂,但我们只需熟记其定义即可。
行列式的性质包括:行列式相等的条件、行列式的值与其元素的关系等。
这些性质在解题过程中经常用到,熟悉这些性质不仅可以帮助我们更好地理解行列式的本质,还能够简化计算过程。
行列式的计算方法是解决行列式问题的基础。
行列式的计算采用展开法、按行(列)展开法等多种方法。
我们需要熟练掌握这些计算方法,并灵活运用于解答各类行列式题目。
二、矩阵及其运算矩阵是线性代数中的另一个重要概念,学习矩阵及其运算对于解题具有重要作用。
矩阵的概念包括:矩阵的定义、矩阵的运算等。
矩阵的定义是关于m行n列的矩阵的,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵的定义较为简单,但需要我们掌握其基本概念和术语。
矩阵的运算包括:矩阵的加法、矩阵的乘法等。
矩阵的加法和乘法是两种基本的矩阵运算,我们需要熟练掌握其定义和运算法则,并能够应用到实际问题中。
三、向量及其运算向量是线性代数中的重要概念,其运算方法也是考研数学一大纲中的重点内容。
向量的概念包括:向量的定义、向量的运算等。
向量的定义是关于n维向量的,其中n表示向量的维数。
向量的定义较为简单,但需要我们理解其本质和特点。
向量的运算包括:向量的加法、向量的数乘、向量的内积和外积等。
掌握这些运算方法对于解题非常重要,需要注意运算规则和性质。
四、线性相关与线性无关线性相关与线性无关是线性代数中的一个重要概念,其在解决线性方程组和矩阵求逆等问题时经常用到。
考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。
店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。
考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。
从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。
这部分内容的增加,加大了对数学二同学矩阵方面的要求。
同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。
还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
考研数学三线性代数(向量)-试卷1(总分56, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设α1,α2,…,αs均为n维向量,下列结论中不正确的是( ) SSS_SINGLE_SELA若对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ks αs≠0,则α1,α2,…,αs线性无关.B若α1,α2,…,αs线性相关,则对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ksαs=0.Cα1,α2,…,αs线性无关的充分必要条件是此向量组的秩为sDα1,α2,…,αs线性无关的必要条件是其中任意两个向量线性无关该题您未回答:х该问题分值: 2答案:B解析:选项A的条件即齐次线性方程组 x1 a1+x2a2+…+xsas=0 只有零解,故α1,α2,…,αs线性无关,A选项正确.对于选项B,由α1,α2,…,αs线性相关知,齐次线性方程组 x1α1+x2α2+…+xsαs=0 存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此选项B是错误的.选项C是教材中的定理.由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知选项D也是正确的.综上可知,应选B.2.设A是m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分条件是( ) SSS_SINGLE_SELA A的列向量线性无关.B A的列向量线性相关.C A的行向量线性无关.D A的行向量线性相关.该题您未回答:х该问题分值: 2答案:A解析:齐次线性方程组Ax=0的向量形式为 x1α1+x2α2+…+xnαn=0,其中α1,α2,…,αn为A的x个m维的列向量.由Ax=0只有零解α1,α2,…,αn线性无关.可知选项A正确.对于选项C、D,只要m<n,不管A的行向量线性相关性如何,该齐次线性方程组都必有非零解,故C、D均不正确.所以应选A.3.设则三条直线a1 x+b1y+c1=0,a2x+b2y+c1=0,a3x+b3y+c3=0(其中,i=1,2,3)交于一点的充分必要条件是( )SSS_SINGLE_SELAα1,α2,α3线性相关Bα1,α2,α3线性无关Cr(α1,α2,α3)=r(α1,α2).Dα1,α2,α3线性相关,α1,α2线性无关.该题您未回答:х该问题分值: 2答案:D解析:三直线交于一点的充分必要条件是以下线性方程组或xα1+yα2+α3, (2) 有唯一解.由(2)式可得α3=-xα1-yα2而方程组(2)(或(1))有唯一解α3可由α1,α2线性表示,且表示式唯一.α1,α2,α3线性相关,α1,α2线性无关.所以应选D.4.设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ) SSS_SINGLE_SELAα1 -α2,α2-α3,α3-α1Bα1+α2,α2+α3,α3+α1Cα1 -2α2,α2-2α3,α3-2α1Dα1+2α2,α2+2α3,α3+2α1该题您未回答:х该问题分值: 2答案:A解析:利用向量组线性相关的定义,令 x1(α1-α2)+x2(α2-α3)+x3(α3-α1)=0,(x1,x2,x3为不全为零的实数) 可得(x1-x3)α1+(-x1 +x2)α2+(-x2+x3)α3=0 又已知α1,α2,α3线性无关,则则齐次线性方程组(母)有非零解,故α1 -α2,α2-α3,α3 -α1线性相关.故应选A.5.若α1,α2线性无关,β是另外一个向量,则α1+β与α2+β( )SSS_SINGLE_SELA 线性无关.B 线性相关.C 即线性相关又线性无关.D 不确定.该题您未回答:х该问题分值: 2答案:D解析:例如,令α1 =(1,1),α2=(0,2),β=(-1,-1),则α1,α2线性无关,而α1+β=(0,0) 与α2+β=(-1,1)线性相关.如果设β=(0,0),那么α1+β与α2+β却是线性无关的.故选D6.已知向量组则向量组α1,α2,α3,α4,α5的一个极大无关组为( )SSS_SINGLE_SEL Aα1,α3Bα1,α2Cα1,α2,α5Dα1,α3,α5该题您未回答:х该问题分值: 2答案:D解析:对以α1,α2,α3,α4,α5为列向量的矩阵作初等行变换,有所以α1,α3,α5是一个极大无关组,且α2=α1+3α5,α4=α1+α3+α57.设α1 =(1,2,3,1) T,α2=(3,4,7,-1) T,α3=(2,6,0,6)T,α4 =(0,1,3,a) T,那么a=8是α1,α2,α3,α4线性相关的( )SSS_SINGLE_SELA 充分必要条件.B 充分而非必要条件.C 必要而非充分条件.D 既不充分也非必要条件该题您未回答:х该问题分值: 2答案:B解析:n个n维向量线性相关性一般用行列式|α1,α1,…αn|是否为零去判断.因为|α1,α1,…,α4|= 因此,当a=8时,行列式|α1,α2,…,α4|=0,向量组α1,α2,α3,α4线性相关,但a=2时仍有行列式|α1,α2,…,α4|=0,所以a=8是向量组α1,α2,α3,α4线性相关的充分而非必要条件.8.设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则( )SSS_SINGLE_SEL Aαm不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示.Bαm不能由(Ⅰ)线性表示,但可以由(Ⅱ)线性表示.Cαm可以由(Ⅰ)线性表示,也可以由(Ⅱ)线性表示.Dαm可以由(Ⅰ)线性表示,但不能由(Ⅱ)线性表示.该题您未回答:х该问题分值: 2答案:B解析:按题意,存在组实数k1,k2,…,km使得 k1α1+k2α2+…+km αm=β (*) 且必有km≠0.否则与β不能由α1,α2,…,αm-1线性表示相矛盾,从而即αm可由向量组(Ⅱ)线性表示,排除选项A、D.若αm 可以由(Ⅰ)线性表示,即存在实数l1,l2,…,lm-1,使得αm =l1α1+l2α2+…+lm-1αm-1,将其代入(*)中,整理得β=(k1 +kml1)α1+(k2+kml2)α2+…+(km-1+kmlm-1)αm-1,这与题设条件矛盾.因而αm不能由向量组(Ⅰ)线性表示,排除选项C.9.已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2-α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3.则r(β1,β2,β3,β4,β5)=( ) SSS_SINGLE_SELA 1.B 2.C 3.D 4.该题您未回答:х该问题分值: 2答案:C解析:将表示关系合并成矩阵形式有(β1,β2,β3,β4,β5)=(α1,α2,α3,α4) 因4个四维向量α1,α2,α3,α4线性无关,故|α1,α2,α3,α4|≠0.A=(α1,α2,α3,α4)是可逆矩阵,A左乘C,即对C作若干次初等行变换,故有r(C)=r(AC)=r(AC)=r(β1,β2,β3,β4,β5) 故知r(β1,β2,β3,β4,β5)=r(C)=3,因此应选C.10.设A是n阶方阵,且|A|=0,则A中( )SSS_SINGLE_SELA 必有一列元素全为0.B 必有两列元素对应成比例.C 必有一列向量是其余列向量的线性组合.D 任一列向量是其余列向量的线性组合.该题您未回答:х该问题分值: 2答案:C解析:对于方阵A,因为的行(列)向量组的秩小于n,所以A的列向量组必然线性相关,再由向量组线性相关的充分必要条件可知,其中至少有一个向量可由其余向量线性表示,故选C.选项A、B仅是|A|=0的充分条件,故均不正确.由向量组线性相关的充分必要条件之“至少存在一个向量可用其余向量线性表示”可知,D也不正确.2. 填空题1.如果β=(1,2,t) T可以由α1 =(2,1,1) T,α2=(-1,2,7) T,α3=(1,-1,-4) T线性表示,则t的值是_______SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:5解析:β可以由向量组α1,α2,α3线性表示的充分必要条件是非齐次线性方程组x1α1+x2α2+x3α3=β有解,对该方程组的增广矩阵作初等行变换得而方程组有解的充分必要条件是系数矩阵与增广矩阵有相同的秩,因此t-5=0,即t=5.2.设x为3维单位列向量,E为3阶单位矩阵,则矩阵E—xx T的秩为_____ SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:2解析:由题设知,矩阵xx T的特征值为0,0,1,故E-xx T的特征值为1,1,0.又由于实对称矩阵是可相似对角化的,故它的秩等于它非零特征值的个数,即r(E-xx T )=2.3.向量组α1 =(1,0,0),α2=(1,1,0),α3=(-5,2,0)的秩是________ SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:2解析:对向量组构成的矩阵进行初等变换,变为阶梯形矩阵,其不全为0的行向量的个数就是向量组的秩,即,因此秩是2.4.已知r(α1,α2,…,αs)=r(α1,α2,…,αs,β)=r,r(α1,α2,…,αs,γ)=r+1,则r(α1,α2,…,αs,β,γ)=______SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:r+1解析:已知r(α1,α2,…,αs)=r(α1,α2,…,αs,β)=r,表明向量β可以由向量组α1,α2,…,αs线性表示,但是r(α1,α2,…,αs,γ)=r+1,则表明向量γ不能由向量组α1,α2,…,αs 线性表示,因此通过对向量组α1,α2,…,αs,β,γ作初等列变换,可得(α1,α2,…,αs,β,γ)=(α1,α2,…,αs,0,γ),因此可得r(α1,α2,…,αs,β,γ)=r+1.5.设α1 =(1,2,1) T,α2=(2,3,a) T,α3=(1,a+2,-2) T,若β1=(1,3,4) T可以由α1,α2,α3线性表示,但是β2=(0,1,2) T不可以由α1,α2,α3线性表示,则a=________ SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:-1解析:根据题意,β1 =(1,3,4) T可以由α1,α2,α3线性表示,则方程组x1α1+x2α2+x3α3=β1有解,β2=(0,1,2) T不可以由α1,α2,α3线性表示,则方程组x1α1+x2α2+x3α3=β无解,由于两个方程组的系数矩阵相同,因此可以合并一起做矩阵的初等变换,即因此可知,当a=-1时,满足方程组x1α1+x2α2+x3α3=β有解,方程组x1α1+x2α2+x3α3=β2无解的条件,故a=-1.6.已知α1 =(1,4,2) T,α2=(2,7,3) T,α3=(0,1,a) T可以表示任意一个三维向量,则a的取值是______SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:a≠1解析:α1,α2,α3可以表示任一个3维向量,因此向量α1,α2,α3与ε1=(1,0,0) T,ε2=(0,1,0) T,ε=(0,0,1) T是等价向量,因此α1,α2,α3的秩为3,即|α1,α2,α3|≠0,于是因此a≠1.7.与α1 =(1,2,3,-1) T,α2=(0,1,1,2) T,α3=(2,1,3,0) T都正交的单位向量是_______SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:解析:已知,若向量α,β正交,则内积α Tβ=0,设β=(x1,x2,x3,x4) T与α1,α2,α3均正交,那么对以上齐次方程组的系数矩阵作初等行变换,有得到基础解系是(-1,-1,1,0) T,将这个向量单位化得,即为所求向量.3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合nR 叫做n 维向量空间.()A r A n A A A Ax A ολ<=⇔==不可逆0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注 ()()a r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量87p 教材; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO B O B BOAAA BB OB O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112ni j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m nA ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1AA A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E E A -−−−−→ 初等行变换③1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mnm nA A A+= ()()m n mn A A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭ ⇔i i A c β= ,(,,)i s = 1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅= ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ √ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A OC B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫=⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B E X −−−−→ 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 ()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n②()()()T T r A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrE O E O r A r A A O O O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. 本帖为考研加油站 和考研论坛 网友songhonger 原创,原创帖子地址/viewthread.php?tid=2097349&page=1&extra=page%3D1。