4N60
- 格式:pdf
- 大小:145.02 KB
- 文档页数:8
DTP6006P-Channel Enhancement Mode Field Effect TransistorFeaturesz -60V/-60AR DS (ON) = 20m Ω (Type) @ VGS=-10V R DS (ON) = 28m Ω (Type) @ VGS=-4.5V z Super High Dense Cell Design z Reliable and Rugged z TO-220 packageLead Free and Green Devices Available (ROHS Compliant)Applicationsz Power Management in Notebook Computer,Portable Equipment and Battery Powered System.ABSOLUTE MAXIMUM RATINGS (Ta = 25°C unless otherwise noted)Symbol Parameter Value Unit V DSS Drain-to-Source Voltage -60 V V GSS Gate-to-Source Voltage ±20 VI D *Continuous Drain Current@ T J = 25℃ -60 I DM * Pulsed Drain Current (tp ≤10us) V GS =-10V -280AI S * Diode Continuous Forward Current -10 ATA = 25℃ 79 WP D * Total Power DissipationTA = 70℃ 45 WT J ,T STGOperating and Storage Temperature Range -55 to 150 ℃Rth J A * Thermal Resistance,Junction-to-Ambient0.75 ℃/WT L Maximum Lead Temperature forSoldering Purposes, 1/8″ f rom case for 10 seconds260 ℃Note: *Surface Mounted on 1in *1in pad area, t ≤ 10 Sec. Pin DescriptionPIN1Fax:0755 26991979Num:135 1029 4406 李生Figure 1.Switching times test circuit for Resistive loadFigure 2. Gate charge test circuitFigure 3.Test circuit for inductive load and diode recovery timesFigure 4. Unclamped Inductive load test circuit switchingFigure 5. Unclamped inductive waveformFigure 6.Switching time waveformNum:135 1029 4406 李生Package Information TO-220MillimetersInchesDim Min. Max.Min.Max. A 3.56 4.830.1400.190 A1 0.51 1.400.0200.055 A2 2.03 2.920.0800.115 b 0.38 1.020.0150.040 b2 1.14 1.780.0450.070 c 0.36 0.610.0140.024 D 14.22 16.510.5600.650 D1 8.38 9.020.3300.355 D2 12.19 12.880.4800.507 E 9.65 10.670.3800.420 E1 6.86 8.890.2700.350 E2 -0.76-0.030e 2.54 BSC0.100 BSCH1 5.84 6.860.2300.270 L 12.70 14.730.5000.580 L1 - 6.35-0.250 P 3.53 4.090.1390.161 Q2.543.430.1000.135May 2011 Doc ID 0065 Rev 1 6/8Num:135 1029 4406 李生PackageCarrier Tape & Reel Dimensions Devices per UnitPackage TypeUnit Q uantityQuantityTO-22050May 2011 Doc ID 0065 Rev 1 7/8Fax:0755 26991979Num:135 1029 4406 李生Please Read CarefullyInformation in this document is provided solely in connection with DIN-TEK products. DIN-TEK Microelectronics and its subsidiaries (“DIN-TEK”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.All DIN-TEK products are sold pursuant to DIN-TEK’s terms and conditions of sale.Purchasers are solely responsible for the choice, selection and use of the DIN-TEK products and services described herein, and DIN-TEK assumes no liability whatsoever relating to the choice, selection or use of the DIN-TEK products and services described herein.No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by DIN-TEK for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.UNLESS OTHERWISE SET FORTH IN DIN-TEK IS TERMS AND CONDITIONS OF SALE DIN-TEK DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF DIN-TEK PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.)UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED DIN-TEK REPRESENTATIVE, DIN-TEK PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. DIN-TEK PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.Resale of DIN-TEK products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by DIN-TEK for the DIN-TEK product or service described herein and shall not create or extend in any manner whatsoever, any liability of DIN-TEK.DIN-TEK and the DIN-TEK logo are trademarks or registered trademarks of DIN-TEK in various countries. Information in this document supersedes and replaces all information previously supplied.The DIN-TEK logo is a registered trademark of DIN-TEK Microelectronics. All other names are the property of their respective owners.© 2011 DIN-TEK Microelectronics - All rights reservedDIN-TEK Microelectronics group of companies。
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode• 75% lower E off compared to previous generationcombined with low conduction losses• Short circuit withstand time – 10 µs • Designed for:- Motor controls - Inverter• NPT-Technology for 600V applications offers:- very tight parameter distribution- high ruggedness, temperature stable behaviour - parallel switching capability• Very soft, fast recovery anti-parallel EmCon diode• Complete product spectrum and PSpice Models : /igbt/Type V CE I C V CE(sat )T j Package Ordering Code SKP04N60600V4A2.3V150°CTO-220AB Q67040-S4216SKB04N60TO-263ABQ67040-S4229Maximum Ratings ParameterSymbol Value Unit Collector-emitter voltage V C E 600V DC collector current T C = 25°C T C = 100°CI C9.44.9Pulsed collector current, t p limited by T jmax I C p u l s 19Turn off safe operating area V CE ≤ 600V, T j ≤ 150°C -19Diode forward current T C = 25°C T C = 100°CI F104Diode pulsed current, t p limited by T jmax I F p u l s 19AGate-emitter voltage V G E ±20V Short circuit withstand time 1)V GE = 15V, V CC ≤ 600V, T j ≤ 150°Ct S C 10µs Power dissipation T C = 25°CP t o t50WOperating junction and storage temperatureT j , T s t g-55...+150°C1)Allowed number of short circuits: <1000; time between short circuits: >1s.P-TO-220-3-1(TO-220AB)P-TO-263-3-2 (D²-PAK)(TO-263AB)Thermal Resistance Parameter Symbol Conditions Max. ValueUnit CharacteristicIGBT thermal resistance,junction – caseR t h J C 2.5Diode thermal resistance,junction – case R t h J C D 4.5Thermal resistance,junction – ambientR t h J A TO-220AB 62SMD version, device on PCB1)R t h J ATO-263AB40K/WElectrical Characteristic, at T j = 25 °C, unless otherwise specified ValueParameterSymbol Conditionsmin.Typ.max.UnitStatic CharacteristicCollector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =500µA 600--Collector-emitter saturation voltageV C E (s a t )V G E = 15V, I C =4A T j =25°C T j =150°C1.7-2.02.3 2.42.8Diode forward voltageV FV G E =0V, I F =4A T j =25°C T j =150°C1.2- 1.41.25 1.81.65Gate-emitter threshold voltage V G E (t h )I C =200µA,V C E =V G E 345VZero gate voltage collector currentI C E SV C E =600V,V G E =0V T j =25°C T j =150°C----20500µAGate-emitter leakage current I G E S V C E =0V,V G E =20V --100nA Transconductance g f s V C E =20V, I C =4A 3.1-S Dynamic Characteristic Input capacitance C i s s -264317Output capacitanceC o s s -2935Reverse transfer capacitance C r s s V C E =25V,V G E =0V,f =1MHz-1720pFGate chargeQ G a t e V C C =480V, I C =4A V G E =15V -2431nC Internal emitter inductancemeasured 5mm (0.197 in.) from case L E TO-220AB-7-nH Short circuit collector current2)I C (S C )V G E =15V,t S C ≤10µs V C C ≤ 600V,T j ≤ 150°C-40-A 1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2(one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air.2)Allowed number of short circuits: <1000; time between short circuits: >1s.Switching Characteristic, Inductive Load, at T j =25 °C ValueParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1518Turn-off delay time t d (o f f )-237284Fall time t f -7084nsTurn-on energy E o n -0.0700.081Turn-off energy E o f f -0.0610.079Total switching energyE t sT j =25°C,V C C =400V,I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.1310.160mJ Anti-Parallel Diode Characteristic Diode reverse recovery timet r r t S t F---18015165---nsDiode reverse recovery charge Q r r -130-nC Diode peak reverse recovery current I r r m - 2.5-A Diode peak rate of fall of reverse recovery current during t bdi r r /dtT j =25°C,V R =200V, I F =4A,di F /dt =200A/µs-180-A/µs Switching Characteristic, Inductive Load, at T j =150 °C ValueParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1619Turn-off delay time t d (o f f )-264317Fall time t f -104125nsTurn-on energy E o n -0.1150.132Turn-off energy E o f f -0.1110.144Total switching energyE t sT j =150°CV C C =400V,I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.2260.277mJ Anti-Parallel Diode Characteristic Diode reverse recovery timet r r t S t F---23023227---nsDiode reverse recovery charge Q r r -300-nC Diode peak reverse recovery current I r r m -4-A Diode peak rate of fall of reverse recovery current during t bdi r r /dtT j =150°C V R =200V, I F =4A,di F /dt =200A/µs-200-A/µs 1)Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.I C , C O L L E C T O R C U R R E N T10Hz100Hz 1kHz 10kHz 100kHz0A 10A20AI C , C O L L E C T O R C U R R E N T1V10V100V1000V0.01A0.1A1A10Af , SWITCHING FREQUENCYV CE , COLLECTOR -EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency(T j ≤ 150°C, D = 0.5, V CE = 400V,V GE = 0/+15V, R G = 67Ω)Figure 2. Safe operating area (D = 0, T C = 25°C, T j ≤ 150°C)P t o t , P O W E R D I S S I P A T I O N25°C50°C 75°C 100°C 125°C0W 10W20W30W40W50W60WI C , C O L L E C T O R C U R R E N T25°C50°C 75°C 100°C 125°C0A2A4A6A8A10A12AT C , CASE TEMPERATURET C , CASE TEMPERATUREFigure 3. Power dissipation as a function of case temperature (T j ≤ 150°C)Figure 4. Collector current as a function of case temperature(V GE ≤ 15V, T j ≤ 150°C)I C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A 6A 9A12A 15AI C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A6A9A12A15AV CE , COLLECTOR -EMITTER VOLTAGEV CE , COLLECTOR -EMITTER VOLTAGEFigure 5. Typical output characteristics (T j = 25°C)Figure 6. Typical output characteristics (T j = 150°C)I C , C O L L E C T O R C U R R E N T0V2V 4V 6V 8V 10V0A 2A 4A 6A 8A 10A 12A14A V C E (s a t ), C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E-50°C 0°C 50°C 100°C 150°C1.0V1.5V2.0V2.5V3.0V3.5V4.0VV GE , GATE -EMITTER VOLTAGET j , JUNCTION TEMPERATUREFigure 7. Typical transfer characteristics(V CE = 10V)Figure 8. Typical collector-emittersaturation voltage as a function of junction temperature (V GE = 15V)t , S W I T C H I N G T I M E S0A2A4A6A8A10A10ns100nst , S W I T C H I N G T I M E S0Ω50Ω100Ω150Ω200Ω10ns 100nsI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 9. Typical switching times as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 10. Typical switching times as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)t , S W I T C H I N G T I M E S0°C50°C100°C150°C10ns100nsV G E (t h ), G A T E -E M I T T E R T H R E S H O L D V O L T A G E-50°C0°C50°C100°C150°C 2.0V2.5V3.0V 3.5V4.0V 4.5V5.0V 5.5VT j , JUNCTION TEMPERATURET j , JUNCTION TEMPERATUREFigure 11. Typical switching times as a function of junction temperature(inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.2mA)E , S W I T C H I N G E N E R G Y L O S S E S0A2A 4A 6A 8A 10A0.0mJ0.1mJ0.2mJ0.3mJ0.4mJ0.5mJ0.6mJE , SW I T C H I N G E N E R G Y L O S S E S0Ω50Ω100Ω150Ω200Ω0.0mJ0.1mJ0.2mJ0.3mJ0.4mJI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 13. Typical switching energy losses as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 14. Typical switching energy losses as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)E ,S W I T C H I N G E N E R G Y L O S S E S0°C50°C 100°C 150°C0.0mJ0.1mJ0.2mJ0.3mJZ t h J C , T R A N S I E N T T H E R M A L I M P E D A N C E1µs10µs 100µs 1ms 10ms 100ms 1s10-310-210-1100T j , JUNCTION TEMPERATUREt p , PULSE WIDTHFigure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 16. IGBT transient thermalimpedance as a function of pulse width (D = t p / T )V G E , G A T E -E M I T T E R V O L T A G E0nC10nC 20nC 30nC 0V 5V10V15V20V25VC , C A P A C I T A N C E0V 10V 20V 30V10pF100pFQ GE , GATE CHARGEV CE , COLLECTOR -EMITTER VOLTAGE Figure 17. Typical gate charge (I C = 4A)Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz)t s c , S H O R T C I R C U I T W I T H S T A N D T I M E10V11V12V13V14V15V0µs 5µs10µs15µs20µs25µs I C (s c ), S H O R T C I R C U I T C O L L E C T O R C U R R E N T10V12V 14V 16V 18V20V0A 10A 20A 30A 40A 50A 60A 70AV GE , GATE -EMITTER VOLTAGEV GE , GATE -EMITTER VOLTAGEFigure 19. Short circuit withstand time as a function of gate-emitter voltage (V CE = 600V, start at T j = 25°C)Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (V CE ≤ 600V, T j = 150°C)t r r , R E V E R S E R E C O V E R Y T I M E40A/µs120A/µs 200A/µs 280A/µs 360A/µs0ns100ns200ns300ns400ns500nsQ r r , R E V E R S E R E C O V E R Y C H A R G E40A/µs120A/µs 200A/µs 280A/µs 360A/µs0nC80nC160nC240nC320nC400nC480nC560nCdi F /dt , DIODE CURRENT SLOPEdi F /dt , DIODE CURRENT SLOPEFigure 21. Typical reverse recovery time as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)Figure 22. Typical reverse recovery charge as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)I r r , R E V E R S E R E C O V E R Y C U R R E N T40A/µs120A/µs 200A/µs 280A/µs360A/µs0A2A4A6A8Ad i r r /d t , D I O D E P E A K R A T E O F F A L LO F R E V E R S E R E C O V E R Y C U R R E N T40A/µs120A/µs 200A/µs 280A/µs 360A/µs0A/µs80A/µs160A/µs240A/µs320A/µs400A/µsdi F /dt , DIODE CURRENT SLOPEdi F /dt , DIODE CURRENT SLOPEFigure 23. Typical reverse recovery current as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)I F , F O R W A R D C U R R E N T0.0V0.5V 1.0V 1.5V 2.0V0A 2A4A6A8AV F , F O R W A R D V O L T A G E-40°C 0°C 40°C 80°C 120°C1.0V1.5V2.0VV F , FORWARD VOLTAGET j , JUNCTION TEMPERATUREFigure 25. Typical diode forward current as a function of forward voltage Figure 26. Typical diode forward voltage as a function of junction temperatureZ t h J C D , T R A N S I E N T T H E R M A L I M P E D A N C E1µs10µs 100µs 1ms 10ms 100ms 1s10-210-1100t p , PULSE WIDTHFigure 27. Diode transient thermalimpedance as a function of pulse width (D = t p / T )dimensionssymbol[mm][inch]minmax minmax A 9.7010.300.38190.4055B 14.8815.950.58580.6280C 0.650.860.02560.0339D 3.55 3.890.13980.1531E 2.60 3.000.10240.1181F 6.00 6.800.23620.2677G 13.0014.000.51180.5512H 4.35 4.750.17130.1870K 0.380.650.01500.0256L 0.951.320.03740.0520M 2.54 typ.0.1 typ.N 4.30 4.500.16930.1772P 1.17 1.400.04610.0551T2.302.720.09060.1071TO-220ABdimensionssymbol[mm][inch]minmax minmax A 9.8010.200.38580.4016B 0.70 1.300.02760.0512C 1.00 1.600.03940.0630D 1.03 1.070.04060.0421E 2.54 typ.0.1 typ.F 0.650.850.02560.0335G 5.08 typ.0.2 typ.H 4.30 4.500.16930.1772K 1.17 1.370.04610.0539L 9.059.450.35630.3720M 2.30 2.500.09060.0984N 15 typ.0.5906 typ.P 0.000.200.00000.0079Q 4.20 5.200.16540.2047R 8° max 8° maxS 2.40 3.000.09450.1181T 0.400.600.01570.0236U 10.800.4252V 1.150.0453W 6.230.2453X 4.600.1811Y 9.400.3701TO-263AB (D 2Pak)Z16.150.6358Figure A. Definition of switching times Figure B. Definition of switching lossesIr r m90% Ir r m10% Ir r mdi/dtFtr rIFi,vtQSQFtStFVRdi/dtr rQ=Q Qr r S F+t=t tr r S F+Figure C. Definition of diodesswitching characteristicsτ1τ2nτr r rFigure D. Thermal equivalentcircuitFigure E. Dynamic test circuitLeakage inductance Lσ=180nHand Stray capacity Cσ=180pF.Published byInfineon Technologies AG,Bereich KommunikationSt.-Martin-Strasse 53,D-81541 München© Infineon Technologies AG 2000All Rights Reserved.Attention please!The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.Infineon Technologies is an approved CECC manufacturer.InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).WarningsDue to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.。
SVF4N60D/F/T/M 说明书4A、600V N沟道增强型场效应管描述SVF4N60D/F/T/M N 沟道增强型高压功率 MOS 场效应晶体 管采用士兰微电子的 F-CellTM 平面高压 VDMOS 工艺技术制造。
先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电 阻、优越的开关性能及很高的雪崩击穿耐量。
该产品可广泛应用于 AC-DC 开关电源,DC-DC 电源转换 器,高压 H 桥 PWM 马达驱动。
特点∗ ∗ ∗ ∗ ∗4A,600V,RDS(on)(典型值)=2.0 Ω@VGS=10V 低栅极电荷量 低反向传输电容 开关速度快 提升了 dv/dt 能力命名规则产品规格分类产 品 名 称 SVF4N60T SVF4N60F SVF4N60D SVF4N60DTR SVF4N60M SVF4N60M 封装形式 TO-220-3L TO-220F-3L TO-252-2L TO-252-2L TO-251-3L TO-251D-3L 打印名称 SVF4N60T SVF4N60F SVF4N60D SVF4N60D SVF4N60M SVF4N60M 材料 无铅 无铅 无铅 无铅 无铅 无铅 包装 料管 料管 料管 编带 料管 料管杭州士兰微电子股份有限公司版本号:1.12011.08.26 共10页 第1页SVF4N60D/F/T/M 说明书极限参数(除非特殊说明,TC=25°C)参 数 名称 漏源电压 栅源电压 漏极电流 漏极脉冲电流 耗散功率(TC=25°C) - 大于 25°C 每摄氏度减少 单脉冲雪崩能量(注 1) 工作结温范围 贮存温度范围 TC=25°C TC=100°C 符号 VDS VGS ID IDM PD EAS TJ Tstg 100 0.8 参数范围 SVF4N60T SVF4N60F 600 ±30 4.0 2.5 16 33 0.26 217 -55~+150 -55~+150 77 0.62 SVF4N60D/M 单位 V V A A W W/°C mJ °C °C热阻特性参数名称 芯片对管壳热阻 芯片对环境的热阻 符号 RθJC RθJA 参数范围 SVF4N60T 1.25 62.5 SVF4N60F 3.85 120 SVF4N60D/M 1.61 110 单位 °C/W °C/W关键特性参数(除非特殊说明,TC=25°C)参数名称 漏源击穿电压 漏源漏电流 栅源漏电流 栅极开启电压 导通电阻 输入电容 输出电容 反向传输电容 开启延迟时间 开启上升时间 关断延迟时间 关断下降时间 栅极电荷量 栅极-源极电荷量 栅极-漏极电荷量 符号 BVDSS IDSS IGSS VGS(th) RDS(on) Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd VDS=480V,ID=4A, VGS=10V (注 2,3) (注 2,3) 测试条件 VGS=0V,ID=250µA VDS=600V,VGS=0V VGS=±30V,VDS=0V VGS= VDS,ID=250µA VGS=10V, ID=2A VDS=25V,VGS=0V, f=1.0MHZ VDD=300V,ID=4A, RG=25Ω 最小值 600 --2.0 -----------典型值 ----2.0 461 57 1.47 15.7 37.3 19.1 19.3 8.16 2.63 3.01 最大值 -1.0 ±100 4.0 2.4 ----------nC ns pF 单位 V µA nA V Ω杭州士兰微电子股份有限公司版本号:1.12011.08.26 共10页 第2页SVF4N60D/F/T/M 说明书源-漏二极管特性参数参 数 名 称 源极电流 源极脉冲电流 源-漏二极管压降 反向恢复时间 反向恢复电荷 注: 1. 2. 3. L=30mH,IAS=3.45A,VDD=155V,RG=25Ω,开始温度 TJ=25°C; 脉冲测试: 脉冲宽度≤300μs,占空比≤2%; 基本上不受工作温度的影响。
W F P4N4N660S i l i c o n N-ChCha a n n el M OSOSF F ETFeatures■4A,600V,R DS(on)(Max2.2Ω)@V GS=10V■Ultra-low Gate Charge(Typical16nC)■Fast Switching Capability■100%Avalanche Tested■Isolation Voltage(V ISO=4000V AC)■Maximum Junction Temperature Range(150℃)General DescriptionThis Power MOSFET is produced using Winsemi's advancedplanar stripe,VDMOS technology.This latest technology has beenespecially designed to minimize on-state resistance,have a highrugged avalanche characteristics.This devices is specially wellsuited for half bridge and full bridge resonant topology line aelectronic lamp ballast.Absolute Maximum RatingsSymbol Parameter Value Units V DSS Drain Source Voltage600VI D Continuous Drain Current(@Tc=25℃)4A Continuous Drain Current(@Tc=100℃) 2.5AI DM Drain Current Pulsed(Note1)16A V GS Gate to Source Voltage±30V E AS Single Pulsed Avalanche Energy(Note2)240mJ E AR Repetitive Avalanche Energy(Note1)10mJ dv/dt Peak Diode Recovery dv/dt(Note3) 4.5V/nsP D Total Power Dissipation(@Tc=25℃)105W Derating Factor above25℃0.83W/℃T J,T stg Junction and Storage Temperature-55~150℃T L Channel Temperature300℃Thermal CharacteristicsSymbol ParameterValueUnits Min Typ MaxR QJC Thermal Resistance,Junction-to-Case-- 1.20℃/W R QCS Thermal Resistance,Case-to-Sink-0.5-℃/W R QJA Thermal Resistance,Junction-to-Ambient--62.5℃/WElectrical Characteristics(Tc=25℃)Characteristics Symbol Test Condition Min Type Max Unit Gate leakage current I GSS V GS=±30V,V DS=0V--±100nA Gate-source breakdown voltage V(BR)GSS I G=±10µA,V DS=0V±30--VDrain cut-off current I DSS V DS=600V,V GS=0V--10µA V DS=480V,Tc=125℃-100µADrain-source breakdown voltage V(BR)DSS I D=250µA,V GS=0V600--V Gate threshold voltage V GS(th)V DS=10V,I D=250µA2-4V Drain-source ON resistance R DS(ON)V GS=10V,I D=3.25A- 1.8 2.2ΩInput capacitance C iss V DS=25V,V GS=0V,f=1MHz -710920pFReverse transfer capacitance C rss-1419 Output capacitance C oss-6585Switching time Rise time tr V DD=300V,I D=4.4A,R G=25Ω,(Note4,5)-55120nsTurn-on time ton-2050Fall time tf-55120Turn-off time toff-70150 Total gate charge(gate-sourceplus gate-drain)QgV DD=480V,V GS=10V,I D=4.4A(Note4,5)-1620nCGate-source charge Qgs- 3.4-Gate-drain("miller")Charge Qgd-7-Source-Drain Ratings and Characteristics(Ta=25℃)Characteristics Symbol Test Condition Min Type Max Unit Continuous drain reverse current I DR---4A Pulse drain reverse current I DRP---17.6A Forward voltage(diode)V DSF I DR=4.4A,V GS=0V-- 1.4VReverse recovery time trr I DR=4.4A,V GS=0V,dI DR/dt=100A/µs -390-nsReverse recovery charge Qrr- 2.2-µCNote1.Repeativity rating:pulse width limited by junction temperature2.L=18.5mH I AS=4.4A,V DD=50V,R G=0Ω,Starting T J=25℃3.I SD≤4A,di/dt≤200A/us,V DD<BV DSS,STARTING T J=25℃4.Pulse Test:Pulse Width≤300us,Duty Cycle≤2%5.Essentially independent of operating temperature.This transistor is an electrostatic sensitive devicePlease handle with cautionFig.1On-State Characteristics Fig.2Transfer Current characteristicsFig.3On Resistance variation vsDrain Current Fig.4Body Diode Forward Voltage Variation vs Source Currentand temperatureFig.5On-Resistance Variation vsJunction TemperatureFig.6Gate Charge CharacteristicsFig.7Maximum Safe Operation Area Fig.8Maximum Drain Current vsCase TemperatureFig.9Transient Thermal Response curveFig.10Gate Test circuit&WaveformFig.11Resistive Switching Test Circuit&WaveformFig.12Uncamped Inductive Switching Test Circuit&WaveformFig.13Peak Diode Recovery dv/dt Test Circuit&WaveformT O -2-2220Pa Pac c ka kage ge Dim Dimee n s i on Unit:mm。
常用高清行管和大功率三极管主要参数表2010-03-02 10:33:54 阅读78 评论0 字号:大中小高清彩电行管损坏的原因及代换现在,大屏幕彩色电视大都是数字高清,原来50Hz的场扫描频率接近人眼感知频闪的临界点,所以高清电视都是提高扫描频率来提高图像的清晰度,即将场扫描提高到100Hz或是60Hz逐行,这样就会使行扫描的频率提高一倍,自然行输出管的开关速度和功耗都会随之增加,普通的行输出管已经不能胜任,要采用性能更好的大功率三极管。
目前采用的行管有:C5144、C5244、J6920、C5858、C5905等,这些行输出管的耐压都在1500V以上,电流多大于20A,但是由于其功耗比较大,损坏率还是比较高。
归纳起来,其损坏的原因一般有以下六种。
1. 行激励不足如果行激励不足,行管不能迅速截止与饱和,导致行管内阻变大,将造成行输出电路的功耗增加,引起行输出管发烫,一旦超过行管功耗的极限值,便会使行管烧坏。
在海信高清电视中,行振荡方波信号是由数字变频解码板输出,经过一对三极管2SC1815、2SA1015放大后,送到行激励管的基极。
这两个三极管工作在大电流开关状态,故障率相对较高,损坏后就会造成行激励不足,损坏行输出管,对比可以用示波器测量行管基极的波形来确定。
另外,行管基极的限流电阻阻值一般为0.1Ω,与行管的发射极串联,再与行激励变压器并联,若是阻值增大有可能用普通万用表测不出来。
我们曾经修过多例次电阻增值到2Ω以上而导致开机几分钟后行管损坏的故障,且损坏行管的比例较大。
2. 行逆程电压过高在行逆程期间,偏转线圈会对逆程电容充电,逆程电容容量大小决定充电的时间。
容量越小,充电时间越短,充电电压越高,因而会产生很高的反峰脉冲电压。
所以,当行一旦超过行管的耐压值,就会出现屡烧行管的结果。
我们在测量逆程电容时,一般是测量电容的直流参数,而一些ESR等交流参数无法测量,所以最好是代换较可靠。
3. 行偏转线圈或行输出变压器局部短路造成行负责过重常见场输出集成电路击穿导致行偏转线圈或行输出变压器绝缘性能下降,产生局部短路、行输出逆程电容漏电等。
常用高清行管和大功率三极管主要参数表2010-03-02 10:33:54 阅读78 评论0 字号:大中小高清彩电行管损坏的原因及代换现在,大屏幕彩色电视大都是数字高清,原来50Hz的场扫描频率接近人眼感知频闪的临界点,所以高清电视都是提高扫描频率来提高图像的清晰度,即将场扫描提高到100Hz或是60Hz逐行,这样就会使行扫描的频率提高一倍,自然行输出管的开关速度和功耗都会随之增加,普通的行输出管已经不能胜任,要采用性能更好的大功率三极管。
目前采用的行管有:C5144、C5244、J6920、C5858、C5905等,这些行输出管的耐压都在1500V以上,电流多大于20A,但是由于其功耗比较大,损坏率还是比较高。
归纳起来,其损坏的原因一般有以下六种。
1. 行激励不足如果行激励不足,行管不能迅速截止与饱和,导致行管内阻变大,将造成行输出电路的功耗增加,引起行输出管发烫,一旦超过行管功耗的极限值,便会使行管烧坏。
在海信高清电视中,行振荡方波信号是由数字变频解码板输出,经过一对三极管2SC1815、2SA1015放大后,送到行激励管的基极。
这两个三极管工作在大电流开关状态,故障率相对较高,损坏后就会造成行激励不足,损坏行输出管,对比可以用示波器测量行管基极的波形来确定。
另外,行管基极的限流电阻阻值一般为0.1Ω,与行管的发射极串联,再与行激励变压器并联,若是阻值增大有可能用普通万用表测不出来。
我们曾经修过多例次电阻增值到2Ω以上而导致开机几分钟后行管损坏的故障,且损坏行管的比例较大。
2. 行逆程电压过高在行逆程期间,偏转线圈会对逆程电容充电,逆程电容容量大小决定充电的时间。
容量越小,充电时间越短,充电电压越高,因而会产生很高的反峰脉冲电压。
所以,当行一旦超过行管的耐压值,就会出现屡烧行管的结果。
我们在测量逆程电容时,一般是测量电容的直流参数,而一些ESR等交流参数无法测量,所以最好是代换较可靠。
3. 行偏转线圈或行输出变压器局部短路造成行负责过重常见场输出集成电路击穿导致行偏转线圈或行输出变压器绝缘性能下降,产生局部短路、行输出逆程电容漏电等。
N-Channel Super Junction Power MOSFET ⅡV DS @T jmax 650V R DS(ON) MAX 1200 m ΩI D 4 AGeneral DescriptionThe series of devices use advanced super junction technology and design to provide excellent R DS(ON) with low gate charge. This super junction MOSFET fits the industry’s AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.Features●New technology for high voltage device ●Low on-resistance and low conduction losses ●Small package●Ultra Low Gate Charge cause lower driving requirements ●100% Avalanche Tested ●ROHS compliantApplication● Power factor correction (PFC ) ● Switched mode power supplies(SMPS) ● Uninterruptible Power Supply (UPS )Package Marking And Ordering InformationDeviceDevice PackageMarkingNCE60R1K2 TO-220 NCE60R1K2 NCE60R1K2D TO-263 NCE60R1K2D NCE60R1K2F TO-220F NCE60R1K2FTable 1.Absolute Maximum Ratings (T C =25℃)Parameter SymbolNCE60R1K2NCE60R1K2DNCE60R1K2F Unit Drain-Source Voltage (V GS=0V ) V DS600 V Gate-Source Voltage (V DS=0V) V GS ±30 VContinuous Drain Current at Tc=25°C I D (DC) 4 4* AContinuous Drain Current at Tc=100°C I D (DC) 2.5 2.5 APulsed drain current(Note 1)I DM (pluse) 12 12 A Maximum Power Dissipation(Tc=25℃) Derate above 25°CP D46 0.3728.5 0.23WW/°CSingle pulse avalanche energy (Note2)E AS 130mJAvalanche current(Note 1)I AR 2 A Repetitive Avalanche energy ,t AR limited by T jmax(Note 1)E AR0.2mJSchematic diagramTO-263 TO-220 TO-220FParameter SymbolNCE60R1K2NCE60R1K2DNCE60R1K2F Unit Drain Source voltage slope, V DS ≤480 V, dv/dt 50 V/ns Reverse diode dv/dt ,V DS ≤480 V,I SD <I Ddv/dt 15V/nsOperating Junction and Storage Temperature RangeT J ,T STG -55...+150 °C* limited by maximum junction temperatureTable 2. Thermal CharacteristicParameter Symbol Value UnitThermal Resistance ,Junction-to-Case (Maximum ) R thJC 2.7 4.4 °C /WThermal Resistance ,Junction-to-Ambient (Maximum )R thJA62 80 °C /WTable 3. Electrical Characteristics (TA=25℃unless otherwise noted)Parameter Symbol ConditionMin Typ Max UnitOn/off statesDrain-Source Breakdown VoltageBV DSSV GS =0V I D =250μA 600 V Zero Gate Voltage Drain Current(Tc=25℃) I DSS V DS =600V,V GS =0V1μAZero Gate Voltage Drain Current(Tc=125℃) I DSS V DS =600V,V GS =0V 50 μA Gate-Body Leakage Current I GSS V GS =±30V,V DS =0V±100nAGate Threshold VoltageV GS(th) V DS =V GS ,I D =250μA 2.5 3 3.5 V Drain-Source On-State Resistance R DS(ON)V GS =10V, I D = 2.5A 1000 1200m ΩDynamic CharacteristicsForward Transconductance g FS V DS = 20V, I D = 2.5A4SInput Capacitance C lss 280 PFOutput CapacitanceC oss 26 PFReverse Transfer Capacitance C rssV DS =50V,V GS =0V,F=1.0MHz2.3 PF Total Gate Charge Q g 6.5 10 nCGate-Source Charge Q gs 1.3 nCGate-Drain Charge Q gd V DS =480V,I D =4A,V GS =10V2.5 nC Intrinsic gate resistance R Gf = 1 MHz open drain2.5ΩSwitching timesTurn-on Delay Time t d(on) 6 nSTurn-on Rise Time t r 3 nS Turn-Off Delay Time t d(off) 48 60 nSTurn-Off Fall Timet fV DD =380V,I D =2.5A, R G =20Ω,V GS =10V 8 15 nSSource- Drain Diode CharacteristicsSource-drain current(Body Diode) I SD 4 APulsed Source-drain current(Body Diode) I SDMT C =25°C12 A Forward On Voltage V SD Tj =25°C,I SD =4A,V GS =0V1 1.3 V Reverse Recovery Time t rr 150 nS Reverse Recovery Charge Q rr 0.85 uCPeak reverse recovery currentI rrmTj=25°C,I F =4A,di/dt=100A/μs 11 ANotes: 1.Repetitive Rating: Pulse width limited by maximum junction temperature2. Tj=25℃,VDD=50V,VG=10V, R G =25ΩTYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (curves)Figure1. Safe operating area for TO-220,TO-263 Figure2. Source-Drain Diode Forward VoltageFigure3. Output characteristics Figure4. Transfer characteristicsFigure5. Static drain-source on resistance Figure6. R DS(ON) vs Junction TemperatureFigure7. BV DSS vs Junction Temperature Figure8. Maximum I D vs Junction TemperatureFigure9. Gate charge waveforms Figure10. CapacitanceFigure11. Transient Thermal Impedance for TO-220,TO-263 Figure12. Safe operating area for TO-220FFigure13. Transient Thermal Impedance for TO-220FTest circuit1)Gate charge test circuit & Waveform2)Switch Time Test Circuit:3)Unclamped Inductive Switching Test Circuit & WaveformsTO-263-2L Package InformationDimensions In Millimeters Dimensions In Inches SymbolMin.Max.Min.Max.A 4.470 4.670 0.176 0.184A1 0.000 0.150 0.000 0.006B 1.170 1.370 0.046 0.054b 0.710 0.910 0.028 0.036b1 1.170 1.370 0.046 0.054c 0.310 0.530 0.012 0.021c1 1.170 1.370 0.046 0.05410.310 0.394 0.406D 10.010E 8.500 8.900 0.335 0.350e 2.540 TYP. 0.100 TYP.e1 4.980 5.180 0.196 0.20415.450 0.593 0.608L 15.050L1 5.080 5.480 0.200 0.216 L2 2.340 2.740 0.092 0.108 L3 1.300 1.700 0.051 0.067 V 5.600 REF 0.220 REFTO-220-3L-C Package InformationDimensions In Millimeters Dimensions In Inches SymbolMin.Max.Min.Max.A 4.400 4.600 0.173 0.181A1 2.250 2.550 0.089 0.100b 0.710 0.910 0.028 0.036b1 1.170 1.370 0.046 0.054c 0.330 0.650 0.013 0.026c1 1.200 1.400 0.047 0.0550.390 0.40410.250D 9.910E 8.9500 9.750 0.352 0.384E1 12.650 12.950 0.498 0.510e 2.540 TYP. 0.100 TYP.e1 4.980 5.180 0.196 0.204F 2.650 2.950 0.104 0.116H 7.900 8.100 0.311 0.319h 0.000 0.300 0.000 0.01213.400 0.508 0.528L 12.900L1 2.850 3.250 0.112 0.128 V 7.500 REF. 0.295 REF.Φ 3.400 3.800 0.134 0.150TO-220F Package InformationNCE60R1K2,NCE60R1K2D,NCE60R1K2F ATTENTION:■Any and all NCE products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE representative nearest you before using any NCE products described or contained herein in such applications.■ NCE assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE products described or contained herein.■ Specifications of any and all NCE products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer’s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer’s products or equipment.■ NCE Power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.■ In the event that any or all NCE products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.■No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE Power Semiconductor CO.,LTD.■Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. NCE believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE product that you intend to use.■This catalog provides information as of Mar. 2010. Specifications and information herein are subject to change without notice.。
Fast IGBT in NPT-technology• 75% lower E off compared to previous generationcombined with low conduction losses• Short circuit withstand time – 10 µs • Designed for:- Motor controls - Inverter• NPT-Technology for 600V applications offers:- very tight parameter distribution- high ruggedness, temperature stable behaviour - parallel switching capability• Complete product spectrum and PSpice Models : /igbt/Type V CE I C V CE(sat )T j Package Ordering Code SGP04N60600V4A2.3V150°CTO-220AB Q67040-S4443SGB04N60SGD04N60SGU04N60TO-263AB TO-252AA(DPAK)TO-251AA(IPAK)Q67040-S4442Q67041-A4708Q67040-S4444Maximum Ratings ParameterSymbol Value Unit Collector-emitter voltage V C E 600V DC collector current T C = 25°C T C = 100°CI C9.44.9Pulsed collector current, t p limited by T jmax I C p u l s 19Turn off safe operating area V CE ≤ 600V, T j ≤ 150°C -19AGate-emitter voltageV G E ±20V Avalanche energy, single pulse I C = 4 A, V CC = 50 V, R GE = 25 Ω,start at T j = 25°CE A S25mJShort circuit withstand time 1)V GE = 15V, V CC ≤ 600V, T j ≤ 150°Ct S C 10µs Power dissipation T C = 25°CP t o t50WOperating junction and storage temperatureT j , T s t g-55...+150°C1)Allowed number of short circuits: <1000; time between short circuits: >1s.P-TO-220-3-1(TO-220AB)P-TO-252-3-1 (D-PAK)(TO-252AA)P-TO-263-3-2 (D²-PAK)(TO-263AB)P-TO-251-3-1 (I-PAK)(TO-251AA)Thermal Resistance Parameter Symbol ConditionsMax. ValueUnit CharacteristicIGBT thermal resistance,junction – case R t h J C 2.5Thermal resistance,junction – ambientR t h J A TO-251AA TO-220AB 7562SMD version, device on PCB1)R t h J ATO-252AA TO-263AB5040K/WElectrical Characteristic, at T j = 25 °C, unless otherwise specified ValueParameterSymbol Conditionsmin.Typ.max.UnitStatic CharacteristicCollector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =500µA 600--Collector-emitter saturation voltageV C E (s a t )V G E = 15V, I C =4A T j =25°C T j =150°C1.7-2.02.3 2.42.8Gate-emitter threshold voltage V G E (t h )I C =200µA,V C E =V G E 345VZero gate voltage collector currentI C E SV C E =600V,V G E =0V T j =25°C T j =150°C----20500µAGate-emitter leakage current I G E S V C E =0V,V G E =20V --100nA Transconductance g f s V C E =20V, I C =4A 3.1-S Dynamic Characteristic Input capacitance C i s s -264317Output capacitanceC o s s -2935Reverse transfer capacitance C r s s V C E =25V,V G E =0V,f =1MHz-1720pFGate chargeQ G a t e V C C =480V, I C =4A V G E =15V -2431nC Internal emitter inductancemeasured 5mm (0.197 in.) from case L E TO-220AB-7-nH Short circuit collector current2)I C (S C )V G E =15V,t S C ≤10µs V C C ≤ 600V,T j ≤ 150°C-40-A 1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2(one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air.2)Allowed number of short circuits: <1000; time between short circuits: >1s.Switching Characteristic, Inductive Load, at T j =25 °C Value ParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1518Turn-off delay time t d (o f f )-237284Fall time t f -7084nsTurn-on energy E o n -0.0700.081Turn-off energy E o f f -0.0610.079Total switching energyE t sT j =25°C,V C C =400V,I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.1310.160mJ Switching Characteristic, Inductive Load, at T j =150 °C ValueParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1619Turn-off delay time t d (o f f )-264317Fall time t f -104125nsTurn-on energy E o n -0.1150.132Turn-off energy E o f f -0.1110.144Total switching energyE t sT j =150°CV C C =400V, I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.2260.277mJ 1)Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.I C , C O L L E C T O R C U R R E N T10Hz100Hz 1kHz 10kHz 100kHz0A 10A20AI C , C O L L E C T O R C U R R E N T1V10V100V1000V0.01A0.1A1A10Af , SWITCHING FREQUENCYV CE , COLLECTOR -EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency(T j ≤ 150°C, D = 0.5, V CE = 400V,V GE = 0/+15V, R G = 67Ω)Figure 2. Safe operating area (D = 0, T C = 25°C, T j ≤ 150°C)P t o t , P O W E R D I S S I P A T I O N25°C50°C 75°C 100°C 125°C0W 10W20W30W40W50W60WI C , C O L L E C T O R C U R R E N T25°C50°C 75°C 100°C 125°C0A2A4A6A8A10A12AT C , CASE TEMPERATURET C , CASE TEMPERATUREFigure 3. Power dissipation as a function of case temperature (T j ≤ 150°C)Figure 4. Collector current as a function of case temperature(V GE ≤ 15V, T j ≤ 150°C)I C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A 6A 9A12A 15AI C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A6A9A12A15AV CE , COLLECTOR -EMITTER VOLTAGEV CE , COLLECTOR -EMITTER VOLTAGEFigure 5. Typical output characteristics (T j = 25°C)Figure 6. Typical output characteristics (T j = 150°C)I C , C O L L E C T O R C U R R E N T0V2V 4V 6V 8V 10V0A 2A 4A 6A 8A 10A 12A14A V C E (s a t ), C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E-50°C 0°C 50°C 100°C 150°C1.0V1.5V2.0V2.5V3.0V3.5V4.0VV GE , GATE -EMITTER VOLTAGET j , JUNCTION TEMPERATUREFigure 7. Typical transfer characteristics(V CE = 10V)Figure 8. Typical collector-emittersaturation voltage as a function of junction temperature (V GE = 15V)t , S W I T C H I N G T I M E S0A2A4A6A8A10A10ns100nst , S W I T C H I N G T I M E S0Ω50Ω100Ω150Ω200Ω10ns 100nsI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 9. Typical switching times as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 10. Typical switching times as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)t , S W I T C H I N G T I M E S0°C50°C100°C150°C10ns100nsV G E (t h ), G A T E -E M I T T E R T H R E S H O L D V O L T A G E-50°C0°C50°C100°C150°C 2.0V2.5V3.0V 3.5V4.0V 4.5V5.0V 5.5VT j , JUNCTION TEMPERATURET j , JUNCTION TEMPERATUREFigure 11. Typical switching times as a function of junction temperature(inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.2mA)E , S W I T C H I N G E N E R G Y L O S S E S0A2A 4A 6A 8A 10A0.0mJ0.1mJ0.2mJ0.3mJ0.4mJ0.5mJ0.6mJE , SW I T C H I N G E N E R G Y L O S S E S0Ω50Ω100Ω150Ω200Ω0.0mJ0.1mJ0.2mJ0.3mJ0.4mJI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 13. Typical switching energy losses as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 14. Typical switching energy losses as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)E ,S W I T C H I N G E N E R G Y L O S S E S0°C50°C 100°C 150°C0.0mJ0.1mJ0.2mJ0.3mJZ t h J C , T R A N S I E N T T H E R M A L I M P E D A N C E1µs10µs 100µs 1ms 10ms 100ms 1s10-310-210-1100T j , JUNCTION TEMPERATUREt p , PULSE WIDTHFigure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 16. IGBT transient thermalimpedance as a function of pulse width (D = t p / T )V G E , G A T E -E M I T T E R V O L T A G E0nC10nC 20nC 30nC 0V 5V10V15V20V25VC , C A P A C I T A N C E0V 10V 20V 30V10pF100pFQ GE , GATE CHARGEV CE , COLLECTOR -EMITTER VOLTAGE Figure 17. Typical gate charge (I C = 4A)Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz)t s c , S H O R T C I R C U I T W I T H S T A N D T I M E10V11V12V13V14V15V0µs 5µs10µs15µs20µs25µs I C (s c ), S H O R T C I R C U I T C O L L E C T O R C U R R E N T10V12V 14V 16V 18V20V0A 10A 20A 30A 40A 50A 60A 70AV GE , GATE -EMITTER VOLTAGEV GE , GATE -EMITTER VOLTAGEFigure 19. Short circuit withstand time as a function of gate-emitter voltage (V CE = 600V, start at T j = 25°C)Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (V CE ≤ 600V, T j = 150°C)dimensionssymbol[mm][inch]minmax minmax A 9.7010.300.38190.4055B 14.8815.950.58580.6280C 0.650.860.02560.0339D 3.55 3.890.13980.1531E 2.60 3.000.10240.1181F 6.00 6.800.23620.2677G 13.0014.000.51180.5512H 4.35 4.750.17130.1870K 0.380.650.01500.0256L 0.951.320.03740.0520M 2.54 typ.0.1 typ.N 4.30 4.500.16930.1772P 1.17 1.400.04610.0551T2.302.720.09060.1071TO-220ABdimensionssymbol[mm][inch]minmax minmax A 9.8010.200.38580.4016B 0.70 1.300.02760.0512C 1.00 1.600.03940.0630D 1.03 1.070.04060.0421E 2.54 typ.0.1 typ.F 0.650.850.02560.0335G 5.08 typ.0.2 typ.H 4.30 4.500.16930.1772K 1.17 1.370.04610.0539L 9.059.450.35630.3720M 2.30 2.500.09060.0984N 15 typ.0.5906 typ.P 0.000.200.00000.0079Q 4.20 5.200.16540.2047R 8° max 8° maxS 2.40 3.000.09450.1181T 0.400.600.01570.0236U 10.800.4252V 1.150.0453W 6.230.2453X 4.600.1811Y 9.400.3701TO-263AB (D 2Pak)Z16.150.6358P-TO251 (I-Pak)P-TO252 (D-Pak)Figure A. Definition of switching times Figure B. Definition of switching lossesτ1τ2nτr r rFigure D. Thermal equivalent circuitFigure E. Dynamic test circuit Leakage inductance Lσ=180nH and Stray capacity Cσ=180pF.Published byInfineon Technologies AG,Bereich KommunikationSt.-Martin-Strasse 53,D-81541 München© Infineon Technologies AG 2000All Rights Reserved.Attention please!The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.Infineon Technologies is an approved CECC manufacturer.InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).WarningsDue to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.。
产品规格分类
产 品 名 称 封装形式 打印名称 材料
包装 SVF4N60T TO-220-3L SVF4N60T 无铅 料管 SVF4N60F TO-220F-3L SVF4N60F 无铅 料管 SVF4N60FG TO-220F-3L SVF4N60FG 无卤 料管 4A 、600V N 沟道增强型场效应管
描述
SVF4N60D/F/FG/T/K/M/MJ/MJG N 沟道增强型高压功率MOS 场效应晶体管采用士兰微电子的F-Cell TM 平面高压VDMOS 工艺技术制造。
先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿
极限参数(除非特殊说明,T
=25°C)
C
源-漏二极管特性参数
漏极电流– I D(A)源漏电压– V SD(V)
典型特性曲线(续)
图5. 电容特性图6. 电荷量特性
10101010
漏源电压 - V DS(V)10101010
漏源电压 - V DS(V)
典型特性曲线(续)
3
图9-4. 最大安全工作区域(SVF4N60MJ(G))图9-3. 最大安全工作区域(SVF4N60D/M)
典型测试电路
12V
栅极电荷量测试电路及波形图
封装外形图
封装外形图(续)
封装外形图(续)。
功率MOSEFT—4N604A,600V N沟道4N60功率MOS场效应管采用先进的高压DMOS工艺技术。
这种先进工艺使器件具有优良的特性,如极快的开关速度,极低栅电荷,最小化的导通电阻以及极强的雪崩击穿特性。
这种器件非常适合于高效开关电源,DC/DC转换器,PWM马达控制和桥式驱动电路等。
1、特征· 4A,600V, RDS(on)=2.5Ω@Vgs=10V; · 极低栅电荷,典型15nC; ·极低反向转换电容;典型8pF · 快速开关能力; · 增强的dV/di能力;· 100%雪崩击穿测试; · 封装型式:TO-220/TO-220F· 最大结温 150 ℃2、性能指标极限值:(除其他标注外Tamb= 25℃)参 数符 号 数 值 单 位 最大漏源电压 V DSS 600 V 栅源电压 V GS ±30 V 雪崩电流 I AR 4.4 A 最大持续漏电流I D 4.0 A 最大脉冲漏电流 (注1) I DM 16 A 雪崩能量(单脉冲) (注2) E AR 260 mJ 峰值二极管恢复dv/dt (注3) dv/dt 4.5 V/ns TO-220 106 最大耗散功率TO-220FP D 48 W 工作结温/储存温度范围T J /T STG-55~150℃热性能(除其他标注外Tamb = 25°C)参数符号数值 单位TO-2200.85从结到每只管脚的典型热阻TO-220FR θJC2.6℃/W电性能(除其他标注外Tamb= 25°C)规范值 单位 参数名称 符号 测试条件最小典型 最大关断特性 最大漏源电压 B VDSS V GS =0V;I D =250uA 600 V 漏源漏电流 I DSS V DS =600V;V GS =0V 10 uA V DS =30V;V GS =0V 100 nA 栅源漏电流 I GSSV DS =-30V;V GS =0V-100nA导通特性 栅开启电压 V GS(th)V DS =V GS ;I D =250uA 2 4 V漏源导通电阻 R DS(on)V GS =10V;I D =2.2A1 2.5 Ω动态特性 输入电容 C iSS 520 670 输出电容 C OSS 70 90 反向传输电容 C rSSV GS =0V; V DS =25V;f=1MHz811pF开关特性 导通延迟时间 Td(on) 13 35 上升时间 tr 45 100 关断延迟时间 Td(off) 25 60 下降时间 tf V DD =300V;I D =4A, R G =25Ω (注4, 注5)35 80 ns栅电荷 Qg 15 20 栅-源电荷 3.4 栅-漏电荷V DS =480V;V GS =10V;I D =7.5A (注4, 注5)7.1nC源-漏二极管特性规范值 单位参数名称符号 测试条件最小典型 最大 二极管正向电压 V SD V GS =0V;I S =7.5A 1.4 V 持续源电流 I S 4.4 A 脉冲源电流 I SM MOSEFT 内部反向P-N 结二极管17.6 A 反向恢复时间 t rr 255 ns 反向恢复电荷 Q rrV GS =0V;I S =7.5A; dI F/dt=100A/us1.5uC注释:⑴ 重复范围: 脉冲宽度受结温限制⑵ L = 7.3mH, IAS = 7.5A, VDD = 50V, RG = 25 Ω, 开始TJ = 25°C ⑶ ISD ≤ 7.5A, di/dt ≤200A/μs, VDD ≤ BVDSS, 开始 TJ = 25°C ⑷ 脉冲测试: 脉冲宽度<= 300us, 占空比<=2% (5)工作温度必须单独3. 测试电路及波形Fig. 1A 峰值二极管恢复 dv/dt 测试电路Fig. 1B峰值二极管恢复 dv/dt 测试波形Fig. 2A 开关测试电路Fig. 2B 开关波形Fig. 3A 栅电荷测试电路Fig. 3B栅电荷测试波形Fig. 4A 未箝位电感开关测试电路Fig. 4B未箝位电感开关测试波形4.典型特性曲线。
元器件可靠性老化实验总结可靠性老化评估测试一、从生产线上抽取合格的产品作为测试样品样品规格:2N60,3N60,4N60,4N65,7N60,8N60抽样标准:GB2828样品数量:各200Pcs测试时间:2011.7.20—9.19二、可靠性老化测试1,测试项目:高、低温存储试验测试名称低温存储试验环境温度25℃+/-1%℃环境湿度 34%H判定标准外观,性能参数是否正常测试条件低温-55℃保持72小时测试结果合格测试名称高温存储试验环境温度25℃+/-1%℃环境湿度 34%H判定标准外观,性能参数是否正常测试条件高温150℃保持72小时测试结果合格2,测试项目:高、低温循环试验测试名称高低温循环试验环境温度25℃+/-1%℃环境湿度 34%H判定标准外观,性能参数是否正常测试条件高温150℃,低温-40℃,循环测试10次,共60小时测试结果合格3,测试项目:高低温冲击试验测试名称高低温冲击环境温度25℃+/-1%℃环境湿度 34%H判定标准外观,性能参数是否正常测试条件高温160℃,低温-50℃,循环测试15次,共24小时测试结果合格4,测试项目:恒温恒湿试验测试名称恒温恒湿环境温度25℃+/-1%℃环境湿度 34%H判定标准外观,性能参数是否正常测试条件温度85℃,湿度85%,共72小时测试结果合格5,测试项目:高温高压蒸煮试验测试名称高温高压蒸煮环境温度25℃+/-1%℃环境湿度 34%H判定标准外观,性能参数是否正常测试条件温度120℃,压力0.2Mpa,共96小时测试结果合格三、配合整机试验1、2N601)、冲击短路试验样品规格:2N60抽样标准:GB2828样品数量:50Pcs测试项目冲击试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC 270V,Pin=25W,冲击次数20次判定标准 MOS管是否失效试验结果合格测试项目短路试验测试设备 AC SOURCE,电子负载,专用电源板测试条件AC 270V,Pin=25W,输出空载、带载、短路循环测试2minute 判定标准 MOS管是否失效试验结果合格2)、温升试验测试项目温升试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC90V,Pin=20W,测试时间30minute/pcs样本数 3PCS环境温度25℃判定标准温升不高于35℃温升测试数据1# 30℃ 2# 31℃ 3# 32℃试验结果合格2、3N601)、冲击短路试验样品规格:3N60抽样标准:GB2828样品数量:50Pcs测试项目冲击试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC 270V,Pin=25W,冲击次数20次判定标准 MOS管是否失效试验结果合格测试项目短路试验测试设备 AC SOURCE,电子负载,专用电源板测试条件AC 270V,Pin=25W,输出空载、带载、短路循环测试2minute 判定标准 MOS管是否失效试验结果合格2)、温升试验测试项目温升试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC90V,Pin=20W,测试时间30minute/pcs样本数 3PCS环境温度25℃判定标准温升不高于32℃温升测试数据1# 28℃ 2# 27℃ 3# 28℃试验结果合格3、 4N601)、冲击短路试验样品规格:4N60抽样标准:GB2828样品数量:50Pcs测试项目冲击试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC 270V,Pin=30W,冲击次数20次判定标准 MOS管是否失效试验结果合格测试项目短路试验测试设备 AC SOURCE,电子负载,专用电源板测试条件AC 270V,Pin=30W,输出空载、带载、短路循环测试2minute 判定标准 MOS管是否失效试验结果合格2)、温升试验测试项目温升试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC90V,Pin=25W,测试时间30minute/pcs样本数 3PCS环境温度25℃判定标准温升不高于35℃温升测试数据1# 32℃ 2# 32℃ 3# 33℃试验结果合格4、 4N651)、冲击短路试验样品规格:4N65抽样标准:GB2828样品数量:50Pcs测试项目冲击试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC 270V,Pin=30W,冲击次数20次判定标准 MOS管是否失效试验结果合格测试项目短路试验测试设备 AC SOURCE,电子负载,专用电源板测试条件AC 270V,Pin=30W,输出空载、带载、短路循环测试2minute 判定标准 MOS管是否失效试验结果合格2)、温升试验测试项目温升试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC90V,Pin=30W,测试时间30minute/pcs样本数 3PCS环境温度25℃判定标准温升不高于37℃温升测试数据1# 33℃ 2# 34℃ 3# 34℃试验结果合格5、 7N601)、冲击短路试验样品规格:7N60抽样标准:GB2828样品数量:50Pcs测试项目冲击试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC 270V,Pin=50W,冲击次数20次判定标准 MOS管是否失效试验结果合格测试项目短路试验测试设备 AC SOURCE,电子负载,专用电源板测试条件AC 270V,Pin=50W,输出空载、带载、短路循环测试2minute 判定标准 MOS管是否失效试验结果合格2)、温升试验测试项目温升试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC90V,Pin=50W,测试时间30minute/pcs样本数 3PCS环境温度25℃判定标准温升不高于82℃温升测试数据1# 77℃ 2# 76℃ 3# 77℃试验结果合格6、 8N601)、冲击短路试验样品规格:8N60抽样标准:GB2828样品数量:50Pcs测试项目冲击试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC 270V,Pin=50W,冲击次数20次判定标准 MOS管是否失效试验结果合格测试项目短路试验测试设备 AC SOURCE,电子负载,专用电源板测试条件AC 270V,Pin=50W,输出空载、带载、短路循环测试2minute 判定标准 MOS管是否失效试验结果合格2)、温升试验测试项目温升试验测试设备 AC SOURCE,电子负载,专用电源板测试条件 AC90V,Pin=50W,测试时间30minute/pcs样本数 3PCS环境温度25℃判定标准温升不高于77℃温升测试数据1# 73℃ 2# 72℃ 3# 73℃ 试验结果合格。
4N60 Power MOSFET4 Amps, 600 VoltsN-CHANNEL POWER MOSFETDESCRIPTIONThe UTC 4N60 is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.FEATURES* R DS(ON) = 2.5Ω @V GS = 10 V* Ultra low gate charge ( typical 15 nC )* Low reverse transfer Capacitance ( C RSS = typical 8.0 pF ) * Fast switching capability * Avalanche energy Specified* Improved dv/dt capability, high ruggednessSYMBOL1.GateTO-22011TO-220F*Pb-free plating product number: 4N60LORDERING INFORMATIONOrder Number Pin AssignmentNormal Lead Free Plating Package 1 2 3 Packing4N60-TA3-T 4N60L-TA3-T TO-220 G D S Tube 4N60-TF3-T 4N60L-TF3-T TO-220F G D S TubeABSOLUTE MAXIMUM RATINGS (T C = 25℃, unless otherwise specified)PARAMETER SYMBOL RATINGS UNITDrain-Source Voltage V DSS 600 V Gate-Source Voltage V GSS ±30 V Avalanche Current - (Note 1) I AR 4.4 AT C = 25°C 4.0 AContinuous Drain CurrentT C = 100°C I D 2.8 APulsed Drain Current, T P Limited by T JMAX - (Note 1) I DM 16 A Avalanche Energy, Single Pulsed (Note 2) E AS 260 mJ Avalanche Energy, Repetitive, Limited by T JMAX E AR 10.6 mJ Peak Diode Recovery dv/dt (Note 3) dv/dt 4.5 V/ns Power Dissipation (T C = 25°C) P D 106 W Junction Temperature T J +150 Storage Temperature T STG -55 ~ +150Note Absolute maximum ratings are those values beyond which the device could be permanently damaged.Absolute maximum ratings are stress ratings only and functional device operation is not implied.THERMAL DATAPARAMETER SYMBOL MIN TYP MAX UNITJunction-to-Ambient θJA 62.5 °C/W Junction-to-Case θJC 3 °C/W Case-to-Sink θCS 0.5 °C/WELECTRICAL CHARACTERISTICS (T C =25℃, unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITOff CharacteristicsDrain-Source Breakdown Voltage BV DSS V GS = 0 V, I D = 250 µA 600V V DS = 600 V, V GS = 0 V10µA Drain-Source Leakage Current I DSSV DS = 480 V, T C = 125°C100µA Forward V GS = 30 V, V DS = 0 V100nA Gate-Source Leakage CurrentReverse I GSSV GS = -30 V, V DS = 0 V-100nA Breakdown Voltage Temperature CoefficientBV DSS /△T J I D = 250 µA, Referenced to 25°C 0.6 V/ On Characteristics Gate Threshold VoltageV GS(TH)V DS = V GS , I D = 250 µA 2.0 4.0V Drain-Source On-State Resistance R DS(ON) V GS = 10 V, I D = 2.2 A2.5ΩForward Transconductance g FSV DS = 50 V, I D = 2.2 A (Note 4)4.0SDynamic Characteristics Input Capacitance C ISS 520 670pFOutput CapacitanceC OSS 70 90pFReverse Transfer Capacitance C RSSV DS = 25 V, V GS = 0 V, f = 1MHz 8 11pF Switching Characteristics Turn-On Delay Time t D(ON) 13 35nsTurn-On Rise Time t R 45 100ns Turn-Off Delay Time t D(OFF) 25 60nsTurn-Off Fall Time t FV DD = 300V, I D = 4.0 A, R G = 25Ω(Note 4, 5) 35 80ns Total Gate Charge Q G 15 20nCGate-Source Charge Q GS 3.4 nCGate-Drain ChargeQ DDV DS = 480V,I D = 4.0A, V GS = 10 V(Note 4, 5)7.1 nCELECTRICAL CHARACTERISTICS(Cont.)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITSource- Drain Diode Ratings and Characteristics Drain-Source Diode Forward Voltage V SD V GS = 0 V, I S = 4.4 A 1.4VMaximum Continuous Drain-SourceDiode Forward CurrentI S 4.4AMaximum Pulsed Drain-Source DiodeForward CurrentI SM 17.6AReverse Recovery Time t RR 250 ns Reverse Recovery Charge Q RR V GS = 0 V, I S = 4.4 A,dI F /dt = 100 A/µs (Note 4) 1.5 µCNotes: 1. Repetitive Rating : Pulse width limited by T J2. L = 25mH, I AS = 4.4A, V DD = 50V, R G = 25 Ω, Starting T J = 25°C3. I SD ≤4.4A, di/dt ≤200A/µs, V DD ≤ BV DSS , Starting T J = 25°C 4. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%5. Essentially independent of operating temperatureTEST CIRCUITS AND WAVEFORMSV DDV GS (Driver)I SD (D.U.T.)Body DiodeForward Voltage DropV DS(D.U.T.)Fig. 1A Peak Diode Recovery dv/dt Test CircuitFig. 1B Peak Diode Recovery dv/dt WaveformsTEST CIRCUITS AND WAVEFORMS (Cont.)R LDDV DS90%10%V GStFig. 2A Switching Test Circuit Fig. 2B Switching WaveformsFig. 3A Gate Charge Test CircuitFig. 3B Gate Charge Waveform10VLV DDI ASFig. 4A Unclamped Inductive Switching Test Circuit Fig. 4B Unclamped Inductive Switching WaveformsTYPICAL CHARACTERISTICS-100D r a i n -S o u rc e B r e a kd o w n V o l t a ge , B V D S S (N o r m a l i z e d )Junction Temperature , T J (℃)502001001501.201.11.00.90.8Breakdown Voltage Variation vs .Temperature-100D r a i n -S o u r ce O n -R e s i s t a n c e , R D S (O N ) (N o r m a l i z e d )Junction Temperature , T J (℃)-50502001001503.002.01.00.50.01.52.5On-Resistance Junction Temperature10Drain-Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )1001011000Maximum Safe Operating AreaD r a i n C u r r e n t , I D (A )Case Temperature , T C (℃)751000125502512345Maximum Drain Current vs . CaseTemperature100.11Drain -to-Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )On-State Characteristics2Gate-Source Voltage , V GS (V)D r a i n C u r r e n t , I D (A )Transfer Characteristics 46810100.1TYPICAL CHARACTERISTICS(Cont.)D r a i n -S o u r c e O n -R e s i s t a n c e , R D S (O N ) (o h m )Drain Current, I D (A)24On-Resistance Variation vs . DrainCurrent and Gate Voltage 6810120.2Source-Drain Voltage , V SD (V)On State Current vs. Allowable CaseTemperature1.80.40.60.81.01.2 1.61.4120000.1Drain-SourceVoltage , V DS (V)C a p a c i t a n c e (p F )1000200110800600Capacitance Characteristics(Non-Repetitive)G a t e -S o u r c e V o l t a g e , V G S (V )Total Gate Charge , Q G (nC)515258101210642020Gate Charge Characteristics400T h e r m a l R e s p o n s e , θJ C (t )Square Wave Pulse Duration , t 1(sec)Transient Thermal ResponseCurve 00P D (w )T C (°C)2040204080100120Power Dissipation606080100120140160。