全等三角形综合测试题(含答案)
- 格式:doc
- 大小:171.00 KB
- 文档页数:5
人教版数学八年级上学期《全等三角形》单元测试(满分:100分时间:35分钟)一、单选题(共10小题,每小题4分,共计40分)1.(2018·黑龙江中考真题)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°2.(2018·贵州中考真题)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(2018·江阴市暨阳中学初二月考)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定ΔABM≌ΔCDN()A.∠M=∠N B.AB=CD C.AM=CN D.AM//CN4.(2018·丹阳市云阳学校初二期末)如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个5.(2018·江苏中考真题)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )A.a+c B.b+c C.a−b+c D.a+b−c6.(2018·陕西高新一中初一期末)如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )A.13s B.8s C.6s D.5s7.(2018·北京市第四十四中学初二期中)如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲B.乙与丙C.丙D.乙8.(2017·上海市廊下中学初二期末)下列条件中不能判定两个直角三角形全等的是( )A.两条直角边分别对应相等B.两个锐角分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等9.(2017·大石桥市水源镇九年一贯制学校初二期中)小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;SAS C.2;AAS D.4; ASA10.(2017·丹阳市第三中学初二期中)如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.8个B.6个C.4个D.2个二、填空题(共5小题,每小题4分,共计20分)11.(2018·富顺县北湖实验学校初二期末)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________.12.(2017·甘肃省武威第五中学初二月考)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是______.13.(2019·哈尔滨市萧红中学初一期末)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,CF=5,BD=2,点C到直线AB的距离为9,△ABC面积为_________.14.(2017·四川中考真题)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是____.15.(2019·内蒙古中考真题)下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为_____.三、解答题(共4小题,共计40分)16.(2017·江苏中考真题)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.17.(2018·湖北中考真题)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.18.(2017·山东中考真题)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.19.(2018·湖北中考真题)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.参考答案一、单选题(共10小题,每小题4分,共计40分)1.(2018·黑龙江中考真题)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【答案】B【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=1∠DAB,2计算即可.【详解】作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∠DAB=35°,∴∠MAB=12故选B.【点睛】本题考查了平行线的性质,角平分线的性质与判定,熟练掌握相关内容、正确添加辅助线是解题的关键.2.(2018·贵州中考真题)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2018·江阴市暨阳中学初二月考)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定ΔABM ≌ΔCDN()A.∠M=∠N B.AB=CD C.AM=CN D.AM//CN【答案】C【解析】试题分析:A.∠M=∠N,符合ASA,能判定△ABM≌△CDN;B.AB=CD,符合SAS,能判定△ABM≌△CDN;C.AM=CN,有SSA,不能判定△ABM≌△CDN;D.AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN.故选C.考点:全等三角形的判定.4.(2018·丹阳市云阳学校初二期末)如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个【答案】B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB=√5,AC=3,BC=√2,GD=√5,DE=√2,GE=3,DI=3,EI=√5,所以G,I两点与点D、点E构成的三角形与△ABC全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.5.(2018·江苏中考真题)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )A.a+c B.b+c C.a−b+c D.a+b−c【答案】D【解析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.6.(2018·陕西高新一中初一期末)如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )A.13s B.8s C.6s D.5s【答案】B【解析】分析: 首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=5m,再求出BE的长,然后利用路程除以速度可得时间详解::∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△DCE中{∠B=∠C∠A=∠DECAE=DE,∴△ABE≌△ECD(AAS),∴EC=AB=5m,∵BC=13m,∴BE=8m,∴小华走的时间是8÷1=8(s),故选:B.点睛: 此题主要考查了全等三角形的应用,关键是正确判定△ABE≌△ECD.7.(2018·北京市第四十四中学初二期中)如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲B.乙与丙C.丙D.乙【答案】B【解析】乙图中利用角角边可证明全等.丙图中可以用边角边可证明全等.故选B.8.(2017·上海市廊下中学初二期末)下列条件中不能判定两个直角三角形全等的是( )A.两条直角边分别对应相等B.两个锐角分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等【答案】B【解析】解:A.可以利用边角边判定两三角形全等,不符合题意;B.两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;C.可以利用HL判定两三角形全等,不符合题意;D.可以利用角角边判定两三角形全等,不符合题意.故选B.点睛:本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.9.(2017·大石桥市水源镇九年一贯制学校初二期中)小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;SAS C.2;AAS D.4; ASA【答案】D【解析】由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:D.点睛:本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键. 10.(2017·丹阳市第三中学初二期中)如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.8个B.6个C.4个D.2个【答案】C【解析】解:根据题意,运用SSS可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点.故选C.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要做到不重不漏.二、填空题(共5小题,每小题4分,共计20分)11.(2018·富顺县北湖实验学校初二期末)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________.【答案】80【解析】试题解析:连接BC.∵∠BDC =120°,BD =CD,∴∠DBC =∠DCB =30∘.∵∠ABD =20°,∴∠ABC =50∘.∵AB =AC,∴∠ABC =∠ACB =50∘.∴∠A =80∘.故答案为:80.12.(2017·甘肃省武威第五中学初二月考)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 的长是______.【答案】3.【解析】解:如图,过点D 作DF ⊥AC 于F .∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,∴DE =DF .由图可知,S △ABC =S △ABD +S △ACD ,∴12×4×2+12×AC ×2=7,解得:AC =3.故答案为:3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解答本题的关键.13.(2019·哈尔滨市萧红中学初一期末)如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE=FE ,FC ∥AB ,CF=5,BD=2,点C 到直线AB 的距离为9,△ABC 面积为_________.【答案】31.5【解析】根据平行线性质求出∠A=∠FCE ,根据AAS 推出△ADE ≌△CFE,则AD=CF ,AB=CF+BD=7,再代入三角形面积公式S=,即可解答. 【详解】证明:∵FC ∥AB ,∴∠A=∠FCE ,在△ADE 和△CFE 中∴△ADE ≌△CFE .∴AD=CF .点C 到直线AB 的距离为9△ABC 面积=故△ABC 面积为31.5【点睛】本题考查三角形的判定和性质.于证明AD=CF 是解题关键.14.(2017·四川中考真题)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是____.【答案】1<m <4【解析】试题分析:延长AD 至E ,使AD=DE ,连接CE ,则AE=2m ,∵AD 是△ABC 的中线,∴BD=CD ,在△ADB 和△EDC 中,∵AD=DE ,∠ADB=∠EDC ,BD=CD ,∴△ADB ≌△EDC ,∴EC=AB=5,在△AEC 中,EC ﹣AC <AE <AC+EC ,即5﹣3<2m <5+3,∴1<m <4,故答案为:1<m <4.12ah AED FEC A FCEDE EF =⎧⎪=⎨⎪=⎩∠∠∠∠+527AB CF BD ∴==+=∴792=31.5⨯÷考点:全等三角形的判定与性质;三角形三边关系.15.(2019·内蒙古中考真题)下面三个命题:底边和顶角对应相等的两个等腰三角形全等;两边及其中一边上的中线对应相等的两个三角形全等;斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为_____.【答案】.【解析】由全等三角形的判定方法得出①②正确,③不正确【详解】解:底边和顶角对应相等的两个等腰三角形全等;正确;两边及其中一边上的中线对应相等的两个三角形全等;正确; 斜边和斜边上的中线对应相等的两个直角三角形全等;不正确;故答案为.【点睛】本题考查了命题与定理、全等三角形的判定方法;熟练掌握全等三角形的判定方法是解题的关键.三、解答题16.(2017·江苏中考真题)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.①②③①②①【答案】(1)证明见解析;(2)112.5°.【解析】 (1)根据同角的余角相等可得到∠2=∠4,结合条件∠BAC =∠D ,再加上BC =CE , 可证得结论;(2)根据∠ACD =90°,AC =CD , 得到∠1=∠D =45°, 根据等腰三角形的性质得到∠3=∠5=67.5°, 由平角的定义得到∠DEC =180°−∠5=112.5°.【详解】(1)证明:∵∠BCE =∠ACD =90°,∴∠2+∠3=∠3+∠4,∴∠2=∠4,在△ABC 和△DEC 中,{∠BAC =∠D∠2=∠4BC =CE,∴△ABC ≌△DEC(AAS ),∴AC =CD;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.17.(2018·湖北中考真题)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .【答案】证明见解析.【解析】【分析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC ∠B=∠C BF=CE,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.18.(2017·山东中考真题)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【答案】证明见解析.【解析】试题分析:利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.试题解析:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠BAE=∠DCF,在△AEB和△CFD中,{AB=CD∠BAE=∠DCFAE=CF,∴△AEB≌△CFD(SAS),∴BE=DF.【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键. 19.(2018·湖北中考真题)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【答案】(1)证明见解析;(2)6.【解析】试题分析:(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;(2)首先求出DE和CE的长度,再根据S△AEF=S正方形ABCD-S△ADE-S△ABF-S△CEF得出结果.试题解析:(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣×4×2﹣×4×2×2×2=6.。
图12图A 'C AD B E21图4 C A D B E 图10 C A D B E F 图2 图6m nCAB图11 12CA DB EF M N O ABCD F图 5A B DC EF 图1 图3 45321DAOECB DAC B全等三角形综合复习测试题一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为【 】. (A )50(B )80(C )50或80(D )40或652. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】.(A )2平方厘米 (B )1平方厘米 (C )12平方厘米 (D )14平方厘米3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为【 】. (A )5厘米 (B )7厘米 (C )9厘米 (D )11厘米4. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】.(A )HL (B )SSS (C )SAS (D )ASA 5. 利用三角形全等所测距离叙述正确的是( )A.绝对准确B.误差很大,不可信C.可能有误差,但误差不大,结果可信D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离 6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】. (A )145° (B )180° (C )225° (D )270° 7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长 8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B )4 (C )5 (D )69. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 【 】.(A )45(B )50 (C )60(D )75图7 图810. 如图6所示,m ∥n ,点B ,C 是直线n 上两点,点A 是直线m 上一点,在直线m 上另找一点D ,使得以点D ,B ,C 为顶点的三角形和△ABC 全等,这样的点D 【 】.(A )不存在 (B )有1个 (C )有3个 (D )有无数个 二、填一填,要相信自己的能力!(每小题3分,共30分) 1.在ABC ∆中,若A ∠=1123B C =∠,则ABC ∆是 三角形.2. 如图7所示,BD 是ABC ∆的中线,2AD =,5AB BC +=,则ABC ∆的周长是 .3. 如图8所示所示,在ABC ∆中,BD ,CE 分别是AC 、AB 边上的高,且BD 与CE 相交于点O ,如果135BOC ∠=︒,那么A ∠的度数为 .4. 有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为边长,共可以组成________个形状不同的三角形.5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于_____度.6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共有____对.8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长为_________. 9. 如图13所示,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .10. 如图14所示,三角形纸片ABC ,AB =10厘米,BC =7厘米,AC =6厘米.沿 过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为______厘米.图14 C A DB E 图1335°D AEC B三、做一做,要注意认真审题呀!(本大题共38分) 1.(8分)如图15所示,在ABC ∆中,已知AD BC ⊥,64B ∠=︒,56C ∠=︒. (1)求BAD ∠和DAC ∠的度数;(2)若DE 平分ADB ∠,求AED ∠的度数.图15 2.(10分)已知:线段a ,b ,c (如图16所示),画△ABC ,使BC =a ,CA =b ,AB =c .(保留作图痕迹,不必写画法和证明)3.(10分)图17为人民公园的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB 的长(要求画出草图,写出测量方案和理由). 4.(10分)如图18所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同—直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论. (2)选择(1)中你写出的—个正确结论,说明它正确的理由.四、拓广探索!(本大题共22分)1.(10分)如图19,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.2.(12分)两个大小不同的等腰直角三角形三角板如图20①所示放置,图20②是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图20②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母); (2)试说明:DC BE ⊥.图16 b a c图17 图18 FE BDA C 图20①②DABBD FAE 图19参考答案一、1~10 CB C BC CD ADB. 二、1. 直角. 2.9. 3. 45°. 4.3. 5. 50. 6. HL. 7.4. 8. ∠2,△EDC ,25 m. 9. 125°. 10. 9.三、1. (1)90905634DAC C ∠=︒-∠=︒-︒=︒. (2)109AED ∠=︒. 2.画图略.3.方案不惟一,画图及理由略.4.(1)如果①、③,那么②或如果②、③,那么①; (2)选择“如果①、③,那么②”证明,过程略. 四、1. △AFC 是等腰三角形.理由略 . 2.(1)图2中ABE ACD △≌△.理由如下:ABC △与AED △均为等腰直角三角形AB AC ∴=,AE AD =,90BAC EAD ∠=∠=, BAC CAE EAD CAE ∴∠+∠=∠+∠, 即BAE CAD ∠=∠ , ABE ACD ∴△≌△.(2)说明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=, 又45ACB ∠=90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥。
人教版数学八年级上册第12章全等三角形综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的长为()A.3 B.4C.5 D.3或4或52.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中错误的是() A.BE=ECB.BC=EFC.AC=DFD.△ABC≌△DEF3.如图,点D在△ABC的BC边上,DE与AC交于点F,若∠1=∠2=∠3,AE=AC,则() A.△ABD≌△AFEB.△AFE≌△ADCC.△AFE≌△DFCD.△ABC≌△ADE4. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是()A.8 B.6C.4 D.25.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠EC.EF=BC D.EF∥BC6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB=30°,则∠BCF=() A.150°B.40°C.80°D.70°7. 如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是() A.SSS B.AASC.SAS D.HL8. 如图,已知线段AB=18 m,MA⊥AB于点A,MA=6 m,射线BD⊥AB于点B,P点从B点沿BA向A点运动,每秒走1 m,Q点从B点沿BD向D运动,每秒走2 m,P,Q同时从B出发,则出发x s后,在线段MA上有一点C,使得△CAP与△PBQ全等,则x的值为()A.4 B.6C.4或9 D.6或99. 如图3,AB∥DE,CD=BF,若要使△ABC≌△EDF,还需补充的条件可以是()A.∠B=∠E B.AC=EFC.AB=ED D.不用补充条件10.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是() A.相等B.不相等C.互余或相等 D. 互补或相等第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,则∠A=________度.12.如图,点B在AE上,且∠CAB=∠DAB,若要使△ABC≌△ABD,可补充的条件是_______________.(写出一个即可)13.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_________.14.如图,AD,A′D′分别是锐角三角形ABC和锐角三角形A′B′C′中BC,B′C′边上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,请你补充一个条件______________.(填写一个你认为适当的条件即可)15.如图,B,C,D在同一直线上,∠B=∠D=90°,AB=CD,BC=DE,则△ACE的形状为__________.16.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为_________.17. 如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__ ______块去配,其依据是三角形全等判定定理__ _______.18.如图,已知P(3,3),点B,A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB=___________.三.解答题(共7小题,66分)19.(8分) 如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.20.(8分) 如图,AB=DC,AD=BC,DE=BF.求证:BE=DF.21.(8分) 如图,已知AB=DC,∠ABC=∠DCB,E为AC,BD的交点.(1)求证:△ABC≌△DCB;(2)BE=5 cm,求CE的长.22.(10分) 如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.(10分) 如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠CDB的度数.24.(10分) 如图,在△ABC中,D是BC的中点,过D点的直线GF,交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.25.(12分) 问题背景:如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°. E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是__ _;探索延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由.参考答案:1-5BADCC 6-10DBBCD11. 3212. AC=AD,∠C=∠D(答案不唯一)13. 55°14. CD =C′D′(答案不唯一) 15. 等腰直角三角形 16. 225° 17.③ ASA 18. 619. 解:∵BE =CF,∴BE+EC=CF+EC, 即BC=EF在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AB =DE , AC =DF , BC=EF ,∴△ABC ≌△DEF(SSS), ∴∠B =∠DEF ,∴AB ∥DE20. 解:连接BD.∵AD =BC ,AB =CD ,BD =BD , ∴△ABD ≌△CDB(SSS),∴∠ADB =∠DBC ,∴180°-∠ADB =180°-∠DBC ,∴∠BDE =∠DBF , 在△BDE 和△DBF 中,DE =BF ,∠BDE =∠DBF ,BD=BD , ∴△BDE ≌△DBF(SAS), ∴BE =DF21. 解:(1) 在△ABC 和△DCB 中, ⎩⎪⎨⎪⎧AB =DC , ∠ABC =∠DCB , BC=BC ,∴△ABC ≌△DCB(SAS)(2)∵△ABC ≌△DCB ,∴∠A =∠D , 在△ABE 和△ACE 中, ⎩⎪⎨⎪⎧∠A =∠D , ∠AEB =∠DEC , AB =DC ,∴△ABE ≌△DCE(AAS) ∴CE =BE =5 cm22. 解:(1)∵AC =AD ,∴∠ACD =∠ADC ,又∵∠BCD =∠EDC =90°,∴∠ACB =∠ADE ,在△ABC 和△AED 中,⎩⎪⎨⎪⎧BC =ED ,∠ACB =∠ADE ,AC =AD ,∴△ABC ≌△AED(SAS) (2)当∠B =140°时,∠E =140°, 又∵∠BCD =∠EDC =90°,∴在五边形ABCDE 中,∠BAE =540°-140°×2-90°×2=80° 23. (1)证明:在△ABE 和△CBD 中, ⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD(SAS);(2)解:∵在△ABC 中,AB =CB ,∠ABC =90°, ∴∠BAC =∠ACB =45°, 又∵△ABE ≌△CBD , ∴∠AEB =∠CDB , ∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =45°+30°=75°, ∴∠CDB =75°.24. 解:(1)∵D 是BC 的中点,∴BD =DC ,又AC ∥BG ,∴∠DBG =∠DCF ,∠BGD =∠CFD ,∴△BGD ≌△CFD , ∴BG =CF (2)BE +CF >EF ,理由如下:由(1)得△BGD ≌△CFD ,∴GD =DF , 又ED ⊥GF ,∴∠EDG =∠EDF ,ED =ED , ∴△EDG ≌△EDF ,∴EG =EF ,在△EBG 中BE +BG >EG , ∴BE +CF >EF25. 解:问题背景:EF =BE +DF 探索延伸:EF =BE +DF 仍然成立.理由:延长FD 到点G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG , 可证△ABE ≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,可证△AEF≌△AGF(SAS),∴EF=GF.∵GF=DG+DF=BE+DF,∴EF=BE+DF。
全等三角形综合测试题(含答作者: 日期:第十一章全等三角形综合复习测试题班级_________ 学号 __________ 姓名______________ 分数_______一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为【】(A) 50°(B) 80°(C) 50°或80°(D) 40°或65°2.如图1所示,在△ ABC中, 已知点 D , E, F分别是BC, AD , CE的中点,且S A ABC=4平方厘米,则S A BEF的值为(A) 2平方厘米(B) 1平方厘米11平方厘米2(D)1-平方厘米4图3. 已知一个图形的两边长分别是(A) 5厘米(B) 7厘米4. 工人师傅常用角尺平分一个任意角.边OA, OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与角尺顶点C的射线OC即是/ AOB的平分线•这种做法的道理是(A) HL ( B) SSS ( C) SAS ( D) ASA5. 利用三角形全等所测距离叙述正确的是( )A. 绝对准确B. 误差很大,不可信C. 可能有误差,但误差不大,结果可信D. 如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离6. 在图3所示的3 X3正方形网格中,/ 1 + / 2+/ 3+/ 4 +/ 5等于(A) 145°( B) 180°(C) 225°( D) 270°7•根据下列条件,能判定厶ABC^A A 'B 'C '的是【].(A)(B)(C)(D)8.如图2厘米和9(C) 9厘米做法如下:如图3厘米,且第三边为奇数,则第(D) 11厘米2所示,/ AOB是个任意角,在M , N重合.过【 ].AB=A'B‘,BC=B'C; / A=Z A'/ A= / A', / B= / B‘,AC= B C '/ A= / AB= / BC= / C'AB=A B ', BC=B C ',△ ABC 的周长等于△ A B C 的周长4 所示,△ ABC 中,/ C=90 °点D 在AB 上, BC=BD , DE 丄AB 交AC 于点 E. △ABC 的周长为12,^ ADE(A) 3 ( B) 49.将一副直角三角尺如图的周长为6•贝U BC的长为(C) 55所示放置,(A) 45°(B) 50°(D)已知6AE // BC,则/ AFD的度数是(C) 60°(D) 75°、填一填,要相信自己的能力!(每小题3分,共30分)1 11•在ABC 中,若A= 2 B3 C,则ABC是 -------------------- 三角形.2. 如图7所示,BD 是 ABC 的中线, AD 2 , AB BC 5,贝U ABC 的周长是 ________________ .3. 如图8所示所示,在 ABC 中,BD , CE 分别是AC 、AB 边上的高,且BD 与CE 相交于 点0,如果 BOC 135,那么 A 的度数为 ________________ .4. 有5条线段,长度分别为 1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为 边长,共可以组成 ________________ 个形状不同的三角形. 的大小等于 _____ 度.方向的长度 DF 相等,则△ ABC ^A DEF ,理由是 _________7. 如图11所示,AD // BC , AB // DC ,点0为线段AC 的中点,过点 0作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE=OF .图中全等的三角形共有 __________ 对.8. 如图12所示,要测量河两岸相对的两点 A 、B 的距离,在AB 的垂线BF 上取两点C 、D , 使BC=CD ,过D 作BF 的垂线 DE ,与AC 的延长线交于点 E ,则/ ABC= / CDE=90° , BC=DC ,Z 1= _______ , △ ABC 也 ________ ,若测得 DE 的长为25米,则河宽 AB 长为 9. 如图13所示,有一底角为35。
全等三角形综合能力测试题一、填空题(每题3分,共30分)1.如图1所示,两个三角形全等,其中已知某些边的长度和某些角的度数,•则x=_______.(1) (2)2.如图2所示,在△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,•需要补充的一个条件是____________.3.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_______________.4.在△ABC和△A′B′C中,∠A=∠A′,CD与C′D′分别为AB边和A′B•′边上的中线,再从以下三个条件:①AB=A′B′;②AC=A′C′;③CD=C′D•′中任取两个为题设,另一个作为结论,请写出一个正确的命题:________(用题序号写).5.如图3所示,△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=•5cm,则D点到直线AB 的距离是______cm.(3) (4)6.如图4所示,将一副七巧板拼成一只小动物,则∠AOB=•_______.7.如图5所示,P、Q是△ABC的边BC上的两点,且BP=PQ=QC=•AP=AQ,则∠BAC的大小等于__________.(5) (6) (7)8.已知等腰△ABC中,AB=AC,D为BC边上一点,连结AD,若△ACD•和△ABD都是等腰三角形,则∠C的度数是________.9.如图6所示,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,•连结BD,过A点作BD的垂线,交BC于E,如果EC=3cm,CD=4cm,则梯形ABCD•的面积是_______cm.10.如图7所示,△ABC、△ADE与△EFG都是等边三角形,D•和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是________.二、选择题(每题3分,共30分)11.如图8所示,在∠AOB的两边截取AO=BO,CO=DO,连结AD、BC交于点P,考察下列结论,其中正确的是()①△AOD≌△BOC ②△APC≌△BPD ③点P在∠AOB的平分线上A.只有① B.只有②C.只有①② D.①②③12.下列判断正确的是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等且有一角为30°的两个等腰三角形全等 (8)C.有一角和一边相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等13.如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是()A.相等 B.互余 C.互补或相等 D.不相等14.如图9所示,在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()(9)15.将五边形纸片ABCDE按如图10所示方式折叠,折痕为AF,点E、D分别落在E′,D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°(10) (11) (12)16.如图11所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么ABCD的周长是()A.4 B.8 C.12 D.1617.如图12所示,在锐角△ABC中,点D、E分别是边AC、BC的中点,且DA=DE,那么下列结论错误的是()A.∠1=∠2 B.∠1=∠3 C.∠B=∠C D.∠3=∠B18.如图13所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.2 B.1+22C.2 D2-1(13) (14) (15)19.如图14所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+•∠7=()A.245° B.300° C.315° D.330°20.已知:如图15所示,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD•相交于点O,∠1=∠2,图中全等的三角形共有()A.1对 B.2对 C.3对 D.4对三、解答题(共60分)21.(9分)如图所示,有一池塘,要测量池塘两端A、B的距离,请用构造全等三角形的方法,设计一个测量方案(画出图形),并说明测量步骤和依据.22.(9分)如图所示,已知∠1=∠2,∠C=∠D,求证:AC=BD.23.(9分)如图所示,D、E分别为△ABC的边AB、AC上点,•BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号)(2)证明你写的命题.24.(10分)如图所示,△ABC为等边三角形,BD为中线,延长BC至E,•使DE=BD.求证:CE=12 BC.25.(11分)如图①所示,把一张矩形纸片ABCD沿对角线BD折叠,将重合部分△BFD剪去,得到△ABF和△EDF.①(1)判断△ABF与△EDF是否全等?并加以证明;(2)把△ABF与△EDF不重合地拼在一起,可拼成特殊三角形和特殊四边形,将下列拼图(图②)按要求补充完整.②26.(12分))如图(1)所示,OP是∠MON的平分线,•请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形方法,解答下列问题:(1)如图(2),在△ABC中,∠ACB=90°,∠B=60°,AC、CE分别是∠BAC,∠BCA 的平分线交于F,试判断FE与FD之间的数量关系.(2)如图(3),在△ABC中,若∠ACB≠90°,而(1)中其他条件不变,请问(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,说明理由.答案:1.60° 2.BC=EF或∠D=∠A或∠C=∠F3.如果作两个邻补角的角平分线,那么这两条角平分线互相垂直4.如果①②,那么③ 5.36.135° 7.120° 8.36°或45°9.26 10.15 11.D 12.D 13.C 14.D15.B 16.D 17.D 18.B 19.C 20.D21.在平地任找一点O,连OA、OB,延长AO至C使CO=AO,延BO至D,使DO=•BO,•则CD=AB,依据是△AOB≌△COD(SAS),图形略.22.证△ACB≌△BDA即可.23.(1)条件①、③结论②、④,(2)证明略24.略25.(1)△ABF≌△EDF,证明略(2)如图:26.(1)FE=FD(2)(1)中的结论FE=FD仍然成立.在AC上截取AG=AE,连结FG.证△AEF≌△AGF得∠AFE=∠AFG,FE=FG.由∠B=60°,AD、CE分别是∠BAC,∠BCA的平分线得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE及FC为公共边.可证△CFG≌△CFD,所以FG=FD,所以FE=FD.。
八年级全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.4.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n个等腰三角形的底角∠A n= 11()802n-︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.5.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=1302BEC∠=︒,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.7.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.8.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°)所以 x°=180°-2α【点睛】求出M,N在什么位子△PMN周长最小是解此题的关键.13.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.14.如图,点D,E是等边三角形ABC的边BC,AC上的点,且CD=AE,AD交BE于点P,BQ⊥AD于点Q,已知PE=2,PQ=6,则AD等于( )A.10 B.12 C.14 D.16【答案】C【解析】【分析】由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°.在Rt△BPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,AD=BE,∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14.故选C.【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD=60°是解答本题的关键.15.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.16.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△A CI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.17.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.19.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P ″的坐标是(8,4);假设0P=PD ,则由P 点向0D 边作垂线,交点为Q 则有PQ 2十QD 2=PD 2,∵0P=PD=5=0D ,∴此时的△0PD 为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B .20.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(1,0),224+B .(3,0),224+C .(2,0), 25D .(2,0),252+【答案】D【解析】 作A 关于x 轴的对称点N (1,-2),连接BN 与x 轴的交点即为点P 的位置,此时△ABP 的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩, 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x=,∴点P的坐标为(2,0);∵A(1,2),B(3,2),∴AB//x轴,∵AN⊥x轴,∴AB⊥x轴,在Rt△ABC中,AB=2,AN=4,由勾股定理得,BN==∵AP=NP,∴△ABP的周长最小值为:AB+BP+AP=AB+BP+PN=AB+BN故选D.点睛:本题考查最短路径问题.利用轴对称作出点P的位置是解题的关键.。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
初中数学:《全等三角形》测试题(含答案)一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.53.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠ED A=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤57.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.《全等三角形》参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠B的度数,根据全等三角形的性质得到答案.【解答】解:∵∠A=70°,∠ACB=60°,∴∠B=50°,∵△ABC≌△DEC,∴∠E=∠B=50°,故选:B.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.5【考点】全等三角形的性质.【分析】根据全等三角形的性质求出AC=5,AE=2,进而得出CE的长.【解答】解:∵△ABC≌△DAE,∴AC=DE=5,BC=AE=2,∴CE=5﹣2=3.故选C.【点评】本题考查了全等三角形的性质的应用,关键是求出AC=5,AE=2,主要培养学生的分析问题和解决问题的能力.3.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即AD平分∠EDC;在△ACD中,CD+AC>AD所以ED+AC>AD.综上只有B选项无法证明,B要成立除非∠B=30°,题干没有此条件,B错误,故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B和∠C,根据三角形内角和定理求出∠BAC,根据角平分线定义求出即可.【解答】解:∵△ABC≌△EDF,∠EDA=20°,∠F=60°,∴∠B=∠EDF=20°,∠F=∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠BAC=50°,故选A.【点评】本题考查了全等三角形的性质,三角形内角和定理,角平分线定义的应用,能根据全等三角形的性质求出∠B和∠C是解此题的关键.6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤5【考点】角平分线的性质;垂线段最短.【分析】过点D作DE⊥OB于E,根据角平分线上的点到角的两边距离相等可得DP=DE,再根据垂线段最短解答.【解答】解:如图,过点D作DE⊥OB于E,∵OC是∠AOB的角平分线,DP⊥OA,∴DP=DE,由垂线段最短可得DQ≥DE,∵DP=5,∴DQ≥5.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【专题】证明题.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB 即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,在△OA′B′和△OAB中,∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5m,故答案为:5.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .【考点】角平分线的性质.【分析】首先由线段的比求得CD=6,然后利用角平分线的性质可得D到边AB的距离是.【解答】解:∵BC=15,BD:DC=3:2∴CD=6∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=6.故答案为:6.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.【考点】全等三角形的性质.【分析】△ABE≌△ACF得到∠EAB=∠FAC从而∠1=∠2,这样求∠2就可以转化为求∠1,在△AEM中可以利用三角形的内角和定理就可以求出.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.【点评】本题主要考查了全等三角形的性质,全等三角形的对应角相等,是需要识记的内容;做题时要认真观察图形,找出各角之间的位置关系,这也是比较重要的.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和Rt △AOP≌Rt△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在Rt △AEP与Rt△BFP中,,∴Rt △AEP≌Rt△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .【考点】全等三角形的性质.【专题】动点型.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12,P、C重合.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【考点】作图—应用与设计作图.【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)利用全等三角形的判定与性质得出答案.【解答】解:(1)如图所示:OC即为所求.(2)没有偏离预定航行,理由如下:在△AOP与△BOP中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C在∠AOB的平分线上.【点评】此题主要考查了应用设计与作图以及全等三角形的判定与性质,正确应用角平分线的性质是解题关键.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】先过点P作PE⊥OA于点E,PF⊥OB于点F,构造全等三角形:Rt△PCE 和Rt△PDF,这两个三角形已具备两个条件:90°的角以及PE=PF,只需再证∠EPC=∠FPD,根据已知,两个角都等于90°减去∠CPF,那么三角形全等就可证.【解答】解:PC与PD相等.理由如下:过点P作PE⊥OA于点E,PF⊥OB于点F.∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,∴PE=PF(角平分线上的点到角两边的距离相等)又∵∠AOB=90°,∠PEO=∠PFO=90°,∴四边形OEPF为矩形,∴∠EPF=90°,∴∠EPC+∠CPF=90°,又∵∠CPD=90°,∴∠CPF+∠FPD=90°,∴∠EPC=∠FPD=90°﹣∠CPF.在△PCE与△PDF中,∵,∴△PCE≌△PDF(ASA),∴PC=PD.【点评】本题考查了角平分线的性质,以及四边形的内角和是360°、还有三角形全等的判定和性质等知识.正确作出辅助线是解答本题的关键.。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )°°°°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBA =OC D.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。
全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。
第十二章全等三角形章末综合测试一.选择题1.如图,已知两个三角形全等,那么∠1的度数是()A.72°B.60°C.58°D.50°2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.如图,在△ABC中,点D、E分别在边AB、AC上,BE与CD相交于点O,如果已知∠ABC=∠ACB,那么还不能判定△ABE≌△ACD,补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A.AD=AE B.BE=CD C.OB=OC D.∠BDC=∠CEB 5.如图,AD=AE,BD=CE,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40°D.∠C=30°6.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′7.在Rt△ABC中,∠ACB=90°,E是AB上一点,且BE=BC,过D作DE⊥AB交AC 于E,如果AC=5cm,则AD+DE为()A.3cm B.4cm C.5cm D.6cm8.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.49.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.5D.610.如图,AE是△ABC的角平分线,AD⊥BC于点D,点F为BC的中点,若∠BAC=104°,∠C=40°.则有下列结论:①∠BAE=52°;②∠DAE=2°;③EF=ED;④S△ABF=S△ABC.其中正确的有()A.1个B.2个C.3个D.4个二.填空题11.如果△ABC≌△DEF,AB=2,AC=4,△DEF的周长为偶数,则EF的长为.12.如图,△ABC≌△DCB,若AB=4cm,BC=6cm,AC=5cm,则DC=cm.13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.14.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)15.如图,在正方形组成的网格中,△ABC的三个顶点在格点上,现以△ABC的一边再作一个三角形,使所得的三角形与△ABC全等,且其顶点也在格点上,则这样的三角形有个.16.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.17.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于.18.△ABC中,∠B,∠C的平分线交于点O,如果点O到BC边的距离为5,则点O到AB 边的距离为.19.如图,点P是∠AOB的角平分线上的一点,过点P作PC∥OA交OB于点C,PD⊥OA,若∠AOB=60°,OC=6,则PD=.20.如图已知,∠BAC=30°,D为∠BAC平分线上一点,DF∥AC交AB于F,DE⊥AC 于E,若DE=2,则DF=.三.解答题21.已知:如图,AB=CD,AC=BD,AC、BD交于点E,过点E作EF⊥BC于点F.求证:BF=CF.22.如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足AB=CD,AE=DF,CE=BF,连接AF;(1)∠B与∠C相等吗?请说明理由.(2)若∠B=40°,∠DFC=20°,若AF平分∠BAE时,求∠BAF的度数.23.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.24.已知:如图,AD∥BC,DB平分∠ADC,CE平分∠BCD,交AB于点E,BD于点O.求证:点O到EB与ED的距离相等.参考答案1.解:∵两个三角形全等,∴∠2=∠1=180°﹣58°﹣72°=50°,故选:D.2.解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选:D.3.解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用边角边或HL判定两三角形全等,不符合题意;D、可以利用角角边判定两三角形全等,不符合题意.故选:A.4.解:添加A选项中条件可用SAS判定两个三角形全等;添加B选项以后是SSA,无法证明三角形全等;添加C选项中条件首先根据等边对等角得到∠OBC=∠OCB,再由等式的性质得到∠ABE =∠ACD,最后运用ASA判定两个三角形全等;添加D选项中条件首先根据等角的补角相等可得∠ADC=∠AEB,再由AAS判定两个三角形全等;故选:B.5.解:A、正确.∵AD=AE∴∠ADE=∠AED∵BD=CE∴BD+DE=CE+DE,即BE=CD∴△ABE≌△ACD(SAS)B、正确.∵△ABE≌△ACD∴AB=AC,∠B=∠C∵BD=CE∴△ABD≌△ACE(SAS)C、错误.∵∠ADB=∠AEC=100°∴∠ADE=∠AED=80°∴∠DAE=20°D、正确.∵∠BAE=70°∴∠BAD=50°∵∠ADB=∠AEC=100°∴∠B=∠C=30°故选:C.6.解:A中两边夹一角,满足条件;B中两角夹一边,也可证全等;C中∠B并不是两条边的夹角,C不对;D中两角及其中一角的对边对应相等,所以D也正确,故选:C.7.解:∵DE⊥AB,AC⊥BC,BE=BC,BD=BD ∴△DEB≌△DCB∴DE=DC∴AD+DE=AD+DC=AC∵AC=5cm∴AD+DE=5cm故选:C.8.解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∴S△ABC=AC•BC=×AB•OE+AC•OD+BC•OM,∴=+•OM+,∴OM=2,故选:B.9.解:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE=2,∵S△ABD+S△ACD=S△ABC,∴×2×4+×2×AC=7,∴AC=3.故选:A.10.解:AE是△ABC的角平分线,∠BAC=104°,∴∠BAE=∠CAE=52°,∴①正确;∵∠C=40°,AD⊥BC,∴∠CAD=50°,∴∠DAE=∠CAE﹣∠CAD=52°﹣50°=2°,∴②正确;∵△AEF是斜三角形,△AED是直角三角形,∴△AEF和△AED不全等,∴EF≠ED,∴③错误;∵点F为BC的中点,∴BF=BC,∴S△ABF=S△ABC,∴④正确;故选:C.11.解:4﹣2<BC<4+22<BC<6.若周长为偶数,BC也要取偶数所以为4.又因为△ABC≌△DEF,所以BC=EF.所以EF的长也是4.故答案是:4.12.解:∵△ABC≌△DCB,∴AB=DC=4cm.故填4.13.解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.14.解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.15.解:如图所示:以AB为边的有3个,以BC为边的有1个,以AC为边的有1个,共有5个,故答案为:5.16.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.17.解:过E作EF⊥BC于点F,∵CD是AB边上的高,BE平分∠ABC,∴BE=DE=5,∴S△BCE=BC•EF=×5×1=5,故答案为:5.18.解:∵△ABC中,∠B,∠C的平分线交于点O,∴点O到AB边的距离=点O到BC边的距离=5,故答案为:519.解:如图,过点P作PE⊥OB于E,∵OP是∠AOB的角平分线,PD⊥OA∴PE=PD,∵OP是∠AOB的角平分线,∠AOB=60°,∴∠AOP=∠BOP=30°,∵PC∥OA,∴∠OPC=∠AOP,∴∠BOP=∠OPC=30°,∴PC=OC=6,∠PCE=60°.∴PE=OC•sin60°=3.∴PE=PD=3故答案为:3.20.解:如图,过点D作DG⊥AB于G,∵AD是∠BAC的平分线,DE⊥AC∴DG=DE,∵DF∥AC,∴∠DFG=∠BAC=30°,在Rt△DFG中,DF=2DG=2×2=4.故答案为:4.21.证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠ACB=∠DBC,∴EB=EC,∵EF⊥BC,∴BF=CF.22.解:(1)∠B=∠C,理由如下:∵CE=BF,∴BE=CF,在△AEB和△DFC中,,∴△AEB≌△DFC(SSS),∴∠B=∠C;(2)∵△AEB≌△DFC,∴∠AEB=∠DFC=20°,∴∠EAB=180°﹣∠B﹣∠AEB=120°,∵AF平分∠BAE,∴∠BAF=∠BAE=60°.23.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC=S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC =AB+BC+AC,又∵△ABC的周长为16,∴S△ABC=16.24.证明:∵AD∥BC,∴∠ADC+∠BCD=180°,∵DB平分∠ADC,CE平分∠BCD,∴∠ODC+∠OCD=90°,∴∠DOC=90°,∴∠DOC=∠BOC,又∵CO=CO,∠DCO=∠BCO,∴△DCO≌△BCO(ASA)∴CB=CD,∴OB=OD,∴CE是BD的垂直平分线,∴EB=ED,又∠DOC=90°,∴EC平分∠BED,∴点O到EB与ED的距离相等.。
第十二章全等三角形章末综合测试一.选择题1.如图,△ABC≌△A′B′C,若∠B=30°,∠A=80°,∠A′CB=45°,则∠B′CB 的度数为()A.25°B.30°C.35°D.40°2.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°3.已知图中的两个三角形全等,则∠α等于()A.50°B.60°C.70°D.80°4.在下列条件下,不能判定△ABC≌△DEF的是()A.∠A=∠D,AB=DE,AC=DF B.∠A=∠D,∠B=∠E,AB=DEC.∠B=∠E,∠C=∠F,AC=DF D.∠B=∠E,BC=EF,AC=DF5.①面积相等的两个三角形是全等三角形;②三个角分别相等的两个三角形是全等三角形;③全等三角形的周长相等;④有两边及其中一边的对角分别对应相等的两个三角形全等.上述正确的有()A.1个B.2个C.3个D.4个6.已知如图,AD是△ABC的中线,∠1=2∠2,CE⊥AD,BF⊥AD的延长线,点E、F为垂足,EF=6cm,则BC的长为()A.6cm B.12cm C.18cm D.24cm7.如图,AD是△ABC的高,AD=BD=8,E是AD上的一点,BE=AC=10,AE=2,BE 的延长线交AC于点F,则EF的长为()A.1.2B.1.5C.2.5D.38.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB9.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=10,则点P到AB的距离是()A.15B.12C.5D.1010.如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()cm2.A.24B.27C.30D.33二.填空题11.如图,△ABD≌△ACE,∠B与∠C是对应角,若AE=5cm,BE=7cm.则AC=.12.如图,已知△ABC≌△ADE,且B,C,E在同一直线上,若∠BED=75°,∠BAE=110°,则∠CAD的度数为.13.如图所示,坐标平面上,△ABC≌△DEF,其中A,B,C的对应顶点分别为D,E,F,且AB=BC=5,∠BAC=∠BCA.若A点的坐标为(﹣3,1),B,C两点的纵坐标都是﹣3,D,E两点在y轴上,则点F到y轴的距离为.14.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=8,BD=3,则DE 的长是.15.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CF⊥AD,BE⊥AD.若CF=8,BE=6,AD=10,则EF的长为.16.如图,在四边形ABCD中,AB=AD,BC=DC,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若∠A=60°,AB=4,CE=3,则BC的长为.17.在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=时,△ABC和△APQ全等.18.如图,△ABC中,∠C=90°,AD平分∠BAC,若DC=2,则点D到线段AB的距离等于.19.如图,在△ABC中,∠C=90°,D是BC上一点,∠1=∠2,CB=8,BD=5.则点D 到AB的距离为.20.如图△ABC中,∠ACB=90°,AB=10,AC=8,CB=6,I是三条角平分线的交点,ID⊥BC于D,则ID的长是.三.解答题21.如图,△EFG≌△NMH,E,H,G,N在同一条直线上,EF和NM,FG和MH是对应边,若EH=1.1cm,NH=3.3cm.求线段HG的长.22.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.23.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE,延长AB分别交CD、ED于点G、F.(1)试说明:AB=CD;(2)若∠D=30°,∠E=65°,求∠FGC的度数.24.如图,△ABC中,AB=BC,BD⊥AC交AC于点D,延长AC至E,使AE=BC,过E 作EF⊥AB交AB于点F.(1)若∠DBA=15°,求∠BCE的度数;(2)求证:AC=2AF.25.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC于E,BF⊥AC 于F.(1)若AB=CD,求证:GE=GF.(2)将△DEC的边EC沿AC方向移动到如图②,其余条件不变,上述结论是否成立?请说明理由.26.已知,如图,∠C=∠D=90°,E是CD的中点,BE平分∠ABC.求证:AE平分∠DAB.27.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.参考答案一.选择题1.解:∵△ABC≌△A′B′C,∴∠ACB=∠A'CB',∴∠ACB﹣∠A'CB=∠A'CB'﹣∠A'CB,∴∠ACA'=∠BCB',∵∠B=30°,∠A=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵∠A′CB=45°,∴∠B'CB=25°,故选:A.2.解:∵CD平分∠BCA,∴∠ACD=∠BCD=∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.3.解:∵两个三角形全等,∴∠α=180°﹣50°﹣60°=70°,故选:C.4.解:A、由∠A=∠D,AB=DE,AC=DF,根据SAS,可以判定△ABC≌△DEF,本选项不符合题意.B、由∠A=∠D,∠B=∠E,AB=DE,根据ASA,可以判定△ABC≌△DEF,本选项不符合题意.C、由∠B=∠E,∠C=∠F,AC=DF,根据AAS,可以判定△ABC≌△DEF,本选项不符合题意.D、由∠B=∠E,BC=EF,AC=DF,SSA无法判断三角形全等,本选项符合题意,故选:D.5.解:①面积相等的两个三角形是全等三角形,错误,理由是三角形不满足全等的条件.②三个角分别相等的两个三角形是全等三角形,错误,理由是三角形不满足全等的条件.③全等三角形的周长相等,正确.④有两边及其中一边的对角分别对应相等的两个三角形全等,错误,理由是SSA三角形不一定全等.故选:A.6.解:∵AD是△ABC的中线,∴BD=CD,∵CE⊥AD,BF⊥AD,∴∠CED=∠F=90°,在△CDE和△BDF中,,∴△CDE≌△BDF(AAS),∴DE=DF=EF=3cm,∵∠1=2∠2,∠1+∠2=180°,∴∠2=60°,∴∠DCE=30°,∴CD=2DE=6cm,∴BC=2CD=12cm,故选:B.7.解:∵AD是△ABC的高,∴AD⊥BC,∴∠ADC=∠BDE=90°,在Rt△ACD和Rt△BED中,,∴Rt△ACD≌△Rt△BED(HL),∴CD=ED=AD﹣AE=8﹣2=6,∠CAD=∠EBD,∵∠C+∠CAD=90°,∴∠C+∠EBD=90°,∴∠BFC=90°,∴BE⊥AC,∵△ABC的面积=△ABD的面积+△ACD的面积,∴AC×BF=AD×BD+CD×AD,∴AC×BF=AD×BD+CD×AD,即10BF=8×8+8×6=112,∴BF=11.2,∴EF=BF﹣BE=11.2﹣10=1.2,故选:A.8.解:A.∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B.∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C.∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D.∵S AEB=AE×BC,S△EDB=DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C.9.解:过P点作PF⊥AB于F,如图,∵AD平分∠BAC,PE⊥AC,PF⊥AB,∴PF=PE=10,即点P到AB的距离为10.故选:D.10.解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3,同理可得OF=OD=3,∴S△ABC=S△OAB+S△OBC+S△OAC=×OE×AB+×OD×BC+×OF×AC=(AB+BC+AC),∵△ABC的周长是18,∴S△ABC=×18=27(cm2).故选:B.二.填空题11.解:∵AE=5cm,BE=7cm,∴AB=12cm,∵△ABD≌△ACE,∴AC=AB=12cm,故答案为:12cm.12.解:∵△ABC≌△ADE,∴AC=AE,∠B=∠D,∠BAC=∠DAE,∴∠ECA=∠CEA=∠B+∠BAC,∴∠CEA+∠DAE+∠D=2∠D+2∠DAE=180°﹣∠BED=180°﹣75°=105°,∴∠D+∠DAE=52.5°,∴∠CAD=∠BAE﹣∠BAC﹣∠DAE=110°﹣52.5°=57.5°,故答案为:57.5°.13.解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P,∴∠DPF=∠AKC=∠CHA=90°,∵AB=BC,∴∠BAC=∠BCA,在△AKC和△CHA中,,∴△AKC≌△CHA(AAS),∴KC=HA,∵B、C两点在直线y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4,∴KC=4,∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF,在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故答案为:4.14.解:∵AE⊥CE于点E,BD⊥CD于点D,∴∠AEC=∠D=90°,在Rt△AEC与Rt△CDB中,,∴Rt△AEC≌Rt△CDB(HL),∴CE=BD=3,CD=AE=8,∴DE=CD﹣CE=8﹣3=5,故答案为:5.15.解:∵AB⊥CD,CF⊥AD,BE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∠AEB=∠CFD=90°,∴∠A=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF=6,AE=CF=8,∵AF=AD﹣DF=10﹣6=4,∴EF=AE﹣AF=8﹣4=4,故答案为:4.16.解:如图,连接AC交BD于点O,∵AB=AD=4,BC=DC,∠A=60°,∴△ABD是等边三角形,∴AB=AD=BD=4,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAO=∠DAO=30°,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD﹣AE=4﹣3=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE﹣EF=2,OF=OD﹣DF=1,∴OC===,∴BC===,故答案为:.17.解:①当P运动到AP=BC时,如图1所示:在Rt△ABC和Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=B=8cm;②当P运动到与C点重合时,如图2所示:在Rt△ABC和Rt△PQA中,,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=15cm.综上所述,AP的长度是8cm或15cm.故答案为:8cm或15cm.18.解:过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,DC=2,∴DE=DC=2,即点D到线段AB的距离等于2,故答案为:2.19.解:过D作DE⊥AB于E,∵∠1=∠2,∴AD平分∠BAC,∵∠C=90°,∴DE=CD=BC﹣BD=3,∴D到AB的距离为3.故答案为3.20.解:过I作IE⊥AC于E,IF⊥AB于F,连接IA,IC,IB,∵I是三条角平分线的交点,ID⊥BC,∴OE=ID=IF,设OE=ID=IF=R,∵△ABC中,∠ACB=90°,AC=8,CB=6,∴△ABC的面积S=×AC×BC==24,∴S△ACI+S△BCI+S△ABI=24,∴AC×IE++IF=24,∴+6×R+R=24,解得:R=2,即ID=2,故答案为:2.三.解答题21.解:∵△EFG≌△NMH,EF和NM,FG和MH是对应边,∴EG和NH是对应边,∴EG=NH,∴EH+HG=HG+NG,∵EH=1.1,∴NG=1.1∵NH=3.3cm,∴HG=NH﹣NG=3.3﹣1.1=2.2(cm).22.(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.23.(1)证明:∵BC∥DE,∴∠ACB=∠E,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS),(2)解:∵△ABC≌△DCE,∴∠A=∠D=30°,∴∠DF A=∠A+∠E=30°+65°=95°,∴∠FGC=∠D+∠DF A=30°+95°=125°.24.(1)解:∵AB=BC,BD⊥AC,∴∠DBC=∠DBA=15°,∠BAC=∠BCA=(180°﹣15°﹣15°)=75°,∴∠BCE=180°﹣∠BCA=105°;(2)证明:∵BD⊥AC,AB=BC,EF⊥AB,∴AD=CD,∠ADB=∠AFE=90°,∵AB=BC,AE=BC,∴AB=AE,在△ABD和△AEF中,,∴△ABD≌△AEF(AAS),∴AD=AF,∴AD=AF=CD,∴AC=2AF.25.解:(1)∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90°,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CED中,,∴Rt△ABF≌Rt△CED(HL),∴BF=DE,在△BFG和△DEG中,,∴△BFG≌△DEG(AAS),∴EG=FG;(2)成立,理由如下:∵BE⊥AC,DF⊥AC,∴∠AEB=∠DFC=∠GEB=∠DFG=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴BE=DF,在△BEG和△DFG中,,∴△BEG≌△DFG(AAS),∴EG=FG.26.证明:过E点作EF⊥AB于F,如图,∵BE平分∠ABC,EC⊥BC,EF⊥AB,∴EC=EF,∵E是CD的中点,∴ED=EC,∴EF=ED,而EF⊥AB,ED⊥AD,∴AE平分∠DAB.27.(1)解:∵EF⊥AB,∠AEF=50°,∴∠F AE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°;(2)证明:过点E作EG⊥AD于G,EH⊥BC于H,∵∠FEA=∠DAE=40°,EF⊥BF,EG⊥AD,∴EF=EG,∵BE平分∠ABC,EF⊥BF,EH⊥BC,∴EF=EH,∴EG=EH,∵EG⊥AD,EH⊥BC,∴DE平分∠ADC;(3)解:∵S△ACD=15,∴×AD×EG+×CD×EH=15,即×4×EG+×8×EG=15,解得,EG=EH=,∴EF=EH=,∴△ABE的面积=×AB×EF=×7×=.。
全等三角形经典题目测试含答案(总19页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March一.选择题(共13小题,共39分)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()(第1题)(第2题)(第3题)(第4题)A.B.4C.D.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.54.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.56.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()(第7题)(第8题)A.330°B.315°C.310°D.320°8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()(第11题)(第12题)(第13题)A.3B.4C.5D.612.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个13.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C二.填空题(共7小题,共21分)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_________.(第14题)(第15题)15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=_________cm.(第16题)(第17题)(第18题)17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_________度.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有_________对全等三角形.19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:_________,使OC=OD(只添一个即可).20.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_________度.三.解答题(共6小题,共60分)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.24.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.25.如图,在∆ABC中,AB=AC,点D是BC的中点,点E在AD上.⑴求证:BE=CE;⑵若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:∆AEF≌∆BCF.26.(10分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.EAF ADE一.选择题(共13小题)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC,∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.B.4C.D.考点:全等三角形的判定与性质.分析:先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.点评:此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质.专题:计算题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.4.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD考点:全等三角形的判定.分析:根据全等三角形的判定方法,对每个选项分别分析、解答出即可;解答:解:A、BC=BD,∠BAC=∠BAD,又由图可知AB为公共边,不能证明△ABC和△ABD全等,故本项错误,符合题意;B、∠C=∠D,∠BAC=∠BAD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;C、∠BAC=∠BAD,∠ABC=∠ABD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;D、BC=BD,AC=AD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意.故选A.点评:本题主要考查了全等三角形的判定方法,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5考点:角平分线的性质;三角形的面积.分析:首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.解答:解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2×AC×2,∴AC=3.故选B.点评:本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.6.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°考点:全等三角形的判定与性质.专题:网格型.分析:利用正方形的性质,分别求出多组三角形全等,如∠1和∠7的余角所在的三角形全等,得到∠1+∠7=90°等,可得所求结论.解答:解:由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°故选B.点评:考查了全等三角形的性质与判定;做题时主要利用全等三角形的对应角相等,得到几对角的和的关系,认真观察图形,找到其中的特点是比较关键的.8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP考点:角平分线的性质.分析:本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.解答:解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.点评:本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组考点:全等三角形的判定.分析:要判断能不能使△ABC≌△DEF一定要熟练运用判定方法判断,做题时注意两边与其中一边的对角相等的两个三角形不一定全等,要根据已知条件的位置来选择判定方法.解答:解:根据全等三角形的判定方法可知:①AB=DE,BC=EF,AC=DF,用的判定方法是“边边边”;②AB=DE,∠B=∠E,BC=EF,用的判定方法是“边角边”;③∠B=∠E,BC=EF,∠C=∠F用的判定方法是“角边角”;④AC=DF,∠A=∠D,∠B=∠E,用的判定方法是“角角边”;因此能使△ABC≌△DEF的条件共有4组.故选D.点评:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定考点:全等三角形的判定与性质.分析:本题可通过构建全等三角形进行求解.过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;因此只要证明△AMC≌△FNE,即可得出h1=h2.解答:解:过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;在△AMC和△FNE中,∵AM⊥BC,FN⊥DE,∴∠AMC=∠FNE;∵∠FED=115°,∴∠FEN=65°=∠ACB;∵又AC=FE,∴△AMC≌△FNE;∴AM=FN,∴h1=h2.故选C.点评:本题主要考查了全等三角形的判定几性质;做题中通过作辅助线构造了全等三角形是解决本题的关键,也是一种很重要的方法,要注意学习、掌握.11.(2007•义乌市)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6考点:角平分线的性质.分析:已知条件给出了角平分线还有PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.解答:解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选A.点评:本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.12.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或夹已知角的另一边.解答:解:∠1=∠2,AC=AD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.13.(2005•乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C考点:角平分线的性质.分析:根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△ABC≌△AB′C即可.解答:解:如图:∵AC平分∠PAQ,点B,B′分别在边AP,AQ上,A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,AB=AB′;B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;C:若∠ACB=∠ACB′,则在△ABC与△AB'C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.故选B.点评:本题考查的是三角形角平分线的性质及三角形全等的判定;做题时要结合已知条件在图形上的位置对选项逐个验证.二.填空题(共7小题)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.考点:角平分线的性质.分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.解答:解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.点评:本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=3cm.考点:全等三角形的判定与性质.分析:根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FEC全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.解答:解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.点评:本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.考点:直角三角形全等的判定;全等三角形的性质.分析:根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.考点:全等三角形的判定.分析:根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.解答:解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD,使OC=OD(只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.20.(2005•荆门)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=135度.考点:全等三角形的判定与性质.专题:网格型.分析:根据对称性可得∠1+∠3=90°,∠2=45°.解答:解:观察图形可知,∠1所在的三角形与角3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.三.解答题(共6小题)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.解答:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.解答:证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).点评:此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.考点:全等三角形的判定.专题:证明题.分析:根据垂直的定义以及等量代换可知∠CBE=∠ACD,根据已知条件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根据全等三角形的判定AAS即可证明△BEC≌△CDA.解答:证明:∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,∴△BEC≌△CDA.点评:本题考查了全等三角形的判定定理,本题根据AAS证明两三角形全等,难度适中.24.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).考点:直角三角形全等的判定;三角形内角和定理.专题:几何综合题.分析:由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.25.(2005•扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.解答:解:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.26.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.考点:全等三角形的判定与性质.专题:证明题.分析:首先证明∠B=∠2,再加上条件AE=BC,∠FAF=∠BCA,可利用ASA证明△ABC≌△FEA,再根据全等三角形对应边相等可得AB=FE.解答:证明:∵EF⊥AB于点D,∴∠ADE=90°.∴∠1+∠2=90°,又∵∠C=90°,∴∠1+∠B=90°.∴∠B=∠2,在△ABC和△FEA中,,∴△ABC≌△FEA(ASA)∴AB=FE.。
全等三角形姓名一.填空题(每题3分,共30分)1.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:_______.2.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_________.3. 已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.4. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图 , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.7.已知:△ABC≌△A’B’C’,△A’B’C’的周长为12cm,则△ABC的周长为 .8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.4321EDBA9.如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________.10.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.AB CD12AA'B CC'二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CAD C.BE=DC D.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有(除去∠DFE=∠BFC)()A.5对B.4对C.3对D.2对CDEABO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ()A.70°B.80°C.100°D.90°三.解答题(每题8分,共40分)21. 已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A答案1.BC 和BC,CD 和CA,BD 和AB2.AB 和AC,AD 和AE,BD 和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃ 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由ASA 可证 22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以 △ABC ≌△CED AB=ED 23.证△ABC ≌△FED 得∠ACB=∠F 所以AC ∥DF 24.证△BED ≌△CFD 得∠E=∠CFD 所以CF ∥BE 25.由AAS 证△ABC ≌△CED AC=EF.全等三角形 B 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.4. 如图4,△ABC ≌△AED ,若AE AB =,︒=∠271,则=∠2 .图1图25.如图5,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.6.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,则图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .8.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.9.若△ABC ≌△A ′B ′C ′,AD 和A ′D′分别是对应边BC 和B ′C ′的高,则△ABD ≌△A ′B ′D ′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB =_________. 二.选择题:(每题3分,共24分)11.如图9,△ABC ≌△BAD ,A 和B.C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对 12.下列说法正确的是 ( ) A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )图5 图6A EB O FC 图8 A CD 图9A.∠AB.∠BC.∠CD.∠B 或∠C 14.下列条件中,能判定△ABC ≌△DEF 的是( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A.AD >1 B.AD <5 C.1<AD <5 D.2<AD <10 16.下列命题正确的是 ( ) A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点图10图 11B DOCAC. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点三.解答题(共46分)19. (8分)如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?21. (7分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.AB E CD22. (8分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.ABEO FDCACDB24. (8分)如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A.C作BD的垂线,垂足分别为E.F,求证:EF=CF-AE.答案1.△ADC2. ∠B=∠C或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135°11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直 23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD 24.证△ABF≌△BCF图 5人教课标版八年级(上)数学检测试卷全等三角形 C 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,若△ABC ≌△ADE ,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm ,DM=5cm ,∠DAM=300,则AN= cm ,NM= cm ,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF , (1)若以“SAS ”为依据,还须添加的一个条件为________________. (2)若以“ASA ”为依据,还须添加的一个条件为________________. (3)若以“AAS ”为依据,还须添加的一个条件为________________.5.如图5,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则△______≌△_______..ABCDE图1ABCDMN 图2A9. 如图9,AB=CD ,AD=BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若︒=∠60ADB ,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF ≌△ABC ,且AC >BC >AB 则在△DEF 中,______< ______< _____.图 10二.选择题(每题3分,共30分)11. 在ABC ∆和C B A '''∆中,下列各组条件中,不能保证:C B A ABC '''∆≅∆的是( ) ① B A AB ''= ② C B BC ''= ③ C A AC ''= ④ A A '∠=∠⑤ B B '∠=∠ ⑥ C C '∠=∠A. 具备①②③B. 具备①②④C. 具备③④⑤D. 具备②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边ABCDEFA. 一定全等B. 一定不全等C. 不一定全等D. 面积相等14. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的15A. 150°B.40°C.80°D. 90°A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形D. 有三个角对应相等的两个三角形是全等三角形18.下列说法错误的是()A. 全等三角形对应边上的中线相等B. 面积相等的两个三角形是全等三角形C. 全等三角形对应边上的高相等D. 全等三角形对应角平分线相等19.已知:如图,O为AB中点,BD⊥CD,AC⊥CD,OE⊥CD,则下列结论不一定成立的是()A. CE=EDB. OC=ODC. ∠ACO=∠ODBD. OE=21CDA BCED A BCDEF12A DB CEF20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-21∠A C. 180°-∠A D. 45°-21∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由..3421DCBAFEDCBA24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.CE DB AO答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠D5.ACD,AED6.28°7.58.SAS9.60°,10 10.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B 21.AE 和AC,ED 和BC, ∠B 和∠D, ∠BAC 和∠DAE 22.AD=BC,AE=CF,DE=BF,AD ∥BC, △ACD ≌△ACB,AB ∥CD 等 23.相等, △AOB ≌△DOC 24.连AC,证△ADC ≌△ABC25.(1)证DE=EC (2) 设BE 与CD 交于F,通过全等证DF=CF.B。
全等三角形综合测试题(100分)1、已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()【单选题】(3分)A.50°B.80°C.50°或80°D.40°或65°正确答案: C2、已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为()【单选题】(3分)A.5cmB.7cmC.9cmD.11cm正确答案: C3、下列可使两个直角三角形全等的条件是()【单选题】(3分)A.A、一条边对应相等B.B、两条直角边对应相等C.C、一个锐角对应相等D.D、两个锐角对应相等正确答案: B4、如图,D是BC的中点,E.F分别是AD和AD延长线上的点且DE=DF,连结BF,CE.下列说法:①CE=BF;②ΔABD和ΔACD面积相等;③BF//CE;△BDF≌ΔCDE其中正确的有()【单选题】(3分)A.1个B.2个C.3个D.4个正确答案: D5、用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是()【单选题】(3分)A.①②③B.②③C.③④⑤D.③④⑥正确答案: D6、如图,平行四边形ABCD中,AC、BD相交于点0过点O,过点O作直线分别交于AD、BC于点E、F.那么图中全等的三角形共有()【单选题】(3分)A.2对B.4对C.6对D.8对正确答案: C7、根据下列条件,能判定△ABC≌△A’B’C’的是()【单选题】(3分)A.)AB=A’B’,BC=B’C‘,∠A=∠A’B.∠A=∠A’,∠B=∠B‘,AC=BCC.∠A=∠A’,∠B=∠B‘,∠C=∠C’D.AB=A‘B’,BC=B’C’,ABC的周长等于△A’B’C’的周长正确答案: D8、【单选题】(3分)A.HLB.SSSC.SASD.ASA正确答案: B9、【填空题】(4分)________________________答案解析: AC=AD(答案不唯一)10、【填空题】(4分)________________________正确答案: CE=DF(回答与答案完全相同才得分)11、如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E,若CA=30°,DE=2,∠DBC的度数为____CD的长为____【填空题】(4分)________________________正确答案: 30° 2(回答包含答案即可得分)12、如图,ΔABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC.则∠ABC的度数是____【填空题】(4分)________________________正确答案: 45°(回答与答案完全相同才得分)13、【填空题】(8分)________________________正确答案: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF ……4 分 (2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分 (方法不唯一,其他证明方法酌情给分)(回答包含答案即可得分)答案解析: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF……4 分(2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分(方法不唯一,其他证明方法酌情给分)14、【填空题】(6分)________________________正确答案: 证明:(1)·∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° ......2分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC ,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC ∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADC AD=BD ∠DBH=∠DAC} ∴.△BDH≌△ADC.......6分(回答包含答案即可得分)答案解析: 证明:(1).∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° (2)分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADCAD=BD∠DBH=∠DAC}∴.△BDH≌△ADC.......6分15、【填空题】(6分)________________________正确答案: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等 ),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA; (4)分(2)连接DG,则△ADG是等腰三角形. 证明如下: .∵△ABD≌AGCA .∴AG=AD,......5分∴△ADG 是等腰三角形.......6分(回答包含答案即可得分)答案解析: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA;......4分(2)连接DG,则△ADG是等腰三角形.证明如下:.∵△ABD≌AGCA.∴AG=AD,......5分∴△ADG是等腰三角形.......6分16、【填空题】(7分)________________________正确答案: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF .∴△AF D≌AAFB(AAS)......7分(回答包含答案即可得分)答案解析: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF.∴△AF D≌AAFB(AAS)......7分17、【填空题】(7分)________________________正确答案: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF} .∴△AF D≌△AFB(AAS)......7分(回答包含答案即可得分)答案解析: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF}.∴△AF D≌△AFB(AAS)......7分18、【填空题】(7分)________________________正确答案: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB ∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2 ∴BE/AB=1/2 ∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分(回答包含答案即可得分)答案解析: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2∴BE/AB=1/2∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分19、【填空题】(7分)________________________正确答案: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE 与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中 {CD=AD,∠EDA=∠DCF,DE=CF} ∴△AED≌△CFD ∴AE=DF......7分(回答包含答案即可得分)答案解析: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中{CD=AD,∠EDA=∠DCF,DE=CF}∴△AED≌△CFD∴AE=DF......7分20、如图,山脚下有A、B两点,要测出A、B两点的距离,请说说你的解决方案。
图4 C A D B E 图
2 图1
全等三角形综合复习测试题 一、选一选,看完四个选项后再做决定呀!(每小题3
分,共30分)
1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为【
】.
(A )50 (B )80 (C )50或80 (D )40或65
2. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=
4平方厘米,则BEF S △的值为 【 】.
(A )2平方厘米 (B )1平方厘米 (C )12平方厘米 (D )14
平方厘米
3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为
【 】.(A )5厘米 (B )7厘米 (C )9厘米 (D )11厘米
4. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,
在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重
合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是
【 】.(A )HL (B )SSS (C )SAS (D )ASA
5. 利用三角形全等所测距离叙述正确的是( )
A.绝对准确
B.误差很大,不可信
C.可能有误差,但误差不大,结果可信
D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离
6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于
【 】.(A )145° (B )180° (C )225° (D )270°
7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】.
(A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′
(B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′
(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′
(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长
8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC
的周长为12,△ADE 的周长为6.则BC 的长为 【 】.
图12 图9 A '
A D
B E 21图10
C A
D
E
F 图6 m n C A B 图11 12C A D B E F M N
O 图5 D A O E C B D A C B (A )3 (B )4 (C )5 (D )6
9. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 【 】.
(A
)45
(
B )50 (
C )60 (D
)75
图7 图8
10. 如图6所示,m ∥n ,点B ,C 是直线n 上两点,点A 是直线m 上一点,在直线m 上
另找一点D ,使得以点D ,B ,C 为顶点的三角形和△ABC 全等,这样的点D
【 】.(A )不存在 (B )有1个 (C )有3个 (D )有无数个
二、填一填,要相信自己的能力!(每小题3分,共30分)
1.在ABC ∆中,若A ∠=1123
B C =∠,则ABC ∆是 三角形.
2. 如图7所示,BD 是ABC ∆的中线,2AD =,5AB BC +=,则ABC ∆的周长是 .
3. 如图8所示所示,在ABC ∆中,BD ,CE 分别是AC 、AB 边上的高,且BD 与CE 相交
于点O ,如果135BOC ∠=︒,那么A ∠的度数为 .
4. 有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段
为边长,共可以组成________个形状不同的三角形.
5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则
∠A 的大小等于_____度.
6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水
平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.
7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别
与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共
有____对.
8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、
D ,使BC =CD ,过D 作BF 的垂线D
E ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,
BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长
为_________.
D A
E C B 9. 如图13所示,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方
向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .
10. 如图14所示,三角形纸片ABC ,AB =10厘米,BC =7厘米,AC =6
厘米.沿 过点B 的直线折叠这个三角形,使顶点C 落在AB 边
上的点E 处,折痕为BD ,则△AED 的周长为______厘米. 三、做一做,要注意认真审题呀!(本大题共38分) 1.(8分)如图15所示,在ABC ∆中,已知AD BC ⊥,64B ∠=︒,56C ∠=︒.
(1)求BAD ∠和DAC ∠的度数; (2)若DE 平分ADB ∠,求AED ∠的度数.
图15
2.(10分)已知:线段a ,b ,c (如图16所示),画△ABC ,使BC =a ,CA =b ,AB =c .(保
留作图痕迹,不必写画法和证明)
3.(10分)图17为人民公园的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(不
能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB 的长(要
求画出草图,写出测量方案和理由).
图14
C A
D B
E 图13 35° b a 图17
4.(10分)如图18所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同—直线
上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF .
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.
(2)选择(1)中你写出的—个正确结论,说明它正确的理由.
四、拓广探索!(本大题共22分)
1.(10分)如图19,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,
AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.
2.(12分)两个大小不同的等腰直角三角形三角板如图20①所示放置,图20②是由它抽
象出的几何图形,B C E ,,在同一条直线上,连结DC .
(1)请找出图20②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字
母); (2)试说明:DC BE .
图18 F E B D A C 图
20 ① ② B C D F A E 图19
参考答案
一、1~10 CB C BC CD ADB.
二、1. 直角. 2.9. 3. 45°. 4.3. 5. 50. 6. HL. 7.4.
8. ∠2,△EDC ,25 m. 9. 125°. 10. 9.
三、1. (1)90905634D AC C ∠=︒-∠=︒-︒=︒. (2)109AED ∠=︒.
2.画图略.
3.方案不惟一,画图及理由略.
4.(1)如果①、③,那么②或如果②、③,那么①;
(2)选择“如果①、③,那么②”证明,过程略.
四、1. △AFC 是等腰三角形.理由略 .
2.(1)图2中ABE ACD △≌△.
理由如下:ABC △与AED △均为等腰直角三角形
AB AC ∴=,AE AD =,90BAC EAD ∠=∠=,
BAC CAE EAD CAE ∴∠+∠=∠+∠,
即BAE CAD ∠=∠ , A B E A C D ∴△≌△.
(2)说明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=, 又45ACB ∠=
90BCD ACB ACD ∴∠=∠+∠=,
DC BE ∴⊥。