拓展:方程组的行列式解法
- 格式:doc
- 大小:70.50 KB
- 文档页数:1
线性代数行列式计算总结线性代数中的行列式是一种非常重要的数学工具,它在矩阵理论、线性方程组的解法、线性空间与线性变换以及特征值与特征向量的计算中都起到至关重要的作用。
行列式的计算方法有很多,下面我将总结一下常见的行列式计算方法。
首先,我们先来定义什么是一个行列式。
行列式是一个标量,它是一个n阶方阵所带的一个数值特征。
对于一个n阶方阵A,它的行列式表示为,A,或者det(A),它的计算方法如下所示。
1.二阶行列式的计算方法对于一个二阶方阵A=,a11a12a21a2它的行列式计算方法是:,A,=a11*a22-a12*a212.三阶行列式的计算方法对于一个三阶方阵A=,a11a12a13a21a22a2a31a32a3它的行列式计算方法是:,A,=a11*a22*a33+a12*a23*a31+a13*a21*a32-a13*a22*a31-a12*a21*a33-a11*a23*a323.高阶行列式的计算方法对于一个高阶方阵A,可以通过对其中一行或一列进行展开来计算行列式。
展开的方式有很多种,常用的有代数余子式展开和化简为三角行列式展开两种。
3.1代数余子式展开对于一个n阶方阵A,选择一行或一列展开,计算每个元素的代数余子式,然后按照正负交替的方式相乘相加得到行列式的值。
具体步骤如下:- 选择第i行展开,行列式的值为,A, = ai1*C_1i + ai2*C_2i+ ... + ain*C_ni- 其中,C_ij是元素a_ij的代数余子式,计算方法是去掉第i行和第j列剩余元素构成的(n-1)阶子阵的行列式。
3.2三角行列式展开对于一个n阶方阵A,通过初等变换将方阵化为上三角形或下三角形,然后计算对角线的乘积得到行列式的值。
除了以上两种展开的方法,还可以通过矩阵的特征值和特征向量计算行列式的值。
具体步骤是:-计算矩阵A的特征值λ_1,λ_2,...,λ_n-计算矩阵A的特征向量v_1,v_2,...,v_n-行列式的值等于特征值的乘积:,A,=λ_1*λ_2*...*λ_n行列式的计算方法还有很多,比如拉普拉斯展开、按行或按列展开等。
关于求解行列式的几种特殊的方法行列式是线性代数中一个重要的概念,它在计算机科学、物理学和工程学等领域都有广泛的应用。
在求解行列式的过程中,存在一些特殊的方法,可以帮助我们简化计算和提高效率。
本文将介绍几种常见的特殊方法,包括拉普拉斯展开、三角形展开和行列式性质的运用等。
1.拉普拉斯展开法拉普拉斯展开法是求解行列式的一种基本方法,适用于任意阶的矩阵。
其核心思想是通过分解矩阵,将复杂的行列式转化为多个较小规模的行列式的代数和。
具体步骤如下:1)选择一个行(列)展开,将行(列)按照一些特定的顺序展开。
2)对每一个元素a[i][j],构造一个以该元素为顶点的代数余子式M[i][j],即划去第i行和第j列后剩下的矩阵所构成的行列式。
3)计算每一个代数余子式的值M[i][j],并与对应的元素a[i][j]相乘,得到M[i][j]*a[i][j]。
4)将所有得到的乘积相加,该结果即为原行列式的值。
>例如,对于一个3阶矩阵A,可以选择按照第一行展开,则拉普拉斯展开为:>,A,=a11*M11-a12*M12+a13*M13>其中,M11,M12,M13分别是以元素a11,a12,a13为顶点的代数余子式。
拉普拉斯展开法的优点是适用于任意规模的矩阵,但是对于高阶矩阵来说,计算量较大,效率较低。
2.三角形展开法三角形展开法是求解上三角行列式的一种特殊方法,适用于上三角矩阵,即矩阵的主对角线以下的元素都为0。
该方法通过逐步消元来简化计算,减少了矩阵的规模。
具体步骤如下:1)将上三角矩阵A拆分为一个上三角矩阵B和下三角矩阵C的乘积,即A=BC。
2) 计算上三角矩阵B的主对角线上的元素的乘积,即B =b11*b22*...*bnn。
3)将下三角矩阵C的主对角线上的元素分别除以上一步得到的乘积,得到新的下三角矩阵C'。
4) 计算新的下三角矩阵C'的主对角线上的元素的乘积,即C' =c'11*c'22*...*c'nn。
行列式的计算技巧总结行列式是线性代数中的重要概念,它在计算中有着广泛的应用,如矩阵求逆、解线性方程组、判断矩阵的线性无关性等。
行列式的计算可以通过展开定理、性质和转置等多种方法进行。
下面是行列式计算的一些常见技巧总结。
1.行列式的定义和性质行列式是一个标量,用来描述一个矩阵的一些特性。
对于一个n阶方阵A,它的行列式记作det(A),A,或∆。
行列式具有以下性质:(1) det(A) = det(A^T) //行列互换,行列式不变(2) det(A·B) = det(A)·det(B) //两个矩阵相乘的行列式等于两个矩阵的行列式的乘积(3) 若矩阵A的其中一行(列)全为0,则det(A) = 0(4) 若矩阵A的两行(列)相同,则det(A) = 0(5) 若矩阵A的其中一行(列)成比例,即全部为c倍关系,则det(A) = c^n·det(A')(6) 若矩阵A的其中一行(列)都是两个矩阵B和C对应行(列)的和,则det(A) = det(B) + det(C)2.二阶和三阶行列式的计算二阶行列式的计算可以直接进行运算,即ad-bc。
三阶行列式的计算可以通过对角线和副对角线元素的乘积之和减去反对角线和主对角线元素的乘积之和,即a(ei-fh) - b(di-fg) + c(dh-eg)。
其中a、b、c、d、e、f、g、h、i是矩阵A的元素。
3.行列式的展开行列式的展开定理是行列式计算的重要工具。
对于n阶行列式,可以通过对任意一行(列)展开来计算行列式的值。
展开的时候,可以选择展开到其他行(列)上,也可以选择展开到其他元素,具体选择哪一行(列)或元素展开要根据实际情况决定。
展开后的行列式可以继续进行展开,直到变为二阶行列式,然后通过二阶行列式的计算结果反推回原行列式。
4.行列式的转置行列式的转置是行列式计算的另一个常用方法。
对于n阶行列式A,可以将其转置为A^T,然后利用性质(1) det(A) = det(A^T)进行计算。
行列式的求解方法行列式是线性代数中的重要概念,它在代数学、几何学以及物理学等领域中都有广泛的应用。
行列式的求解方法有很多,接下来将介绍一些常见的求解方法。
1. 二阶和三阶行列式的求解:对于二阶行列式:$D = \begin{vmatrix} a & b\\ c & d \end{vmatrix} = ad - bc$对于三阶行列式:$D = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$这种求解方法适用于二阶和三阶行列式,其实质是按照一定的规律对行列式进行展开计算。
2. 扩展行列式法:对于n阶行列式的求解,可以利用扩展行列式法逐步缩小求解规模。
首先选择行列式中的某一行或者某一列,将其展开并作为公因子,得到n个n-1阶的代数余子式。
然后,对每个n-1阶代数余子式再次进行类似的展开操作,得到n-1个n-2阶的代数余子式。
如此循环递归,直到求得1阶行列式,即可得到n阶行列式的解。
例如,对于4阶行列式:$D = \begin{vmatrix} a & b & c & d\\ e & f & g & h\\ i & j & k & l \\ m & n & o & p \end{vmatrix}$,选择第一行进行展开,得到:$D = a \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p\end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & o& p \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m& n & p \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k\\ m & n & o \end{vmatrix}$然后,对每个3阶代数余子式再次进行展开,最终得到4阶行列式的解。
行列式求解方法总结(一)计算行列式最基本的方法是——按定义展开,即按照某行(列)展开这个方法对于特殊行列式很有用处,例如——上(下)三角行列式,对角行列式等。
另外三阶及以下的行列式可以直接展开。
但是直接是用定义工作量很大,而且对于一些有规律的字母型行列式该方法容易忽略他们的规律。
所以,在使用定义展开的时候:1,利用行列式性质得到某行(列)仅有一个非零元素再进行展开。
提示:把第3行加到第一行,再把第一列乘以-1加到第三列2,利用性质,将行列式化成上(下)三角行列式。
提示:对于三阶以上的数字行列式, 一般都是利用性质将其化为上三角行列式求其值. 化为上三角行列式的步骤是规范化的.首先利用第1 行第1 列的非零元将第1 列其他元素全化为零, 然后利用第2 行第2 列的非零元将第2 列以下元素全化为零, 如此等等, 直到化为上三角行列式. 如果化的过程中出现全零行, 则行列式的值等于零.这里第1 行第1 列的元素为2 , 如果利用它将第1 列其余元素全化为零, 中间就会出现很多分数, 继续算下去就比较麻烦. 所以这里先把第1 行乘- 1 加到第3 行, 再把第1 行与第3 行对换,就使第1 行第1 列元素为1 , 这样再将第1 列其余元素化为零就比较简便。
(二)如果行列式每一行(列)元素之和都相等,则展开的第一步是将各列(行)加到第1列(行),然后提出公因子,再用(一)中方法进行计算。
(三)如果n阶行列式中每个元素均为两数(一般都有字母)之和,则可以利用线性性质,将其化成2n 个行列式之和,在很多些情况下,这2n 个行列式很多都等于零,那些不等于零的行列式也是很容易展开的。
解法:= ax y 2 + ax y 2 + ax 2 y + ax 2 y + x 2 y 2 = 2 ax y 2 + 2 ax 2 y + x 2 y 2.(四) 再如上例题,该类型的行列式出现了很多的相同元素a ,所以义可用“加边法”或者将第一行(列)乘以-1(其他题中此处不一定是“-1”)加到其他各行(列),创造出“爪”(三叉)型行列式,之后再将其化成上(下)三角行列式即可。
解行列式的方法
哇塞,解行列式可是线性代数中超级重要的一部分呢!那到底怎么解行列式呢?这就来详细说说。
首先呢,最常见的方法就是按行或按列展开。
就像剥洋葱一样,一层一层地把行列式展开。
步骤就是选定一行或一列,然后用这一行或一列的元素分别乘以它们对应的代数余子式,再把这些乘积加起来。
这里要注意哦,代数余子式的符号可不能搞错啦!这个方法简单直接,但有时候计算量可能会有点大哦。
在解行列式的过程中呀,安全性那是杠杠的,只要你按照步骤来,一步一步认真算,就不太会出错。
稳定性也很高呀,不管行列式多大,都可以用这个方法慢慢解出来。
那它都有啥应用场景和优势呢?哎呀呀,那可多了去啦!在很多工程问题、物理问题中都有它的身影呢。
它的优势就在于能把复杂的问题转化为行列式的计算,让我们可以有条理地去解决。
而且一旦掌握了方法,就像拿到了一把钥匙,能打开很多知识的大门呢!
来举个实际案例吧。
比如说在研究电路网络的时候,通过建立行列式就能分析出电流的分布情况。
哇,是不是很神奇?就像我们找到了一个神奇的工具,能让复杂的电路变得清晰明了。
所以呀,解行列式真的是超级厉害的工具呢!它能帮我们解决好多难题,让我们在数学和其他领域都能游刃有余呀!。
引言 (1)一、行列式的定义及性质 (2)(一)行列式的定义及相关公式 (2)(二)n级行列式的性质: (4)二、行列式的计算 (6)(一)行列式的基本计算方法 (6)1、定义法: (6)2、三角形法: (7)3、降阶法: (12)4、换元法: (14)5、递推法: (15)6、数学归纳法: (16)7、目标行列式法: (18)(二)行列式的辅助计算方法 (19)1、加边法: (19)2、析因子法: (21)3、连加法: (21)4、拆项法: (22)5、乘积法: (23)结束语 (24)参考文献: (26)行列式的计算方法摘要行列式是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。
行列式产生于解线性方程组中,并且也是最早应用于解线性方程组中,并且在其他学科分支都有广泛的应用,可以说它是数学、物理学以及工科许多课程的重要学习工具.行列式也为解决实际问题带来了许多方便。
本文针对行列式这一数学工具,进行系统讨论,从不同的角度理解了行列式的定义,重点证明了行列式性质,介绍一些展开定理,总结了行列式的几种计算方法,如定义法、三角形法、降阶法、换元法、递推法、数学归纳法及目标行列式法.辅助方法有:加边法、析因子法、乘积法、连加法、拆项法等,并结合例题说明行列式计算的技巧性和灵活性。
关键词行列式,计算方法,线性方程组。
The Calculation of DeterminantLiuHui(College of Mathematics and Physics Bohai University Liaoning Jinzhou 121000 China)Abstract The determinant is the extremely important constituent in the linear algebra theory, it is a basic concept of higher mathematics。
行列式的求解方法行列式是矩阵所具备的的一个重要的数学性质,它可以为我们解决很多的线性代数问题。
在数学和工程的应用中,行列式常常应用于解决线性方程组、矩阵的特征值和特征向量、线性变换、矩阵的可逆性等问题上。
本文将对行列式的定义、基本性质、计算方法以及相关的应用等方面进行详细的讲解。
一、行列式的定义行列式是由数学家Cramer所发明的。
行列式又叫矩阵行列式,是由一个n*n的方阵中所计算出来的一个标量值。
对于二阶方阵$\bold A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$,其行列式为:$$\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}$$对于更高阶的n阶矩阵,则可以采用逐步消元的方法来进行求解。
对于一般的n*n阶矩阵A的行列式,我们可以采用下面的定义进行计算:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\end{vmatrix}=\sum_{i_1,i_2,\cdots,i_n} (-1)^{N(i_1,i_2,\cdots,i_n)}a_{1i_1}a_{2i_2}\cdots a_{ni_n} $$其中,$N(i_1,i_2,\cdots,i_n)$表示将$i_1,i_2,\cdots,i_n$从小到大排列时所需的逆序对个数,$a_{1i_1}a_{2i_2}\cdotsa_{ni_n}$为行列式的元素积。
行列式解线性方程组
用行列式解线性方程组,即Crammer法则
用它的前提条件是:线性方程组AX=b方程的个数与未知量的个数相同,即系数矩阵A是一个方阵
系数矩阵A的行列式|A|≠0
则方程组有唯一解:xi=Di/D
D=|A|
Di是D中第i列换成b得到的行列式
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
二元一次方程组与三元一次方程组的行列式解法行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组⎩⎨⎧=+=+2222111211b y a x a b y a x a (1)用加减消元法容易求出未知量x ,y 的值,当a 11a 22–a 12a 21≠0 时,有⎪⎪⎩⎪⎪⎨⎧--=--=2112221121121121122211212221a a a a a b b a y a a a a b a a b x (2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号2112221122211211a a a a a a a a -=为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.根据定义,容易得知(2) 中的两个分子可分别写成222121212221a b a b b a a b =-,221111211211b a b a a b b a =-,如果记22211211a a a a D =,222121a b a b D x =,221111b a b a D y =则当D ≠0时,方程组(1) 的解(2)可以表示成22211211222121a a a a a b a b D Dxx ==,22211211221111a a a a b a b a D D y y ==,(3) 象这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x 的分子是把系数行列式中的第1列换成(1)的常数项得到的,而y 的分子则是把系数行列式的第2列换成常数项而得到的.例1 用二阶行列式解线性方程组⎩⎨⎧=+=+23 142y x y x 解:这时0214323142≠=⨯-⨯==D ,524313241-=⨯-⨯==x D ,311222112=⨯-⨯==y D ,因此,方程组的解是25-==D D x x ,23==D D y y , 对于三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++333323122322211131211bz a y a x a b z a y a x a b z a y a x a (4)作类似的讨论,我们引入三阶行列式的概念.我们称符号312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= (5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2 532134212- 1062012242301325)4(123223)4(211532=-+--+==⨯⨯-⨯-⨯-⨯⨯-⨯⨯-+⨯⨯+⨯⨯=令 333231232221131211a a a a a aa a a D = 333232322213121a ab a a b a a b D x =,333312322113111a b a a b a a b a D y =,332312222111211b a a b a a b a a D z =. 当D ≠0时,(4)的解可简单地表示成D D x x =,D D y y =,DDz z =(6) 它的结构与前面二元一次方程组的解类似.例3解线性方程组⎪⎩⎪⎨⎧=-+=-+=+-42315230 2z y x z y x z y x 解:28231523112=---=D ,13234521110=---=x D , 47241513102=--=y D ,2143112312=-=z D . 所以,2813==D D x x ,2847==D D y y ,432821===D D z z . 例4 已知010100=-a bb a,问a ,b 应满足什么条件?(其中a ,b 均为实数). 解:2210100b a a b b a +=-,若要a 2+b 2=0,则a 与b 须同时等于零.因此,当a =0且b =0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念,为此,先介绍排列的有关知识.思考题:当a 、b 为何值时,行列式022==b ab a D .提示:)(22a b ab b a b a -=。
方程组系数行列式方程组是数学中的一个重要概念,它描述了多个未知数之间的关系。
在解方程组的过程中,我们经常会用到一个重要的工具——行列式。
行列式是一个方阵所对应的一个标量值,它在解方程组时起到了至关重要的作用。
行列式的定义行列式是由元素按一定规则排列而成的一个标量值。
对于n阶方阵A = [a_{ij}]来说,其行列式记作det(A)或|A|,其中i和j分别表示矩阵A中元素a_{ij}所在的行和列。
例如,对于二阶方阵A = [a b; c d]来说,其行列式可以表示为:det(A) = |A| = ad - bc对于三阶方阵A = [a b c; d e f; g h i]来说,其行列式可以表示为:det(A) = |A| = aei + bfg + cdh - ceg - afh - bdi行列式的性质行列式具有许多重要的性质,这些性质在解方程组时非常有用。
下面我们介绍几个常见且重要的性质。
性质1:互换两行(或两列)改变符号如果我们交换矩阵A中的两行(或两列),则行列式的值会改变符号。
性质2:某行(或某列)乘以常数,行列式的值乘以相同常数如果我们将矩阵A中的某一行(或某一列)乘以一个常数k,则行列式的值也会乘以k。
性质3:若两行(或两列)成比例,则行列式的值为0如果矩阵A中存在两个成比例的行(或两个成比例的列),则行列式的值为0。
性质4:若有一行(或一列)元素全为0,则行列式的值为0如果矩阵A中存在一行(或一列)所有元素都为0,则行列式的值为0。
性质5:若矩阵A有两行(或两列)完全相同,则行列式的值为0如果矩阵A中存在两个完全相同的行(或两个完全相同的列),则行列式的值为0。
方程组与行列式方程组与线性代数密切相关,而解方程组时经常会用到求解系数矩阵对应的行列式。
接下来我们讨论几种与方程组相关联的情况。
情况1:行列式的值为0如果一个n阶方阵A的行列式的值为0,即|A| = 0,那么我们可以得出以下结论:•方程组无解:对于齐次线性方程组Ax = 0,如果|A| = 0,则该方程组必定无解。
各种行列式的计算方法宝子们,今天咱们来唠唠行列式的计算方法呀。
一、定义法。
这就像是最基础的招式啦。
按照行列式的定义,把所有可能的排列组合算出来。
不过呢,这个方法可有点费时间,就像你要一个一个数小珠子一样,要是行列式的阶数大一点,那可就累得够呛。
比如说二阶行列式,按照定义算起来还比较轻松,就是主对角线元素相乘减去副对角线元素相乘。
但是三阶或者更高阶的,那可就复杂得多喽。
二、三角形行列式法。
这个方法可就比较巧妙啦。
我们想办法把行列式通过行变换或者列变换变成上三角或者下三角行列式。
为啥呢?因为三角形行列式的值就等于主对角线元素的乘积呀,多方便。
就像把一堆乱乱的东西整理得整整齐齐的,然后一下子就能算出结果。
比如说给你一个行列式,你就观察一下,哪行或者哪列加上或者减去其他行或者列的倍数,能让它慢慢变成三角形的样子。
三、按行(列)展开法。
这个方法就像是拆积木一样。
你可以按照行列式的某一行或者某一列展开。
比如说按第一行展开,那这个行列式的值就等于这一行的每个元素乘以它对应的代数余子式然后相加。
代数余子式呢,就像是这个元素的小跟班,有自己的计算方法。
这个方法在行列式里有很多零元素的时候特别好用,就像走捷径一样,直接找那些简单的部分来计算。
四、行列式的性质法。
行列式有好多有趣的性质呢。
比如说两行(列)交换,行列式的值就变成原来的相反数;某一行(列)乘以一个数加到另一行(列),行列式的值不变。
我们就可以利用这些性质,把行列式变得简单一些再去计算。
就像给行列式做个小整容,让它变得更可爱(好计算)。
宝子们,行列式的计算方法就这么些啦,多做做练习,就会发现其实也没有那么难啦。
加油哦!。
行列式解二元一次方程组在研究用消元法解二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 中,可得解的公式⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112211221b a b a c a c a y b a b a b c b c x ,显然,那个公式本身还看不出它的明显规律,也不易经历,因此那个公式还不够理想,那么能不能找一个更好的表现形式,使得它们之间的依赖关系表示得更明显,更有规律,且便利经历呢?下面介绍的用行列式解二元一次方程组的方法,就能够达到以上目的,由此,能够看出行列式能关心解决刚才提出的问题、1、符号2211b a b a 叫做二阶行列式,a 1、a 2、b 1、b 2叫做那个二阶行列式的元素,a 1、a 2、b 1、b 2这四个元素排成二行二列〔横排叫行,竖排叫列〕、例如,a 2是位于第二行第一列上的元素,b 1是位于第一行第二列上的元素、2、二阶行列式的展开形式为2211b a b a =a 1b 2-a 2b 1,它的展开方法是,将a 1、a 2、b 1、b 2四个数排列成正方形,即2211b a b a 能够看出a 1b 2-a 2b 1是如此两项的和,一项为哪一项正方形中实线表示的对角线〔叫做主对角线〕上两数的积,再添上正号;一项为哪一项虚线表示的对角线〔叫做副对角线〕上两数的积,再添上负号、这种方法叫做二阶行列式展开的对角线法那么、3、二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的行列式表示法,22112211b a b a b c b c x =, 22112211b a b a c a c a y =,〔a 1b 2-a 2b 1≠0〕 为简便起见,设2211b a b a D =,2211b c b c D x =,2211c a c a D y =,那么当D ≠0时,二元一次方程组的解可表示为:⎪⎪⎩⎪⎪⎨⎧==.,DD y DD x yx。
拓展:方程组的行列式解法
一、二元一次方程组的行列式解法
1.设二元一次方程组
111222,,a x b y c a x b y c +=⎧⎨+=⎩其中a 1、a 2、b 1、b 2 是系数且不全为零,c 1、c 2 是常数项。
通过消元得到x y
D x D D y D ⋅=⎧⎨⋅=⎩
则0D ≠时,.x y D x D D y D
⎧=⎪⎪⎨⎪=⎪⎩ 2.设三元一次方程组111122223
333,,,a x b y c z d a x b y c z d a x b y c z d ++=⎧⎪++=⎨⎪++=⎩(B )
其中x 、y 、z 是未知数,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3是未知数的系数且不全为零,d 1、d 2、d 3是常数项,那么如何通过行列式来求解?
二、三元一次方程组的行列式解法
1.通过加减消元法可将三元一次方程组(B )转化为方程组,,.
x y z D x D D y D D z D ⎧⋅=⎪⋅=⎨⎪⋅=⎩
当0D ≠时,方程组(B )的解为 ,,.x y z D x D D y D D z D ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩
2.上述解法中的D ,x D 、y D 、z D 分别指哪些行列式?
3.对解法加以简单证明
4.三元一次方程组(B )有唯一解的条件是什么?。