半导体器件物理与工艺 第7章
- 格式:ppt
- 大小:2.65 MB
- 文档页数:37
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
施敏半导体器件物理与工艺 pdf 施敏半导体器件物理与工艺pdf:详细解析半导体器件的物理性质和制程技术 施敏半导体器件物理与工艺pdf是一本系统地介绍半导体器件物理性质和制程技术的文档。
本文将以一个逐步思考的方式,详细描述半导体器件的物理性质和制程技术,并通过举例来加深理解。
本文具有清晰的结构,包括前言、主体部分和总结,以确保读者能够全面了解半导体器件的物理性质和制程技术。
第一部分:半导体器件的物理性质 在本部分,我们将首先介绍半导体器件的基本概念和性质。
我们将从半导体材料的能带结构开始,解释导电性差异的原因以及控制电流的机制。
我们将详细讨论pn结的形成、载流子注入和扩散,并介绍不同类型的半导体器件如二极管、晶体管和场效应晶体管。
此外,我们还将介绍半导体器件的基本特性,如电流-电压特性和频率响应特性。
第二部分:半导体器件的制程技术 在本部分,我们将重点讨论半导体器件的制程技术。
我们将详细描述半导体器件的制造过程,并重点介绍光刻、扩散、蚀刻和沉积等关键制程步骤。
我们将解释每个制程步骤的原理、方法和影响因素,并提供实际例子来说明。
此外,我们还将讨论半导体器件的封装技术和测试技术,以确保器件的可靠性和性能。
第三部分:半导体器件物理与工艺的联系 在本部分,我们将探讨半导体器件物理性质与制程技术的密切联系。
我们将详细说明物理性质如材料的能带结构、载流子注入和扩散是如何影响制程技术的选择和结果的。
我们还将介绍如何通过物理性质的优化来改进器件的性能,并讨论不同制程参数对器件性能的影响。
通过本文的详细解析,我们可以深入了解半导体器件的物理性质和制程技术。
我们了解了半导体器件的基本概念和性质,以及其在电流控制和信号放大中的重要作用。
我们还学习了半导体器件的制程技术,以及如何根据物理性质来改进器件的制程过程。
通过这些知识,我们能够更好地设计、制造和测试半导体器件,以满足不同应用领域的需求。
总结起来,施敏半导体器件物理与工艺pdf通过清晰的结构、逐步思考的方式,详细描述了半导体器件的物理性质和制程技术。
第7章MOSFET原理7.1 金属、半导体的功函数在绝对零度时,金属中的电子填满了费米能级EF以下的所有能级,而高于费米能级E的所有能级全部F是空的。
温度升高时,只有费米能级E附近的少数电F子受到热激发,由低于E的能级跃迁到高于F E的能级F上,但大部分电子仍不能脱离金属而逃逸出体外。
这意味着金属中的电子虽然能够在金属中自由运动,但绝大多数电子所处的能级都低于体外(真空)的能级。
要使金属中的电子从金属中逸出,必须由外界给它以足够的能量。
从量子力学的观点看,金属中的电子是在一个势阱运动。
用E表示真空中静止电子的能量。
如图7.1所示。
定义某种材料的功函数为:真空电子能量E与材料的费米能级E的差值。
F则金属的功函数为()07.1m FmW E E =- 半导体的功函数为()07.2s Fs W E E =-功函数的物理意义:表示电子从起始能量等于F E 由金属内逸出(跳到真空)需要的最小能量。
注意:半导体的费米能级随掺杂浓度改变,因而其功函数也随掺杂浓度变化。
图7.1 还显示了从0c E E 的能量间隔χ,χ称谓电子亲和能,表示使处于半导体导带底的电子逃逸出体外(跳到真空能级)需要的最小能量。
即()07.3c E E χ=-利用电子的亲和能,半导体的功函数又可以表示为 []()[]7.4()S c FS n c FS n W E E e E E e N semiconductor χχφφ=+-=+-=-表7.1 列出了硅在不同掺杂浓度下对应的功函数 ()()()331415161415167.11010101010104.37 4.31 4.25 4.87 4.93 4.99S d a W eV n type N cm p type N cm Si ----表硅的功函数与掺杂浓度的关系(计算值)半导体材料功函数7.2金属-氧化物-半导体场效应晶体管(MOSFET) 引言:MOS 器件的发明先于双极器件,但由于加工工艺条件的限制,双极器件的商品化要早于MOS 器件。
施敏半导体器件物理与工艺一、施敏半导体器件的背景与意义随着科技的飞速发展,电子工程领域对高性能、低功耗的半导体器件的需求日益增长。
施敏半导体器件,作为一种新型的电子器件,以其独特的物理机制和工艺技术,在现代电子工程领域中扮演着越来越重要的角色。
施敏半导体器件具有高灵敏度、快速响应和低功耗等优点,广泛应用于传感器、逻辑电路、存储器等领域。
二、施敏半导体器件原理施敏半导体器件主要基于隧道效应、极化效应等物理原理工作。
通过利用材料内部的电子行为,实现电导率的变化,从而实现传感或逻辑操作。
为了实现这一功能,关键在于材料的选择以及其制备工艺的控制。
这涉及到多种材料物理和材料工程的知识,如能带理论、载流子输运机制等。
三、工艺流程制作施敏半导体器件的工艺流程主要包括材料选择、外延生长、掺杂、制程整合等步骤。
在材料选择阶段,需要综合考虑材料的能带结构、载流子迁移率、稳定性等性能指标。
外延生长和掺杂是关键的制程步骤,直接影响器件的性能。
此外,为了实现高效的电路集成,还需要考虑如何优化制程参数,以实现良好的欧姆接触和低电阻传输。
四、典型应用领域与案例分析施敏半导体器件在信息技术、消费电子、汽车等领域有广泛的应用。
例如,在传感器领域,施敏器件可以用于气体检测、湿度传感、压力传感等;在逻辑电路中,施敏器件可以用于构建各种逻辑门电路,实现信息的处理与传输;在存储器领域,施敏器件可以作为非易失性存储单元,用于存储数据。
五、发展趋势与挑战随着物联网、人工智能等新兴技术的发展,施敏半导体器件的应用前景更加广阔。
未来,施敏半导体器件将朝着更高性能、更低功耗、更小尺寸的方向发展。
然而,这也带来了诸多挑战,如如何提高器件的稳定性、可靠性以及如何实现大规模生产等。
对此,我们建议深入研究材料的物理机制和制程技术,加强跨学科合作,以推动施敏半导体器件的创新发展。
六、结论施敏半导体器件在电子工程领域中发挥着核心作用,其发展对于推动科技进步具有重要意义。
课后答案网:若侵犯了您的版权利益,敬请来信告知!课后答案网您最真诚的朋友网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注册,旨在为广大学生提供自主学习的平台!课后答案网:视频教程网:PPT课件网:课后答案网 w w w .h a c k s h p .c n课后答案网 www.hackshp.cn课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 www.hackshp.cn课后答案网 www.hackshp.cn课后答案网 w ww.hackshp.cn课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n。
半导体器件物理复习题第二章:1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。
物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低2)什么是半导体的直接带隙和间接带隙?其价带顶部与导带最低处发生在相同动量处(p =0)。
因此,当电子从价带转换到导带时,不需要动量转换。
这类半导体称为直接带隙半导体。
3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。
即热平衡状态下的载流子浓度不变。
5)费米分布函数表达式?物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。
6本征半导体价带中的空穴浓度:7)本征费米能级Ei :本征半导体的费米能级。
在什么条件下,本征Fermi 能级靠近禁带的中央:在室温下可以近似认为费米能级处于带隙中央8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同,即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 29) 简并半导体:当杂质浓度超过一定数量后,费米能级进入了价带或导带的半导体。
10) 非简并半导体载流子浓度:且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为:p 型半导体多子和少子的浓度分别为: 第三章:1)迁移率:是指载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢的量度,运动得越快,迁移率越大。
定义为: 2)漂移电流:载流子在热运动的同时,由于电场作用而产生的沿电场力方向的定向运动称作漂移运动。
半导体器件物理教案课件PPT第一章:半导体简介1.1 半导体的定义与特性1.2 半导体材料的分类与应用1.3 半导体的导电机制第二章:PN结与二极管2.1 PN结的形成与特性2.2 二极管的结构与工作原理2.3 二极管的应用电路第三章:晶体三极管3.1 晶体三极管的结构与类型3.2 晶体三极管的工作原理3.3 晶体三极管的特性参数与测试第四章:场效应晶体管4.1 场效应晶体管的结构与类型4.2 场效应晶体管的工作原理4.3 场效应晶体管的特性参数与测试第五章:集成电路5.1 集成电路的基本概念与分类5.2 集成电路的制造工艺5.3 常见集成电路的应用与实例分析第六章:半导体器件的测量与测试6.1 半导体器件测量基础6.2 半导体器件的主要测试方法6.3 测试仪器与测试电路第七章:晶体二极管的应用7.1 二极管整流电路7.2 二极管滤波电路7.3 二极管稳压电路第八章:晶体三极管放大电路8.1 放大电路的基本概念8.2 晶体三极管放大电路的设计与分析8.3 晶体三极管放大电路的应用实例第九章:场效应晶体管放大电路9.1 场效应晶体管放大电路的基本概念9.2 场效应晶体管放大电路的设计与分析9.3 场效应晶体管放大电路的应用实例第十章:集成电路的封装与可靠性10.1 集成电路封装技术的发展10.2 常见集成电路封装形式与特点10.3 集成电路的可靠性分析与提高方法第十一章:数字逻辑电路基础11.1 数字逻辑电路的基本概念11.2 逻辑门电路及其功能11.3 逻辑代数与逻辑函数第十二章:晶体三极管数字放大器12.1 数字放大器的基本概念12.2 晶体三极管数字放大器的设计与分析12.3 数字放大器的应用实例第十三章:集成电路数字逻辑家族13.1 数字逻辑集成电路的基本概念13.2 常用的数字逻辑集成电路13.3 数字逻辑集成电路的应用实例第十四章:半导体存储器14.1 存储器的基本概念与分类14.2 随机存取存储器(RAM)14.3 只读存储器(ROM)与固态硬盘(SSD)第十五章:半导体器件物理在现代技术中的应用15.1 半导体器件在微电子技术中的应用15.2 半导体器件在光电子技术中的应用15.3 半导体器件在新能源技术中的应用重点和难点解析重点:1. 半导体的定义、特性及其导电机制。
现代半导体器件物理与工艺现代半导体器件物理与工艺是当今科学技术领域的重要研究方向之一。
随着信息技术的飞速发展,半导体器件的性能和制造工艺在电子领域起着至关重要的作用。
本文将就现代半导体器件物理与工艺进行详细阐述,主要包括半导体物理、半导体器件和制造工艺等方面内容。
一、半导体物理半导体物理是研究半导体材料中电子和空穴行为规律的学科。
在半导体物理中,最重要的概念是能带理论,即根据固体材料中电子能级的分布规律,将电子能级分为价带和导带。
在半导体中,价带中填满电子的是价带电子,而导带是没有电子的。
此外,掺杂、载流子浓度、迁移率和复合等概念也是半导体物理中的基础知识。
二、半导体器件半导体器件是基于半导体材料制成的各种电子元件,如二极管、晶体管和场效应晶体管等。
这些器件是现代电子设备的核心组成部分,广泛应用于通讯、计算机、消费电子和能源等领域。
半导体器件的原理是利用半导体材料的特性,通过掺杂和电场调控等方式实现电流的控制和放大。
三、制造工艺制造工艺是指将半导体材料转变为可用于器件制造的具体工艺流程。
在半导体器件制造过程中,常见的工艺包括材料生长、掺杂、光刻、蚀刻、沉积、清洗和封装等。
这些工艺涉及到多个微米到纳米的尺度,并需要高精度的设备和稳定的工艺控制,以确保器件的性能和稳定性。
四、半导体器件的发展与应用随着科技的进步,半导体器件的发展已经进入纳米时代。
在微电子制造中,将半导体器件的尺寸不断缩小和集成化,使得芯片的速度更快,功耗更低,存储容量更大。
此外,半导体器件广泛应用于无线通信、物联网、人工智能和新能源等领域,为社会经济的发展和人们的生活带来了巨大的改变和便利。
总结:现代半导体器件物理与工艺是电子技术领域中非常重要的研究方向。
深入理解半导体物理、研究半导体器件的设计与制造工艺,对于提高半导体器件的性能和制造过程的控制非常关键。
只有不断推进半导体器件技术的研究与创新,才能满足人们对于更高性能、更低功耗的电子产品的需求,推动科技的进步与社会的发展。
《半导体器件物理》教学大纲(2006版)课程编码:07151022学时数:56一、课程性质、目的和要求半导体器件物理课是微电子学,半导体光电子学和电子科学与技术等专业本科生必修的主干专业基础课。
它的前修课程是固体物理学和半导体物理学,后续课程是半导体集成电路等专业课,是国家重点学科微电子学与固体电子学硕士研究生入学考试专业课。
本课程的教学目的和要求是使学生掌握半导体器件的基本结构、物理原理和特性,熟悉半导体器件的主要工艺技术及其对器件性能的影响,了解现代半导体器件的发展过程和发展趋势,对典型的新器件和新的工艺技术有所了解,为进一步学习相关的专业课打下坚实的理论基础。
二、教学内容、要点和课时安排第一章半导体物理基础(复习)(2学时)第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章PN结(12学时)第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)P 结第二节加偏压的N一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象P-结的直流电流-电压特性第三节理想N一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示Fig2.12)I-特性的温度依赖关系第六节V一、反向饱和电流和温度的关系I-特性的温度依赖关系二、V第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应二、利用电荷控制方程求解s三、阶跃恢复二极管基本理论第十节P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管(10学时)第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系Ebers-)方程第四节爱拜耳斯-莫尔(Moll一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、h FE和I CE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,h fe),共基极截止频率和共射极截止频率(Wɑ,Wß),增益-频率带宽或称为特征频率(W T),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB 、τE 、τC 、τD及相关推导四、Kirk效应第九节混接 型等效电路一、参数:g m、g be 、C D的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:t d、t r、t f、t s三、解电荷控制方程求贮存时间t s第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12 、§3.13 、§3.14第四章金属—半导体结(4学时)第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管(4学时)第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:g l g ml g m C G二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节JFET和MESFET的类型一、N—沟增强型N—沟耗尽型二、P—沟增强型P—沟耗尽型阅读§5.8 §5.9第六章金属-氧化物-场效应晶体管(10学时)第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节等效电路和频率响应一、参数:g d g m r d二、等效电路三、截止频率第七节亚阈值区一、亚阈值概念二、MOSFET的亚阈值概念第九节MOS场效应晶体管的类型一、N—沟增强型N—沟耗尽型二、P—沟增强型P—沟耗尽型第十节器件尺寸比例MOSFET制造工艺一、P沟道工艺二、N沟道工艺三、硅栅工艺四、离子注入工艺第七章 太阳电池和光电二极管(6学时)第一节半导体中光吸收一、两种光吸收过程二、吸收系数三、吸收限第二节 PN 结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节 太阳电池的I-V 特性一、理想太阳电池的等效电路二、根据等效电路写出I-V 公式,I-V 曲线图(比较:根据电流分量写出I-V 公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V 公式五、R S 对I-V 特性的影响第四节 太阳电池的效率一、计算 V mp I mp P m 二、效率的概念%100⨯=inL OC P I FFV η 第五节 光产生电流和收集效率一、“P 在N 上”结构,光照,x O L e G αα-Φ=少子满足的扩散方程二、例1-1,求少子分布,电流分布 三、计算光子收集效率:O npt col G J J Φ=η讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响理解Fig7-9,Fig7-10所反映的物理意义第六节提高太阳能电池效率的考虑一、光谱考虑(多媒体演示)二、最大功率考虑三、串联电阻考虑四、表面反射的影响五、聚光作用第七节肖特基势垒和MIS太阳电池一、基本结构和能带图二、工作原理和特点阅读§7.8第九节光电二极管一、基本工作原理二、P-I-N光电二极管三、雪崩光电二极管四、金属-半导体光电二极管第十节光电二极管的特性参数一、量子效率和响应度二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP)四、探测率(D)、比探测率(D*)第八章发光二极管与半导体激光器(4学时)第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节LED的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节LED的特性参数一、I-V特性二:量子效率:注射效率γ、辐射效率rη、内量子效率iη,逸出概率oη、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布,峰值半高宽FWHM,峰值波长,主波长,亮度第四节可见光LED一、GaP LED二、GaAs1-x P x LED三、GaN LED第五节红外LED一、性能特点二、应用光隔离器阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件(阅读,不做作业和考试要求)第十章电荷转移器件(4学时)第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用三、教学方法板书、讲授、多媒体演示四、成绩评价方式闭卷考试加平时作业、课堂讨论五、主要参考书目1、孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005-6第二次印刷。
半导体物理器件与工艺半导体物理器件与工艺是现代电子技术的重要组成部分。
在当今的高科技领域,半导体器件被广泛应用于各种电子产品中,如计算机、手机、摄像头等。
而半导体器件的制造工艺则是实现这些高性能电子产品的关键。
半导体物理器件是指利用半导体材料的特性制造而成的电子器件。
半导体材料的特性是介于导体和绝缘体之间的一种物质,具有半导电性。
通过对半导体材料进行掺杂和加工,可以改变其导电性能,从而实现不同类型的半导体器件,如二极管、晶体管、集成电路等。
半导体器件的制造工艺是一个复杂而精细的过程。
首先,需要选择适合的半导体材料,并对其进行纯化和生长,以获得高质量的单晶片。
接着,通过光刻技术和化学腐蚀等步骤,将器件图案转移到半导体片上。
然后,使用离子注入、扩散等方法,对半导体片进行掺杂和形成PN结构。
最后,进行金属薄膜沉积、电镀、刻蚀等工艺,建立电连接和保护层,完成器件的制造。
半导体物理器件与工艺的发展使得电子技术得到了巨大的突破与进步。
半导体器件具有小体积、高速度、低功耗等优势,使得电子产品变得更加高效和便携。
而半导体工艺的不断创新和改进,使得器件的制造精度和可靠性不断提高,为电子产品的性能提供了强大的支持。
尽管半导体物理器件与工艺在电子技术领域有着重要的地位,但也面临着一些挑战和问题。
例如,制造过程中的光刻技术在器件尺寸越来越小的情况下,遇到了光学分辨率的限制;器件的热效应和量子效应等物理现象也对器件的性能和稳定性提出了要求。
总而言之,半导体物理器件与工艺是现代电子技术的核心。
通过精细的制造工艺和物理原理的应用,半导体器件得以实现并发挥其优势。
随着科技的不断进步,我们可以期待半导体物理器件与工艺的发展,为我们的生活带来更多的便利和创新。
教学内容和要点第一章半导体物理基础第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章PN结第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)第二节加偏压的NP 结一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象第三节理想NP-结的直流电流-电压特性一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示 Fig2.12)第六节VI-特性的温度依赖关系一、反向饱和电流和温度的关系二、VI-特性的温度依赖关系第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示 Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应τ二、利用电荷控制方程求解s三、阶跃恢复二极管基本理论第十节P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系第四节爱拜耳斯-莫尔(MollEbers-)方程一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、hFE 和ICE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,h fe),共基极截止频率和共射极截止频率(Wɑ,Wß),增益-频率带宽或称为特征频率(WT),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB 、τE、τC、τD及相关推导四、Kirk效应第九节混接π型等效电路一、参数:gm 、gbe、CD的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:td 、tr、tf、ts三、解电荷控制方程求贮存时间ts 第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12 、§3.13 、§3.14第四章金属—半导体结第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:gl gmlgmCG二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节JFET和MESFET的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型阅读§5.8 §5.9第六章金属-氧化物-场效应晶体管第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、 M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S 功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节 等效电路和频率响应一、参数:g d g m r d 二、等效电路 三、截止频率第七节 亚阈值区一、亚阈值概念二、MOSFET 的亚阈值概念第九节 MOS 场效应晶体管的类型一、 N —沟增强型 N —沟耗尽型 二、 P —沟增强型 P —沟耗尽型第十节 器件尺寸比例MOSFET 制造工艺 一、P 沟道工艺 二、N 沟道工艺 三、硅栅工艺 四、离子注入工艺第七章 太阳电池和光电二极管 第一节半导体中光吸收一、两种光吸收过程 二、吸收系数 三、吸收限第二节 PN 结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节 太阳电池的I-V 特性一、理想太阳电池的等效电路二、根据等效电路写出I-V 公式,I-V 曲线图(比较:根据电流分量写出I-V 公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V 公式 五、R S 对I-V 特性的影响第四节 太阳电池的效率一、计算 V mp I mp P m二、效率的概念%100⨯=inLOC P I FFV η 第五节 光产生电流和收集效率一、“P 在N 上”结构,光照,x O L e G αα-Φ=少子满足的扩散方程 二、例1-1,求少子分布,电流分布 三、计算光子收集效率:On pt col G J J Φ=η讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响 理解Fig7-9,Fig7-10所反映的物理意义第六节 提高太阳能电池效率的考虑一、光谱考虑 (多媒体演示) 二、最大功率考虑 三、串联电阻考虑 四、表面反射的影响 五、聚光作用第七节 肖特基势垒和MIS 太阳电池一、基本结构和能带图二、工作原理和特点 阅读 §7.8第九节 光电二极管一、基本工作原理 二、P-I-N 光电二极管 三、雪崩光电二极管四、金属-半导体光电二极管第十节 光电二极管的特性参数一、量子效率和响应度 二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP ) 四、探测率(D )、比探测率(D *)第八章 发光二极管与半导体激光器 第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合 二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节 LED 的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节 LED 的特性参数一、I-V 特性二:量子效率:注射效率γ、辐射效率r η、内量子效率i η ,逸出概率o η、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布 ,峰值半高宽 FWHM,峰值波长 ,主波长 ,亮度第四节 可见光LED一、GaP LED 二、GaAs 1-x P x LED 三、GaN LED第五节 红外 LED一 、性能特点二、 应用 光隔离器 阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件第十章电荷转移器件第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用主要参考书目孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005第二次印刷。
半导体器件物理教案课件PPT第一章:半导体简介1.1 半导体的概念与分类介绍半导体的定义解释N型和P型半导体讲解半导体材料的分类及性质1.2 半导体的导电特性说明半导体的导电原理探讨半导体导电性的影响因素分析N型和P型半导体的导电特性第二章:PN结的形成与特性2.1 PN结的形成讲解PN结的形成过程说明PN结的形成机制探讨PN结的平衡状态2.2 PN结的特性分析PN结的伏安特性讲解PN结的击穿现象探讨PN结的势垒结构和电荷分布第三章:二极管的结构与特性3.1 二极管的结构介绍二极管的结构及组成讲解P型和N型半导体对接形成二极管的过程探讨二极管的掺杂浓度和材料选择3.2 二极管的特性分析二极管的伏安特性讲解二极管的正向和反向导通条件探讨二极管的动态响应特性和温度特性第四章:二极管的应用4.1 整流电路讲解二极管整流电路的原理分析整流电路的电压和电流波形探讨整流电路的效率和输出特性4.2 滤波电路介绍二极管滤波电路的原理分析滤波电路的频率响应特性探讨滤波电路的应用场景和效果4.3 稳压电路讲解二极管稳压电路的原理分析稳压电路的稳压特性探讨稳压电路的选用和设计要点第五章:晶体三极管的结构与特性5.1 晶体三极管的结构介绍晶体三极管的结构及组成讲解PNP和NPN型晶体三极管的结构特点探讨晶体三极管的制造工艺和材料选择5.2 晶体三极管的特性分析晶体三极管的伏安特性讲解晶体三极管的工作原理探讨晶体三极管的电流放大效应和输出特性第六章:晶体三极管的应用6.1 放大电路讲解晶体三极管放大电路的原理分析放大电路的电压和电流波形探讨放大电路的输入和输出特性6.2 开关电路介绍晶体三极管开关电路的原理分析开关电路的转换特性探讨晶体三极管在开关电路中的应用和选择第七章:场效应晶体管的结构与特性7.1 场效应晶体管的结构介绍场效应晶体管的结构及组成讲解MOSFET和JFET的结构特点探讨场效应晶体管的制造工艺和材料选择7.2 场效应晶体管的特性分析场效应晶体管的伏安特性讲解场效应晶体管的工作原理探讨场效应晶体管的电流放大效应和输出特性第八章:集成电路的基本原理8.1 集成电路的构成介绍集成电路的构成要素讲解集成电路的制造工艺探讨集成电路的分类和应用领域8.2 集成电路的设计与制造分析集成电路的设计流程讲解集成电路的制造步骤探讨集成电路的设计原则和制造技术第九章:常用集成电路应用实例9.1 放大集成电路讲解放大集成电路的原理与应用分析放大集成电路的性能指标探讨放大集成电路在实际电路中的应用实例9.2 数字集成电路介绍数字集成电路的原理与应用分析数字集成电路的逻辑功能探讨数字集成电路在数字系统中的应用实例第十章:半导体器件的发展与新技术10.1 半导体器件的发展历程回顾半导体器件的发展历程分析不期半导体器件的特点和突破探讨半导体器件未来发展趋势10.2 半导体新技术介绍半导体新技术的研究方向分析半导体新技术的应用前景探讨半导体新技术对半导体产业的影响重点和难点解析重点环节1:半导体的导电特性需要重点关注半导体导电原理和影响导电性的因素,因为这是理解后续半导体器件工作的基础。
第7章MOSFET原理7.1 金属、半导体的功函数在绝对零度时,金属中的电子填满了费米能级EF以下的所有能级,而高于费米能级E的所有能级全部F是空的。
温度升高时,只有费米能级E附近的少数电F子受到热激发,由低于E的能级跃迁到高于F E的能级F上,但大部分电子仍不能脱离金属而逃逸出体外。
这意味着金属中的电子虽然能够在金属中自由运动,但绝大多数电子所处的能级都低于体外(真空)的能级。
要使金属中的电子从金属中逸出,必须由外界给它以足够的能量。
从量子力学的观点看,金属中的电子是在一个势阱运动。
用E表示真空中静止电子的能量。
如图7.1所示。
定义某种材料的功函数为:真空电子能量E与材料的费米能级E的差值。
F则金属的功函数为()07.1m FmW E E =- 半导体的功函数为()07.2s Fs W E E =-功函数的物理意义:表示电子从起始能量等于F E 由金属内逸出(跳到真空)需要的最小能量。
注意:半导体的费米能级随掺杂浓度改变,因而其功函数也随掺杂浓度变化。
图7.1 还显示了从0c E E 的能量间隔χ,χ称谓电子亲和能,表示使处于半导体导带底的电子逃逸出体外(跳到真空能级)需要的最小能量。
即()07.3c E E χ=-利用电子的亲和能,半导体的功函数又可以表示为 []()[]7.4()S c FS n c FS n W E E e E E e N semiconductor χχφφ=+-=+-=-表7.1 列出了硅在不同掺杂浓度下对应的功函数 ()()()331415161415167.11010101010104.37 4.31 4.25 4.87 4.93 4.99S d a W eV n type N cm p type N cm Si ----表硅的功函数与掺杂浓度的关系(计算值)半导体材料功函数7.2金属-氧化物-半导体场效应晶体管(MOSFET) 引言:MOS 器件的发明先于双极器件,但由于加工工艺条件的限制,双极器件的商品化要早于MOS 器件。
《半导体器件物理基础》复习要点授课教师:李洪涛编辑:徐驰第一章PN结载流子:N型半导体中电子是多数载流子,空穴是少数载流子;P型半导体中空穴是多数载流子,电子是少数载流子。
pn结:指半导体中p区和n区的交界面及两侧很薄的过渡区,由p区和n区共格相连而构成。
多子的扩散运动使空间电荷区变宽,少子的漂移运动使空间电荷区变窄,最终达到动态平衡,I扩=I漂,空间电荷区的宽度达到稳定,即形成PN结。
突变结:由合金法、分子束外延法制得的pn结,在p区和n区内杂质分布均匀,而在交界面处杂质类型突变。
缓变结:由扩散法制得的p-n结,扩散杂质浓度由表面向内部沿扩散方向逐渐减小,交界面处杂质浓度是渐变的。
施主杂质浓度空间电荷区:PN结的内部由于正负电荷的相互吸引,使过剩电荷分布在交界面两侧一定的区域内。
电离施主与电离受主都固定在晶格结点上,因此称为“空间电荷区”。
空间电荷区电子浓度公式:n=n i exp((E f-E i)/KT)载流子在pn结区附近的分布:空间电荷区载流子浓度分布则如下图所示:用线性轴则如下图:结区电场、电位分布:耗尽区单位体积带电量相同。
势垒区内电场强度正比于Q1Q2/r2, 中心处电场最强。
所以就有了如下的电场强度分布和电位分布。
耗尽近似:空间电荷区只存在未被中和的带点离子,而不存在自由载流子,或者说自由载流子浓度已减小到耗尽程度,因此PN结又称为“耗尽层”。
耗尽区因无载流子,可忽略扩散和漂移的运动。
pn结能带图:接触电位差V D:pn结的内建电势差,大小等于空间电荷区靠近p区侧边界处电位与靠近n 区处电位之差。
n、p区掺杂浓度越大(或结区杂质浓度梯度越大)、材料禁带宽度越宽,温度越低,接触电势差越大。
PIN结构:在P区与N区中间加入一层本征半导体构造的晶体二极管。
高低结:n+-n或者p+-p结构的结。
同样有扩散和漂移的平衡,结区也有电场,但结区的载流子浓度介于两侧的浓度之间。
没有单向导电性。