数学 必修2 课堂练习 1.1.1.1
- 格式:pptx
- 大小:2.35 MB
- 文档页数:39
必修2 1.1空间几何体的结构(练习题)一、选择题1.在棱柱中()A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A.正方体 B.正四棱锥C.长方体D.直平行六面体4.下面命题中,正确的是()①底面是正方形,侧面都是等腰三角形的棱锥是正四棱锥;②对角线相等的四棱柱必是直棱柱;③底面边长相等的直四棱柱为正四棱柱;④四个面都是全等的三角形的几何体是正四面体5.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、46.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A17.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)8.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形9.一个三棱锥四个面中,是直角三角形的最多有()A.1个 B.2个 C.3个 D.4个10.图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是_______________.(注:把你认为正确的命题的序号都填上)11.高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是_______________.三、解答题12.察以下几何体的变化,通过比较,说出他们的特征.13.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长__________.。
高中数学必修2第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修2 1.1.1-1.1.2《柱、锥、台、球、简单组合体的结构特征》【知识要点】1、空间几何体的有关概念:空间几何体、多面体、旋转体2、棱柱的结构特征(重点):1) 棱柱的有关概念 2)棱柱的分类 3)棱柱的记法 3、棱锥的结构特征(重点) 4、棱台的结构特征5、圆柱的结构特征(重点)6、圆锥的结构特征(难点)7、圆台的结构特征8、球的结构特征9、组合体的结构特征10、简单空间几何体的基本概念:(1)(2)特殊的四棱柱:【范例析考点】考点一.柱、锥、台、球的概念的理解 例1:一个棱柱是正四棱柱的条件是( ). A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱 【针对练习】1、下列说法中正确的是( ).A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径2、下列说法错误的是( ).A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形 3、下列说法中不正确的是( ).A 棱柱的侧面不可以是三角形B 有六个大小一样的正方形所组成的图形是正方体的展开图C 正方体的各条棱都相等D 棱柱的各条侧棱都相等 4、下列对棱柱说法正确的是( )A .只有两个面互相平行 B.所有的棱都相等 C.所有的面都是平行四边形 D.两底面平行,且各侧棱也平行 5、棱台不具备的特点是( )A .两底面相似 B. 侧面都是梯形C. 侧棱都相等D. 侧棱延长后交于一点6、有两个面互相平行, 其余各面都是梯形的多面体是( )A .棱柱B . 棱锥C . 棱台D .可能是棱台, 也可能不是棱台, 但一定不是棱柱或棱锥 7、构成多面体的面最少是( )A .三个B . 四个C . 五个D . 六个 8、下列说法正确的是( ).A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形9、一个棱柱至少有 个面,面数最少的棱柱有 个顶点,有 条棱.10、棱柱的侧面是 形,长方体的侧面是 形,正方体的侧面是 形.考点二.柱、锥、台、球的简单运算 例2:如右图, 四面体P-ABC 中, PA=PB=PC=2,∠APB=∠BPC=∠APC=300. 一只蚂蚁从A点出发沿四面体的表面绕一周, 再回到A 点, 问蚂蚁经过的最短路程是_________. 【针对练习】1.边长为5cm 的正方形EFGH 是圆柱的轴截面, 则从E 点沿圆柱的侧面到相对顶点G 的最短距离是_______________. 2.已知三棱锥的底面是边长为a 的等边三角形,则过各侧棱中点的截面的面积为3.长方体的全面积为11,十二条棱的长度之和为24,则这个长方体的一条对角线长为4.一个圆台的母线长为12,两底面面积分别为4π和25π,求 (1)圆台的高: (2)截得此圆台的圆锥的母线长为 5. 一个圆锥的底面半径为2,高为6,在圆锥的内部有一个高为x 内接圆柱.(1)用x 表示圆柱的轴截面面积S ; (2)当x 为何值时,S 最大.考点三.有关截面问题例3:下列命题正确的是( )A .平行与圆锥的一条母线的截面是等腰三角形B .平行与圆台的一条母线的截面是等腰梯形C .过圆锥母线及顶点的截面是等腰三角形D .过圆台的一个底面中心的截面是等腰梯形【针对练习】1、用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥 B.圆柱 C.球体 D.以上都可能2、下列说法中正确的是()A.半圆可以分割成若干个扇形B.面是八边形的棱柱共有8个面C.直角梯形绕它的一条腰旋转一周形成的几何体是圆台D.截面是圆的几何体,不是圆柱,就是圆锥3、甲:“用一个平面去截一个长方体, 截面一定是长方形”;乙:“有一个面是多边形,其余各面都是三角形的几何体是棱锥”.这两种说法()A.甲正确乙不正确 B.甲不正确乙正确C.甲正确乙正确 D.不正确乙不正确4、用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是()A.一个几何体是棱锥, 另一个几何体是棱台B.一个几何体是棱锥, 另一个几何体不一定是棱台C.一个几何体不一定是棱锥, 另一个几何体是棱台D.一个几何体不一定是棱锥, 另一个几何体不一定是棱5、用一个平面去截正方体,所得的截面不可能是().A. 六边形B. 菱形C. 梯形D. 直角三角形6、用一个平面去截正方体,得到的截面可能是、、、、、边形。
1.1.1棱柱、棱锥、棱台的结构特征填一填1.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.2.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.3.棱柱棱锥棱台棱柱的底面是几边形就叫几棱柱,例如,三棱柱、四棱柱……棱锥的底面是几边形就叫几棱锥,例如,三棱锥、四棱锥……由几棱锥截得的就叫几棱台,例如,由三棱锥截得的棱台叫三棱台.判一判1.2.棱柱最多有两个面不是四边形.(√)3.棱锥的所有面都可以是三角形.(√)4.多面体是由平面多边形和圆面围成的.(×)5.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)6.有两个面平行,其余各面都是四边形的几何体叫棱柱.(×)7.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.(×)8.各侧面都是正方形的四棱柱一定是正方体.(×)想一想1.提示:(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.什么是斜棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体?提示:(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.3.判断棱锥、棱台形状的两个方法是什么?提示:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点4.解多面体展开图问题的策略是什么?提示:(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.思考感悟:练一练1.答案:C2.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个答案:D3.下列四个命题:①棱柱的两底面是全等的正多边形;②有一个侧面是矩形的棱柱是直棱柱;③有两个侧面是矩形的棱柱是直棱柱;④四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.答案:④4.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.答案:①③知识点一棱柱的结构特征1.A.1个B.2个C.3个D.4个解析:根据棱柱的定义知,这4个几何体都是柱体.答案:D2.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形解析:根据棱柱的结构特征,D正确.答案:D知识点二棱锥、棱台的结构特征3.如图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是() A.三棱锥B.四棱锥C.三棱柱D.组合体解析:剩余部分为四棱锥A′-BB′C′C,故选B.答案:B4.下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________解析:根据棱锥、棱台的定义,选①②.知识点三空间几何体的平面展开图5.解析:A,B,C中底面图形的边数与侧面的个数不一致,故不能围成棱柱,故选D.答案:D6.如图是三个几何体的侧面展开图,请问各是什么几何体?解析:①为五棱柱;②为五棱锥;③为三棱台.综合知识7.如图,在边长为2a 的正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点? (3)每个面的三角形面积为多少?解析:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△EPF 均为直角三角形.(3)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE=(2a )2-12a 2-a 2-a 2=32a 2.8.根据下列关于空间几何体的描述,说出几何体的名称: (1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解析:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱. (2)这是一个六棱锥. (3)这是一个三棱台.基础达标一、选择题1.棱锥的侧面和底面可以都是( )A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.故选A.答案:A2.下列说法正确的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选项A错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.答案:D3.棱台不具备的特点是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义及特征知,A、B、D是棱台的特点,故选C.答案:C4.下面关于棱锥的说法正确的是()A.有一个面是多边形,其余各面都是三角形的几何体是棱锥B.底面是正多边形的棱锥是正棱锥C.正棱锥的侧棱不一定相等D.过棱锥的不相邻的两侧棱的截面是三角形解析:由于A中缺少了定义中的“其余各面是有一个公共顶点的三角形”,故A不正确;由于正棱锥的概念中除了底面是正多边形外,还要求顶点在底面上的射影是底面的中心,否则就不是正棱锥,故B不正确;根据正棱锥的概念可知,正棱锥的侧棱长相等,故C不正确,D显然正确.答案:D5.正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为3,侧棱长为1,则动点从A沿表面移到点D1时的最短的路程是()A.27 B.28C.2 6 D.24解析:如图所示.将正六棱柱的侧面展开,只需展开一半,即可求A与D1之间的距离.AD21=AD2+DD21=(33)2+1=28.所以AD1=27.答案:A6.下列命题中,正确的命题是()①有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱②四棱锥的四个侧面都可以是直角三角形③有两个面互相平行,其余各面都是梯形的多面体是棱台④四面体都是三棱锥A.②④B.①②C.①②③D.②③④解析:①错误;反例:将两个相同的斜平行六面体叠放;②正确,在长方体中可以截出;③错误,侧棱可能无法聚成一点;④正确.故选A.答案:A7.下列说法中正确的是()A.顶点在底面上的射影到底面各顶点的距离相等的三棱锥是正棱锥B.底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C.底面三角形各边分别与相对的侧棱垂直的三棱锥是正三棱锥D.底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥解析:选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故A错;选项B,如图所示,△ABC为正三角形,若P A=PB=AB=BC=AC≠PC,△P AB,△PBC,△P AC都为等腰三角形,但它不是正三棱锥,故B错;选项C,顶点在底面面上的射影为底面三角形的垂心,底面为任意三角形皆可,故C错;选项D,顶点在底面上的射影是底面三角形的外心,又底面三角形为正三角形,因此,外心即中心,故D正确.故选D.答案:D二、填空题8.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:489.如图所示平面图形沿虚线折起后,①为________,②为________,③为________.解析:由图①知几何体各侧面是矩形,底面为四边形.该几何体是四棱柱;由图②知几何体各侧面是三角形,底面是三角形,该几何体是三棱锥;由图③知几何体侧面是三角形,底面为四边形,故该几何体是四棱锥.答案:四棱柱三棱锥四棱锥10.下列四个命题中,错误的有________(填序号).①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④仅有两个面互相平行的五面体是棱台.解析:①中的平面不一定平行于底面,故①错;②③错,可用反例去检验,如下图.④三棱柱满足条件,是仅有两个面互相平行的五面体,但其不是棱台,④错.答案:①②③④11.如图所示的几何体,关于其结构特征,下列说法不正确的是________.①该几何体是由两个同底的四棱锥组成的几何体;②该几何体有12条棱、6个顶点;③该几何体有8个面,并且各面均为三角形;④该几何体有9个面,其中一个面是四边形,其余均为三角形.解析:平面ABCD可将该几何体分割成两个四棱锥,因此该几何体是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面,而不是一个面,故填④.答案:④12.如图所示,一个正方体的表面展开图中有五个正方形为阴影部分,第六个正方形在编号为1~5的适当位置,则所有可能的位置编号为________.解析:可用纸板做模型演示一下.答案:1,4,5三、解答题13.长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.解析:沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:(1)若将C1D1剪开,使面AB1与面A1C1共面,可求得AC1=42+(5+3)2=80=4 5.(2)若将AD剪开,使面AC与面BC1共面,可求得AC1=32+(5+4)2=90=310.(3)若将CC1剪开,使面BC1与面AB1共面,可求得AC1=(4+3)2+52=74.相比较可得蚂蚁爬行的最短路线长为74.14.如图所示,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE 把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.解析:(1)是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是平行的,其余各面都是矩形,也是平行四边形,并且每相邻的两个平行四边形的公共边都互相平行.(2)截面BCFE 上方部分是棱柱,且是三棱柱BEB 1-CFC 1,其中△BEB 1和△CFC 1是底面. 截面BCFE 下方部分也是棱柱,且是四棱柱ABEA 1-DCFD 1,其中四边形ABEA 1和DCFD 1是底面.能力提升15.如图在一个长方体的容器中,里面装有一些水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中,判断下面的说法是否正确,并说明理由.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形; (2)水的形状不断变化,可能是棱柱,也可能变为棱台或棱锥.解析:(1)不对,水面的形状就是用一个与棱(将长方体倾斜时固定不动的棱)平行的平面截长方体时形成的截面,截面的形状可以是矩形,但不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体,此几何体是棱柱.水比较少时,是三棱柱;水比较多时,可能是四棱柱或五棱柱,但不可能是棱台或棱锥.16.如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经过M 到C 1的最短路线长及此时A 1MAM的值.解析:沿侧棱BB 1将正三棱柱的侧面展开,得到一个矩形BB 1B ′1B ′(如下图).(1)矩形BB 1B ′1B ′的长BB ′=6,宽BB 1=2,所以三棱柱侧面展开图的对角线长为62+22=210.(2)由侧面展开图可知:当B ,M ,C 1三点共线时,由B 经M 到点C 1的路线最短,所以最短路线长为BC 1=42+22=2 5.显然Rt △ABM ≌Rt △A 1C 1M ,所以A 1M =AM ,即A 1MAM =1.由Ruize 收集整理。
人B版高中数学必修2同步习题目录第1章1.1.1同步练习第1章1.1.2同步练习第1章1.1.3同步练习第1章1.1.4同步练习第1章1.1.5同步练习第1章1.1.6同步练习第1章1.1.7同步练习第1章1.2.1同步练习第1章1.2.2第一课时同步练习第1章1.2.2第二课时同步练习第1章1.2.3第一课时同步练习第1章1.2.3第二课时同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.2.1同步练习第2章2.2.2第一课时同步练习第2章2.2.2第二课时同步练习第2章2.2.3第一课时同步练习第2章2.2.3第二课时同步练习第2章2.2.4同步练习第2章2.3.1同步练习第2章2.3.2同步练习第2章2.3.3同步练习第2章2.3.4同步练习第2章2.4.1同步练习第2章2.4.2同步练习第2章章末综合检测人教B版必修2同步练习1.关于平面,下列说法正确的是()A.平行四边形是一个平面B.平面是有大小的C.平面是无限延展的D.长方体的一个面是平面答案:C2.如图所示的两个相交平面,其中画法正确的有()A.1个B.2个C.3个D.4个解析:选B.被平面遮住的部分应画虚线,故(1)(4)正确.3.如图,是一个无盖正方体盒子的表面展开图,A、B、C为其上三点,则在正方体盒子中,∠ABC等于()A.45°B.60°C.90°D.120°答案:B4.飞机飞行表演在空中留下漂亮的“彩带”,用数学知识解释为________.答案:点动成线5.一个平面将空间分成________部分;两个平面将空间分成________部分.答案:23或41.下列不属于构成几何体的基本元素的是()A.点B.线段C.曲面D.多边形(不含内部的点)解析:选D.点、线、面是构成几何体的基本元素.2. 如图是一个正方体的展开图,每一个面内都标注了字母,则展开前与B相对的是()A.字母E B.字母CC.字母A D.字母D解析:选B.正方体展开图有很多种,可以通过实物观察,选一个面作为底面,通过空间想象操作完成.不妨选字母D所在的面为底面,可以得到A,F是相对的面,E与D相对;若选F做底面,则仍然得到A,F是相对的面,E与D相对,则与B相对的是字母C.3.如图,下列四个平面图形,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个立方体的图形是()解析:选C.借助模型进行还原.4.下列命题正确的是()A.直线的平移只能形成平面B.直线绕定直线旋转肯定形成柱面C.直线绕定点旋转可以形成锥面D.曲线的平移一定形成曲面解析:选C.直线的平移,可以形成平面或曲面,命题A不正确;当两直线平行时旋转形成柱面,命题B不正确;曲线平移的方向与曲线本身所在的平面平行时,不能形成曲面,D不正确,只有C正确.故选C.5.下列几何图形中,可能不是平面图形的是()A.梯形B.菱形C.平行四边形D.四边形解析:选D.四边形可能是空间四边形,如将菱形沿一条对角线折叠成4个顶点不共面的四边形.6.下面空间图形的画法中错误的是()解析:选D.被遮住的地方应该画成虚线或不画,故D图错误.7.在以下图形中,正方体ABCD-A1B1C1D1不可以由四边形________(填序号)平移而得到.①ABCD;②A1B1C1D1;③A1B1BA;④A1BCD1.解析:①ABCD,②A1B1C1D1,③A1B1BA,按某一方向平移可以得到正方体ABCD-A1B1C1D1,④A1BCD1平移不能得到正方体ABCD-A1B1C1D1.答案:④8. 把如图的平面沿虚线折叠可以折叠成的几何体是________.解析:图中由六个正方形组成,可以动手折叠试验,得到正方体.答案:正方体9.如右图小明设计了某个产品的包装盒,但是少设计了其中一部分,请你把它补上,使其成为两边均有盖的正方体盒子.你能有________种方法.答案:410. 指出下面几何体的点、线、面.解:顶点A 、B 、C 、D 、M 、N ;棱AB 、BC 、CD 、DA 、MA 、MB 、MC 、MD 、NA 、NB 、NC 、ND ;面MAD 、面MAB 、面MBC 、面MDC 、面NAB 、面NAD 、面NDC 、面NBC .11.搬家公司想把长2.5 m ,宽0.5 m ,高2 m 的长方体家具从正方形窗口穿过,正方形窗口的边长为a ,则a 至少是多少?解:如图,问题实质是求正方形的内接矩形边长为2 m,0.5 m 时正方形的边长a =2+0.52=524≈1.77(m).所以a 至少是1.77 m 时,长方体家具可以通过.12.要将一个正方体模型展开成平面图形,需要剪断多少条棱?你能从中得出什么规律来吗?解:需要剪断7条棱.因为正方体有6个面,12条棱,两个面有一条棱相连,展开后六个面就有5条棱相连,所以剪断7条棱.规律是正方体的平面展开图只能有5条棱相连,但是,有5条棱相连的6个正方形图形不一定是正方体的平面展开图.人教B 版必修2同步练习1.在下列立体图形中,有5个面的是( ) A .四棱锥 B .五棱锥 C .四棱柱 D .五棱柱解析:选A.柱体均有两个底面,锥体只有一个底面.2.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是( )A .棱柱B .棱台C .棱柱与棱锥组合体D .无法确定 答案:A3.在四棱锥的四个侧面中,直角三角形最多可有( ) A .1个 B .2个 C .3个 D .4个 答案:D4.棱柱的侧面是________形,棱锥的侧面是________形,棱台的侧面是________形. 答案:平行四边 三角 梯5.在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,沿AE 、AF 、EF 将其折成一个多面体,则此多面体是________.答案:三棱锥1.下列命题正确的是( )A .斜棱柱的侧棱有时垂直于底面B .正棱柱的高可以与侧棱不相等C .六个面都是矩形的六面体是长方体D .底面是正多边形的棱柱为正棱柱解析:选C.四个侧面都是矩形的棱柱是直平行六面体.两个底面是矩形的直平行六面体是长方体.故正确答案为C.2.将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体为( )A .棱柱B .棱台C .棱柱与棱锥的组合体D .不能确定解析:选A.水面始终与固定的一边平行,且满足棱柱的定义.3. 如图所示,正四棱锥S -ABCD 的所有棱长都等于a ,过不相邻的两条棱SA ,SC 作截面SAC ,则截面的面积为( )A.32a 2 B .a 2 C.12a 2 D.13a 2解析:选C.根据正棱锥的性质,底面ABCD 是正方形,∴AC =2a .在等腰三角形SAC中,SA =SC =a ,又AC =2a ,∴∠ASC =90°,即S △SAC =12a 2.故正确答案为C.4.若要使一个多面体是棱台,则应具备的条件是( ) A .两底面是相似多边形 B .侧面是梯形 C .两底面平行D .两底面平行,侧棱延长后交于一点解析:选D.根据棱台的定义可知,棱台必备的两个条件:底面平行,侧棱延长后相交于一点.5.若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( ) A .正三棱锥 B .正四棱锥 C .正五棱锥 D .正六棱锥解析:选D.正三棱锥的底面边长和侧棱相等时叫做正四面体,因此该棱锥可以是正三棱锥,所以不选A ,另外,正四棱锥,正五棱锥也是可能的,故B 、C 也不选,根据正六边形的特点,正六边形的中心到各个顶点的距离相等,在空间中,除中心外,不可能再找到和各顶点的连线都等于底面边长的点,因此该棱锥不可能是正六棱锥.故选D.6.已知正四棱锥的侧棱长是底面边长的k 倍,则k 的取值范围是( )A .(0,+∞)B .(12,+∞)C .(2,+∞)D .(22,+∞)解析:选D.由正四棱锥的定义知如图,正四棱锥S -ABCD 中,S 在底面ABCD 内的射影O 为正方形的中心,而SA >OA =22AB ,∴SA AB >22,即k >22. 7.长方体表面积为11,十二条棱长度的和为24,则长方体的一条对角线长为________. 解析:设长方体的长、宽、高分别为a 、b 、c ,则4(a +b +c )=24,∴a +b +c =6.又(ab +bc +ac )×2=11.∴长方体的一条对角线长l =a 2+b 2+c 2= (a +b +c )2-2(ab +bc +ac )=62-11=5. 答案:58.在正方体上任意选择4个顶点,它们可能是如下各种几何体(图形)的4个顶点,这些几何体(图形)是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:本题借助正方体的结构特征解答,4个顶点连成矩形的情形很容易作出;图(1)中四面体A 1D 1B 1A 是③中描述的情形;图(2)中四面体DA 1C 1B 是④中描述的情形;图(3)中四面体A 1D 1B 1D 是⑤中描述的情形.因此正确答案为①③④⑤.答案:①③④⑤9.正四棱台的上、下底面边长分别是5和7,体对角线长为9,则棱台的斜高等于________.解析:如图,四边形BDD 1B 1是等腰梯形,B 1D 1=52,BD =72,BD 1=9,所以OO 1= BD 21-(BD +B 1D 12)2=3. 又E 1,E 分别为B 1C 1,BC 的中点,所以O 1E 1=52,OE =72.所以在直角梯形OEE 1O 1中,斜高E 1E =OO 21+(OE -O 1E 1)2=10.答案:1010.已知正四棱锥V -ABCD 中,底面面积为16,一条侧棱的长为211,求该棱锥的高.解:取正方形ABCD 的中心O ,连接VO 、AO ,则VO 就是正四棱锥V -ABCD 的高. 因为底面面积为16,所以AO =2 2. 因为一条侧棱长为211,所以VO =VA 2-AO 2=44-8=6. 所以正四棱锥V -ABCD 的高为6.11. 如图所示,长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE 把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱.因为它可以看成由四边形ADD 1A 1沿AB 方向平移至BCC 1B 1形成的几何体,符合棱柱的定义.(2)截面BCFE 右边的部分是三棱柱BEB 1-CFC 1,其中△BEB 1和△CFC 1是底面.截面BCFE 左边的部分是四棱柱ABEA 1-DCFD 1,其中四边形ABEA 1和四边形DCFD 1是底面.12. 如图所示,正三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长;(2)PC 和NC 的长.解:(1)正三棱柱ABC -A 1B 1C 1的侧面展开图是一个长为9,宽为4的矩形,如图所示,其对角线长为92+42=97.(2)由P 沿棱柱侧面经过棱CC 1到M 的最短路线,即侧面展开图中的线段MP ,设PC 的长为x ,则在Rt △AMP 中,AM =2,MP =29,∴AP 2=PM 2-AM 2=25,即(x +3)2=25, ∴x =2,即PC =2. ∵NC MA =PC P A =25, 又MA =2,∴NC =45,故PC 和NC 的长分别为2,45.人教B 版必修2同步练习1.下列说法正确的是( )A .圆台是直角梯形绕其一边旋转而成的B .圆锥是直角三角形绕其一边旋转而成的C .圆柱不是旋转体D .圆台可以看成是用平行于底面的平面截一个圆锥而得到的解析:选D.A 错误,这里需指明绕直角梯形与底边垂直的一腰旋转.B 错误,圆锥是直角三角形绕一条直角边旋转而成.C 错误,圆柱是旋转体.2.一条直线绕着与它相交但不垂直的直线旋转一周所得的几何图形是( ) A .旋转体 B .两个圆锥 C .圆柱 D .旋转面 答案:D3.一个等腰梯形绕着它的对称轴旋转半周所得的几何体是( ) A .圆柱 B .圆锥 C .圆台 D .以上都不对 答案:C4.一个圆柱的母线长为15 cm ,底面半径为12 cm ,则圆柱的轴截面面积是________.答案:360 cm 25.有下列说法:①球的半径是连接球心和球面上任意一点的线段; ②球的直径是连接球面上两点的线段; ③不过球心的截面截得的圆叫做小圆. 其中正确说法的序号是________.解析:利用球的结构特征判断:①正确;②不正确,因为直径必过球心;③正确. 答案:①③1.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是( ) A .两个圆台组合成的 B .两个圆锥组合成的C .一个圆锥和一个圆台组合成的D .一个圆柱和一个圆锥组合成的解析:选B.如图△ABO 与△CBO 绕AC 旋转,分别得到一个圆锥.2.边长为5 cm 的正方形EFGH 是圆柱的轴截面,则从E 点沿圆柱的侧面到相对顶点G 的最短距离是( )A .10 cmB .5 2 cmC .5π2+1 cm D.52π2+4 cm解析:选D.圆柱的侧面展开图如图所示,展开后E ′F =12·2π·(52)=52π,∴E ′G = 52+(52π)2=52π2+4(cm).3.若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是( ) A .4S B .4πS C .πS D .2πS解析:选C.由题意知圆柱的母线长为底面圆的直径2R ,则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS .4.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这截面把圆锥母线分为两段的比是( )A .1∶3B .1∶9C .1∶(3-1) D.3∶2解析:选C.由圆锥的截面性质可知,截面仍是圆,设r 1、r 2分别表示截面与底面圆的半径.而l 1与l 2表示母线被截得的线段.则r 1r 2=l 1l 1+l 2=13=13,∴l 1∶l 2=1∶(3-1).5.设M 、N 是球O 半径OP 上的两点,且NP =MN =OM ,分别过N 、M 、O 作垂直于OP 的平面,截球面得三个圆,则这三个圆的面积之比为( )A .3∶5∶6B .3∶6∶8C .5∶7∶9D .5∶8∶9解析:选D.作出球的轴截面图如图, 设球的半径为3R ,则MM ′=9R 2-R 2=8R , NN ′=9R 2-4R 2=5R . 所截三个圆的面积之比为:π·(5R )2∶π·(8R )2∶π·(3R )2=5∶8∶9.故选D.6.已知一个正方体内接于一个球,过球心作一截面,则截面不可能是( )解析:选D.过球心的任何截面都不可能是圆的内接正方形. 7.一圆锥的轴截面的顶角为120°,母线长为1,过顶点作圆锥的截面中,最大截面的面积为________.解析:当截面顶点为90°时,截面面积最大,为12×1×1=12.答案:128. 如图所示,在透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1中灌进一些水,将固定容器底面的一边BC 置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH 的面积不变;③A 1D 1始终与水面EFGH 平行.其中正确的 序号是________.解析:在倾斜的过程中,因为前后两面平行,侧面(上下、左右)为平行四边形,所以是棱柱.故填①③.答案:①③9.已知一个圆柱的轴截面是一个正方形且其面积是Q,则此圆的半径为________.解析:设圆柱底面半径为r,母线为l,则由题意得⎩⎪⎨⎪⎧2r=l,2r·l=Q,解得r=Q2.答案:Q210.圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解:将圆台还原成圆锥,如图所示.O2、O1、O分别是圆台上底面、截面和下底面的圆心,V是圆锥的顶点,令VO2=h, O2O1=h1,O1O=h2则⎩⎨⎧h+h1h=49+121,h+h1+h2h=491,所以⎩⎪⎨⎪⎧h1=4h,h2=2h,即h1∶h2=2∶1.11. 如图是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降多少?解:因为圆锥形铅锤的体积为13×π×(62)2×20=60π(cm3).设水面下降的高度为x cm,则小圆柱的体积为π(202)2x=100πx (cm3).所以有60π=100πx , 解此方程得x =0.6.故杯里的水下降了0.6 cm.12.用一张4 cm ×8 cm 的矩形硬纸卷成圆柱的侧面,求圆柱轴截面的面积(接头忽略不计).解:分两种情况:(1)以矩形8 cm 的边为母线长,把矩形硬纸卷成圆柱侧面(如图(1))轴截面为矩形A 1ABB 1,根据题意可知底面圆的周长为:2π·OA =4,则OA =2π,于是AB =4π.根据矩形的面积公式得:S 截面=A 1A ·AB =8·4π=32π(cm 2).(2)以矩形4 cm 的边长为母线长,把矩形硬纸卷成圆柱侧面(如图(2)),轴截面为矩形A 1ABB 1,根据题意可知底面圆的周长为:2π·OA =8,则OA =4π,于是AB =8π.根据矩形的面积公式得:S 截面=A 1A ·AB =4·8π=32π(cm 2).综上所述,轴截面的面积为32πcm 2.人教B 版必修2同步练习1.直线的平行投影可能是( ) A .点 B .线段 C .射线 D .曲线 答案:A2.在灯光下,圆形窗框在与窗框平行的墙面上的影子的形状是( ) A .平行四边形 B .椭圆形 C .圆形 D .菱形解析:选C.由点光源的中心投影的性质可知影子应为圆形.3.如图所示的是水平放置的三角形的直观图,D ′是△A ′B ′C ′中B ′C ′边上的一点,且D ′离C ′比D ′离B ′近,又A ′D ′∥y ′轴,那么原△ABC 的AB 、AD 、AC 三条线段中( )A .最长的是AB ,最短的是AC B .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AD ,最短的是AC 答案:C4.已知有一个长为5 cm ,宽为4 cm 的矩形,则其斜二测直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20(cm 2).所以其斜二测直观图的面积为S ′=24S =52(cm 2).答案:5 2 cm 25.长度相等的两条平行线段的直观图的长度________. 答案:相等1.放晚自习后,小华走路回家,在经过一盏路灯时,他发现自己的身影( ) A .变长 B .变短 C .先变长后变短 D .先变短后变长 答案:D2.下列关于直观图画法的说法中,不正确的是( )A .原图中平行于x 轴的线段,其对应线段仍平行于x ′轴,长度不变B .原图中平行于y 轴的线段,其对应线段仍平行于y ′轴,长度不变C .画与坐标系xOy 对应的坐标系x ′O ′y ′时,∠x ′O ′y ′可以等于135°D .画直观图时,由于选轴不同,所画的直观图可能不同解析:选B.平行于y 轴的线段其长度变为原来的12.3. 如图所示,梯形A ′B ′C ′D ′是平面图形ABCD 的直观图,若A ′D ′∥O ′y ′,A ′B ′∥C ′D ′,A ′B ′=23C ′D ′=2,A ′D ′=1,则四边形ABCD 的面积是( )A .10B .5 2C .5D .10 2解析:选C.还原后的四边形ABCD 为直角梯形,AD 为垂直底边的腰,AD =2,AB =2,CD =3,S 四边形ABCD =5,故正确答案为C.4.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BB 1,BC 的中点,则图中阴影部分在平面ADD 1A 1上的射影为( )答案:A5.如果图形所在的平面不平行于投射线,那么下列说法正确的是( ) A .矩形的平行投影一定是矩形 B .梯形的平行投影一定是梯形 C .正方形的平行投影一定是矩形 D .正方形的平行投影一定是菱形解析:选B.因为梯形两底的平行投影仍然平行,故选B.6.如下图所示为一平面图形的直观图,则此平面图形可能是下图中的( )解析:选C.根据斜二测画法的规则:平行于x 轴或在x 轴上的线段的长度在新坐标系中不变,在y 轴上或平行于y 轴的线段的长度在新坐标中变为原来的12,并注意到∠xOy =90°,∠x ′O ′y ′=45°,因此由直观图还原成原图形为选项C.7. 如图所示,已知用斜二测画法画出的△ABC 的直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析:过C ′作y ′轴的平行线C ′D ′与x ′轴交于D ′,则C′D′=32asin45°=62a.又∵C′D′是原△ABC的高CD的直观图,∴CD=6a.∴S△ABC=12AB·CD=12a·6a=62a2.答案:62a28.给出下列说法:①正方形的直观图是一个平行四边形,其相邻两边长的比为1∶2,有一内角为45°;②水平放置的正三角形的直观图是一个底边长不变,高为原三角形高的一半的三角形;③不等边三角形水平放置的直观图是不等边三角形;④水平放置的平面图形的直观图是平面图形.写出其中正确说法的序号________.解析:对于①,若以该正方形的一组邻边所在的直线为x轴、y轴,则结论正确;但若以该正方形的两条对角线所在的直线为x轴、y轴,由于此时该正方形的各边均不在坐标轴上或与坐标轴平行,则其直观图中相邻两边长不一定符合“横不变,纵减半”的规则;对于②,水平放置的正三角形的直观图是一个底边长不变,高比原三角形高的一半还要短的三角形;对于③,只要坐标系选取的恰当,不等边三角形的水平放置的直观图可以是等边三角形.答案:④9. 水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB 边上的中线的实际长度为________.解析:在直观图中,∠A′C′B′=45°,则在原图形中∠ACB=90°,AC=3,BC=4,则斜边AB=5,故斜边的中线长为52.答案:5210.在有太阳的某时刻,一个大球放在水平地面上,球的影子伸到距离球与地面接触点10 m处,同一时刻一根长 3 m的木棒垂直于地面,且影子长1 m,求此球的半径.解:由题设知BO′=10,设∠ABO′=2α(0°<α<45°)(如图),由题意知tan 2α=31=3,即2α=60°,∴α=30°,∴tan α=33.在Rt△OO′B中,tan α=RBO′,∴R=BO′·tan α=1033m.即此球的半径为1033m.11. 如图所示,一建筑物A 高为BC ,眼睛位于点O 处,用一把长为22 cm 的刻度尺EF 在眼前适当地运动,使眼睛刚好看不到建筑物A ,这时量得眼睛和刻度尺的距离MN 为10 cm ,眼睛与建筑物的距离MB 为20 m ,求建筑物A 的高.(假设刻度尺与建筑物平行)解:由题意可知O ,F ,C 三点共线,O ,E ,B 三点共线.因为EF ∥BC ,所以EF BC =OE OB =MNMB.把EF =22 cm ,MN =10 cm ,MB =2000 cm 代入上式,得22BC =102000,解得BC =4400 cm =44 m. 即建筑物A 高44 m.12. 某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60°角,房屋向南的窗户AB 高1.6米,现要在窗子外面的上方安装一个水平遮阳蓬AC ,如图所示,求:(1)当遮阳蓬AC 的宽度在什么范围内时,太阳光线直接射入室内?(2)当遮阳蓬AC 的宽度在什么范围内时,太阳光线不能直接射入室内(精确到0.01米)? 解:(1)在Rt △ABC 中,∠ACB =60°,AB =1.6米,则AC =AB tan ∠ACB=3AB3,∴AC =1.63≈0.92(米).当0<AC ≤0.92米时,太阳光可直接射入室内. (2)当AC >0.92米时,太阳光不能直接射入室内.人教B版必修2同步练习1.下列说法中正确的是()A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形解析:选C.球的三视图与它的摆放位置无关,从任何方向看都是圆.2.如图所示,桌面上放着一个圆锥和一个长方体,其俯视图是()答案:D3.(2011年高考山东卷)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是()A.3B.2C.1 D.0解析:选A.对于①,可以是放倒的三棱柱;容易判断②③可以.4.一件物体的三视图的排列规则是:俯视图放在主视图的________,长度与主视图一样,左视图放在主视图的______,高度与主视图一样,宽度与俯视图的宽度一样.答案:下面右面5.某个几何体的三视图如图,这个几何体是________.答案:圆锥1. 如图所示的是水平放置的圆柱形物体,其三视图是()解析:选A.此题主要研究从物体到三视图的转化过程,主视图是从正面观察物体的形状;左视图是从左侧面观察物体的形状;俯视图是从上往下观察物体的形状.从正面看是个矩形,从左面看是个圆,从上往下看是一个矩形,对照图中的A,B,C,D,可知A是正确的.2.图中三图顺次为一个建筑物的主视图、左视图、俯视图,则其为________的组合体.()A.圆柱和圆锥B.正方体和圆锥C.正四棱柱和圆锥D.正方形和圆解析:选C.直接画出符合条件的组合体,可以得解.3.如图所示,有且仅有两个视图相同的几何体是()A.(1)(2) B.(1)(3)C.(1)(4) D.(2)(4)解析:选D.在这四个几何体中,图(2)与图(4)均只有主视图和左视图相同.4.如图(1)所示是物体的实物图,在图(2)四个选项中是其俯视图的是()答案:C5.一个几何体由一些小正方体摆成,其主视图与左视图如图所示,其俯视图不可能是()解析:选C.通过分析主视图第一列有两个,而左视图第二列有两个,所以俯视图是选项C时,不符合要求.6. 把10个相同的小正方体按如图所示位置堆放,它的表面有若干个小正方形,如果将图中标了字母A的一个小正方体搬走,这时表面的小正方形个数与搬动前相比()A.不增不减B.减少1个C.减少2个D.减少3个答案:A7.欣赏下列物体的三视图,并写出它们的名称.答案:(1)主视图(2)左视图(3)俯视图(4)主视图(5)左视图(6)俯视图8.下图是某个圆锥的三视图,根据主视图中所标尺寸,则俯视图中圆的面积为________,圆锥母线长为________.解析:由主视图的底边可知俯视图的半径为10,则面积为100π.由主视图知圆锥的高为30,又底面半径为10,则母线长为102+302=1010.答案:100π10109.一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图所示,则这个组合体包含的小正方体的个数是________.解析:由三视图画出几何体如图.观察知,包含小正方体个数为5个.答案:510.如图所示是一些立体图形的视图,但是观察的方向不同,试说明下列各图可能是哪一种立体图形的视图.解:从柱、锥、台、球的三视图各方面综合考虑.图(1)可能为球、圆柱,如图(4)所示.图(2)可能为棱锥、圆锥、棱柱,如图(5)所示.图(3)可能为正四棱锥,如图(6)所示.11. 如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm),试画出它的三视图.解:这个几何体是由一个长方体和一个圆柱体构成的.三视图如下图所示.12.如图,BC⊥CD,且CD⊥MN,ABCD绕AD所在直线MN旋转,在旋转前,点A 可以在DM上选定.当点选在射线上的不同位置时,形成的几何体大小、形状不同,分别画出它的三视图并比较异同.解:(1)当点A在下图(a)中射线DM的位置时,绕MN旋转一周所得几何体为底面半径为CD的圆柱和圆锥叠加而成,其三视图如下图(a).(2)当点A在下图(b)中射线DM的位置时,即B到MN作垂线的垂足时旋转后的几何体为圆柱,其三视图如下图(b).(3)当点A在下图(c)中所示位置时,其旋转所得几何体为圆柱中挖去同底的圆锥,其三视图如下图(c).(4)当点A位于点D时,如下图(d)中,旋转体为圆柱中挖去同底等高的圆锥,其三视图如下图(d).人教B 版必修2同步练习1.一正四棱锥各棱长均为a ,则其表面积为( ) A.3a 2 B .(1+3)a 2 C .22a 2 D .(1+2)a 2解析:选B.正四棱锥的底面积为S 底=a 2,侧面积为S 侧=4×12×a ×32a =3a 2,故表面积为S 表=S 底+S 侧=(1+3)a 2.2.底面为正方形的直棱柱,它的底面对角线长为2,体对角线长为6,则这个棱柱的侧面积是( )A .2B .4C .6D .8 答案:D3.若球的大圆周长为C ,则这个球的表面积是( ) A.C 2 B.C 2 C.C 2πD .2πC 2 答案:C4.一个圆锥的底面半径为2,高为23,则圆锥的侧面积为________.解析:S 侧=πRl =π×2×22+(23)2=8π. 答案:8π5.已知棱长为1,各面都是正三角形的四面体,则它的表面积是________. 答案: 31.正三棱锥的底面边长为a ,高为66a ,则此棱锥的侧面积等于( ) A.34a 2 B.32a 2 C.334a 2 D.332a 2解析:选A.斜高h ′ =(66a )2+(3a 6)2=12a , 则S 侧=12·3a ·12a =34a 2.2.正六棱柱的高为6,底面边长为4,则它的全面积是( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144解析:选A.S 两底=34×42×6×2=483,S 侧=6×4×6=144.∴S 全=144+483=48(3+3).3.正四棱台两底面边长分别为3 cm 和5 cm ,那么它的中截面面积为( ) A .2 cm 2 B .16 cm 2 C .25 cm 2 D .4 cm 2。
人教A版高中数学必修1-5教材课后习题答案目录必修1第一章课后习题解答 (1)必修1第二章课后习题解答 (33)必修1第三章课后习题解答 (44)必修2第一章课后习题解答 (51)必修2第二章课后习题解答 (56)必修2第三章课后习题解答 (62)必修2第四章课后习题解答 (78)必修3第一章课后习题解答 (97)必修3第二章课后习题解答 (110)必修3第三章课后习题解答 (120)必修4第一章课后习题解答 (125)必修4第二章课后习题解答 (147)必修4第三章课后习题解答 (162)必修5第一章课后习题解答 (177)必修5第二章课后习题解答 (188)必修5第三章课后习题解答 (201)新课程标准人教A 版高中数学必修1第一章课后习题解答1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空: (1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ; (2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集. 解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程的所有实数根组成的集合为; (2)因为小于的素数为,所以由小于的所有素数组成的集合为;(3)由,得,290x -={3,3}-82,3,5,78{2,3,5,7}326y x y x =+⎧⎨=-+⎩14x y =⎧⎨=⎩即一次函数与的图象的交点为,所以一次函数与的图象的交点组成的集合为;(4)由,得, 所以不等式的解集为.1.1.2集合间的基本关系 练习(第7页) 1.写出集合的所有子集.1.解:按子集元素个数来分类,不取任何元素,得; 取一个元素,得; 取两个元素,得;取三个元素,得,即集合的所有子集为.2.用适当的符号填空:(1)______; (2)______; (3)______; (4)______; (5)______; (6)______. 2.(1)是集合中的一个元素;(2); (3) 方程无实数根,; (4)(或) 是自然数集合的子集,也是真子集;(5)(或) ;(6)方程两根为. 3.判断下列两个集合之间的关系: (1),;3y x =+26y x =-+(1,4)3y x =+26y x =-+{(1,4)}453x -<2x <453x -<{|2}x x <{,,}a b c ∅{},{},{}a b c {,},{,},{,}a b a c b c {,,}a b c {,,}a b c ,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅a {,,}a b c 02{|0}x x =∅2{|10}x R x ∈+={0,1}N {0}2{|}x x x ={2,1}2{|320}x x x -+={,,}a a b c ∈a {,,}a b c 20{|0}x x ∈=2{|0}{0}x x ==2{|10}x R x ∅=∈+=210x +=2{|10}x R x ∈+==∅{0,1}N {0,1}N ⊆{0,1}N {0}2{|}x x x =2{0}{|}x x x ⊆=2{|}{0,1}x x x ==2{2,1}{|320}x x x =-+=2320x x -+=121,2x x =={1,2,4}A ={|8}B x x =是的约数(2),;(3),.3.解:(1)因为,所以;(2)当时,;当时,, 即是的真子集,;(3)因为与的最小公倍数是,所以. 1.1.3集合的基本运算 练习(第11页) 1.设,求. 1.解:,.2.设,求. 2.解:方程的两根为, 方程的两根为,得, 即.3.已知,,求. 3.解:,.4.已知全集,,求. 4.解:显然,,{|3,}A x x k k N ==∈{|6,}B x x z z N ==∈{|410}A x x x N +=∈是与的公倍数,{|20,}B x x m m N +==∈{|8}{1,2,4,8}B x x ==是的约数AB 2k z =36k z =21k z =+363k z =+B A BA 41020AB ={3,5,6,8},{4,5,7,8}A B ==,A B A B {3,5,6,8}{4,5,7,8}{5,8}A B =={3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==22{|450},{|1}A x x x B x x =--===,A B A B 2450x x --=121,5x x =-=210x -=121,1x x =-={1,5},{1,1}A B =-=-{1},{1,1,5}A B A B =-=-{|}A x x =是等腰三角形{|}B x x =是直角三角形,A B A B {|}A B x x =是等腰直角三角形{|}A B x x =是等腰三角形或直角三角形{1,2,3,4,5,6,7}U ={2,4,5},{1,3,5,7}A B ==(),()()U U U A B A B {2,4,6}UB ={1,3,6,7}UA =则,.1.1集合习题1.1 (第11页) A 组 1.用符号“”或“”填空:(1)_______; (2)______; (3)_______;(4_______; (5; (6)_______.1.(1) 是有理数; (2)是个自然数; (3)是个无理数,不是有理数; (4是实数;(5)是个整数;(6) 是个自然数.2.已知,用 “”或“” 符号填空:(1)_______; (2)_______; (3)_______. 2.(1); (2); (3). 当时,;当时,; 3.用列举法表示下列给定的集合: (1)大于且小于的整数; (2); (3).3.解:(1)大于且小于的整数为,即为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即为所求.4.试选择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(){2,4}U A B =()(){6}U U A B =∈∉237Q 23N πQ R Z 2N 237Q ∈23723N ∈239=Q π∉πR Z 3=2N ∈25={|31,}A x x k k Z ==-∈∈∉5A 7A 10-A 5A ∈7A ∉10A -∈2k =315k -=3k =-3110k -=-16{|(1)(2)0}A x x x =-+={|3213}B x Z x =∈-<-≤162,3,4,5{2,3,4,5}(1)(2)0x x -+=122,1x x =-={2,1}-3213x -<-≤12x -<≤x Z ∈{0,1,2}24y x =-(2)反比例函数的自变量的值组成的集合;(3)不等式的解集.4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为; (2)显然有,得反比例函数的自变量的值组成的集合为;(3)由不等式,得,即不等式的解集为.5.选用适当的符号填空: (1)已知集合,则有:_______; _______;_______; _______;(2)已知集合,则有: _______; _______; _______; _______;(3)_______;_______.5.(1); ;; ;,即;(2);; ; =;;(3); 菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形. 6.设集合,求.2y x =342x x ≥-20x ≥244x -≥-4y ≥-24y x =-{|4}y y ≥-0x ≠2y x ={|0}x x ≠342x x ≥-45x ≥342x x ≥-4{|}5x x ≥{|233},{|2}A x x x B x x =-<=≥4-B 3-A {2}B B A 2{|10}A x x =-=1A {1}-A ∅A {1,1}-A {|}x x 是菱形{|}x x 是平行四边形{|}x x 是等腰三角形{|}x x 是等边三角形4B -∉3A -∉{2}B BA 2333x x x -<⇒>-{|3},{|2}A x xB x x =>-=≥1A ∈{1}-A ∅A {1,1}-A 2{|10}{1,1}A x x =-==-{|}x x 是菱形{|}x x 是平行四边形{|}x x 是等边三角形{|}x x 是等腰三角形{|24},{|3782}A x x B x x x =≤<=-≥-,A B A B6.解:,即,得,则,.7.设集合,,求,,,.7.解:,则,,而,, 则,.8.学校里开运动会,设,,,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1);(2).8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为.(1); (2).9.设,,,,求,,.9.解:同时满足菱形和矩形特征的是正方形,即,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即,.3782x x -≥-3x ≥{|24},{|3}A x x B x x =≤<=≥{|2}A B x x =≥{|34}A B x x =≤<{|9}A x x =是小于的正整数{1,2,3},{3,4,5,6}B C ==A B AC ()A B C ()A B C {|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数{1,2,3}A B ={3,4,5,6}A C ={1,2,3,4,5,6}B C ={3}B C =(){1,2,3,4,5,6}A B C =(){1,2,3,4,5,6,7,8}A B C ={|}A x x =是参加一百米跑的同学{|}B x x =是参加二百米跑的同学{|}C x x =是参加四百米跑的同学AB AC ()A B C =∅{|}A B x x =是参加一百米跑或参加二百米跑的同学{|}A C x x =是既参加一百米跑又参加四百米跑的同学{|}S x x =是平行四边形或梯形{|}A x x =是平行四边形{|}B x x =是菱形{|}C x x =是矩形B C A B S A {|}B C x x =是正方形{|}AB x x =是邻边不相等的平行四边形{|}SA x x =是梯形10.已知集合,求,,,.10.解:,,,,得,,,.B 组 1.已知集合,集合满足,则集合有 个.1. 集合满足,则,即集合是集合的子集,得个子集.2.在平面直角坐标系中,集合表示直线,从这个角度看,集合表示什么?集合之间有什么关系? 2.解:集合表示两条直线的交点的集合, 即,点显然在直线上, 得.3.设集合,,求.3.解:显然有集合,当时,集合,则; 当时,集合,则; 当时,集合,则;{|37},{|210}A x x B x x =≤<=<<()R A B ()R A B ()R A B()R A B {|210}A B x x =<<{|37}A B x x =≤<{|3,7}RA x x x =<≥或{|2,10}RB x x x =≤≥或(){|2,10}RA B x x x =≤≥或(){|3,7}RA B x x x =<≥或(){|23,710}R A B x x x =<<≤<或(){|2,3710}R A B x x x x =≤≤<≥或或{1,2}A =B {1,2}A B =B 4B A B A =B A ⊆B A 4{(,)|}C x y y x ==y x =21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭,C D 21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭21,45x y x y -=+=21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭(1,1)D y x =DC {|(3)()0,}A x x x a a R =--=∈{|(4)(1)0}B x x x =--=,A B A B {|(4)(1)0}{1,4}B x x x =--==3a ={3}A ={1,3,4},A B A B ==∅1a ={1,3}A ={1,3,4},{1}A B A B ==4a ={3,4}A ={1,3,4},{4}A B A B ==当,且,且时,集合,则.4.已知全集,,试求集合. 4.解:显然,由,得,即,而,得,而,即.第一章 集合与函数概念 1.2函数及其表示 1.2.1函数的概念 练习(第19页)1.求下列函数的定义域:(1); (2).1.解:(1)要使原式有意义,则,即,得该函数的定义域为; (2)要使原式有意义,则,即,得该函数的定义域为.2.已知函数, (1)求的值;(2)求的值.2.解:(1)由,得, 同理得,1a ≠3a ≠4a ≠{3,}A a ={1,3,4,},A B a A B ==∅{|010}U A B x N x ==∈≤≤(){1,3,5,7}U A B =B {0,1,2,3,4,5,6,7,8,9,10}U =U A B =UB A⊆()U UA B B=(){1,3,5,7}U A B ={1,3,5,7}UB =()UU B B ={0,2,4,6,8.9,10}B =1()47f x x =+()1f x =470x +≠74x ≠-7{|}4x x ≠-1030x x -≥⎧⎨+≥⎩31x -≤≤{|31}x x -≤≤2()32f x x x =+(2),(2),(2)(2)f f f f -+-(),(),()()f a f a f a f a -+-2()32f x x x =+2(2)322218f =⨯+⨯=2(2)3(2)2(2)8f -=⨯-+⨯-=则,即;(2)由,得, 同理得, 则,即. 3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度与时间关系的函数和二次函数;(2)和.3.解:(1)不相等,因为定义域不同,时间;(2)不相等,因为定义域不同,. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为的圆形木头锯成矩形木料,如果矩形的一边长为,面积为,把表示为的函数.1.解:显然矩形的另一边长为,,且, 即. 2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.(2)(2)18826f f +-=+=(2)18,(2)8,(2)(2)26f f f f =-=+-=2()32f x x x =+22()3232f a a a a a =⨯+⨯=+22()3()2()32f a a a a a -=⨯-+⨯-=-222()()(32)(32)6f a f a a a a a a +-=++-=222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=h t 21305h t t =-21305y x x =-()1f x =0()g x x =0t >0()(0)g x x x =≠25cm xcm 2ycm y x 2250x cm -222502500y x x x x =-=-050x <<22500(050)y x x x =-<<2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数的图象.3.解:,图象如下所示.,从到的映射4.设正弦”,与中元素相对应是“求中的元素是什么?与中的元素相对应的的中元素是什么?4.解:因为,所以与中元素相对应的中的元素是;因为,所以与中的元素相对应的中元素是. 1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:|2|y x =-2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩{|},{0,1}A x x B ==是锐角A B A 60B B 22A 3sin 602=A 60B 322sin 452=B 22A 45离开家的距离 时间 (A ) 离开家的距离 时间 (B ) 离开家的距离 时间 (C ) 离开家的距离时间 (D )(1); (2);(3); (4). 1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2),即该函数的定义域为;(3)要使原式有意义,则,即且,得该函数的定义域为;(4)要使原式有意义,则,即且, 得该函数的定义域为. 2.下列哪一组中的函数与相等?(1); (2);(3). 2.解:(1)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等;(2)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等; (3)对于任何实数,都有,即这两函数的定义域相同,切对应法则相同,得函数与相等.3.画出下列函数的图象,并说出函数的定义域和值域.3()4x f x x =-()f x=26()32f x x x =-+()1f x x =-40x -≠4x ≠{|4}x x ≠x R ∈()f x =R 2320x x -+≠1x ≠2x ≠{|12}x x x ≠≠且4010x x -≥⎧⎨-≠⎩4x ≤1x ≠{|41}x x x ≤≠且()f x ()g x 2()1,()1x f x x g x x =-=-24(),()f x x g x ==2(),()f x x g x ==()1f x x =-R 2()1x g x x =-{|0}x x ≠()f x ()g x 2()f x x =R 4()g x ={|0}x x ≥()f x ()g x 2x =()f x ()g x(1); (2); (3); (4).3.解:(1)定义域是,值域是; (2)定义域是,值域是;(3)3y x =8y x =45y x =-+267y x x =-+(,)-∞+∞(,)-∞+∞(,0)(0,)-∞+∞(,0)(0,)-∞+∞定义域是,值域是;(4)定义域是,值域是.4.已知函数,求,,,. 4.解:因为,所以,即;同理,, 即;, 即;, 即. 5.已知函数, (1)点在的图象上吗?(2)当时,求的值; (3)当时,求的值.(,)-∞+∞(,)-∞+∞(,)-∞+∞[2,)-+∞2()352f x x x =-+(2)f -()f a -(3)f a +()(3)f a f +2()352f x x x =-+2(2)3(2)5(2)2852f -=⨯--⨯-+=+(2)852f -=+22()3()5()2352f a a a a a -=⨯--⨯-+=++2()352f a a a -=++22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++2(3)31314f a a a +=++22()(3)352(3)3516f a f a a f a a +=-++=-+2()(3)3516f a f a a +=-+2()6x f x x +=-(3,14)()f x 4x =()f x ()2f x =x5.解:(1)当时,, 即点不在的图象上;(2)当时,, 即当时,求的值为;(3),得, 即.6.若,且,求的值. 6.解:由,得是方程的两个实数根,即,得,即,得, 即的值为.7.画出下列函数的图象:(1); (2).7.图象如下:3x =325(3)14363f +==-≠-(3,14)()f x 4x =42(4)346f +==--4x =()f x 3-2()26x f x x +==-22(6)x x +=-14x =2()f x x bx c =++(1)0,(3)0f f ==(1)f -(1)0,(3)0f f ==1,320x bx c ++=13,13b c +=-⨯=4,3b c =-=2()43f x x x =-+2(1)(1)4(1)38f -=--⨯-+=(1)f -80,0()1,0x F x x ≤⎧=⎨>⎩()31,{1,2,3}G n n n =+∈。
1.1.1 空间向量及其线性运算 第1课时 空间向量及其线性运算学习目标 1.经历由平面向量推广到空间向量的过程,了解空间向量的概念.2.经历由平面向量的运算及其运算律推广到空间向量的过程.3.掌握空间向量的线性运算. 一、空间向量的有关概念 知识梳理1.在空间,把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模. 空间向量用字母a ,b ,c ,…表示,也用有向线段表示,有向线段的长度表示空间向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB →,其模记为|a |或|AB →|. 2.几类特殊的空间向量名称 定义及表示零向量 规定长度为0的向量叫做零向量,记为0单位向量 模为1的向量叫做单位向量相反向量与向量a 长度相等而方向相反的向量,叫做a 的相反向量,记为-a 共线向量 如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:零向量与任意向量平行,即对于任意向量a ,都有0∥a相等向量 方向相同且模相等的向量叫做相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量注意点:(1)平面向量是一种特殊的空间向量.(2)两个向量相等的充要条件为长度相等,方向相同. (3)向量不能比较大小.(4)向量共线不具备传递性(非零向量除外).例1 下列关于空间向量的说法中正确的是( ) A .单位向量都相等B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同 答案 D解析 A 中,单位向量长度相等,方向不确定; B 中,|a |=|b |只能说明a ,b 的长度相等而方向不确定; C 中,向量不能比较大小.反思感悟 空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念. 跟踪训练1 (多选)下列说法错误的是( ) A .任意两个空间向量的模能比较大小B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等 答案 BCD解析 对于选项A ,向量的模即向量的长度,是一个数量,所以任意两个向量的模可以比较大小;对于选项B ,其终点构成一个球面; 对于选项C ,零向量不能用有向线段表示;对于选项D ,两个向量不相等,它们的模可以相等. 二、空间向量的加减运算问题 空间中的任意两个向量是否共面?为什么?提示 共面,任意两个空间向量都可以平移到同一个平面内,因此空间中向量的加减运算与平面中一致. 知识梳理加法运算三角形法则语言叙述首尾顺次相接,首指向尾为和图形叙述平行四边形法则语言叙述共起点的两边为邻边作平行四边形,共起点对角线为和图形叙述减法运算 三角形 法则 语言叙述共起点,连终点,方向指向被减向量图形叙述加法运算交换律 a +b =b +a 结合律(a +b )+c =a +(b +c )注意点:(1)求向量和时,可以首尾相接,也可共起点;求向量差时,可以共起点. (2)三角形法则、平行四边形法则在空间向量中也适用.例2 (1)(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1—→的是( )A.A 1D 1——→-A 1A —→-AB →B.BC →+BB 1—→-D 1C 1——→C.AD →-AB →-DD 1—→D.B 1D 1——→-A 1A —→+DD 1—→(2)对于空间中的非零向量AB →,BC →,AC →,其中一定不成立的是( ) A.AB →+BC →=AC → B.AB →-AC →=BC → C .|AB →|+|BC →|=|AC →| D .|AB →|-|AC →|=|BC →| 反思感悟 空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加法、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.跟踪训练2 如图,已知空间四边形ABCD ,连接AC ,BD ,E ,F ,G 分别是BC ,CD ,DB 的中点,请化简以下式子,并在图中标出化简结果. (1)AB →+BC →-DC →;(2)AB →-DG →-CE →.三、空间向量的数乘运算 知识梳理定义与平面向量一样,实数λ与空间向量a 的乘积λa 仍然是一个向量,称为空间向量的数乘 几何意义λ>0λa 与向量a 的方向相同 λa 的长度是a 的长度的|λ|倍λ<0 λa 与向量a 的方向相反 λ=0 λa =0,其方向是任意的 运算律结合律λ(μa )=(λμ)a 分配律(λ+μ)a =λa +μa , λ(a +b )=λa +λb注意点:(1)当λ=0或a =0时,λa =0.(2)λ的正负影响着向量λa 的方向,λ的绝对值的大小影响着λa 的长度. (3)向量λa 与向量a 一定是共线向量.例3 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)A 1N —→;(3)MP →. 解 (1)∵P 是C 1D 1的中点,∴AP →=AA 1—→+A 1D 1——→+D 1P —→=a +AD →+12D 1C 1——→=a +c +12AB →=a +12b +c .(2)∵N 是BC 的中点,∴A 1N —→=A 1A —→+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点,∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 延伸探究1.例3的条件不变,试用a ,b ,c 表示向量PN →.2.若把例3中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,跟踪训练3 已知四边形ABCD 为正方形,P 是四边形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O ,Q 是CD 的中点,求下列各题中x ,y 的值. (1)OQ →=PQ →+xPC →+yP A →;(2)P A →=xPO →+yPQ →+PD →.1.(多选)下列命题中,真命题是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.化简PM →-PN →+MN →所得的结果是( ) A .PM → B .NP → C .0D .MN →3.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( ) A .平行四边形 B .空间四边形 C .等腰梯形D .矩形4.在四棱锥P -ABCD 中,底面ABCD 是正方形,E 为PD 的中点,若P A →=a ,PB →=b ,PC →=c ,则BE →=________.课时对点练1.下列说法中正确的是( )A .空间中共线的向量必在同一条直线上B .AB →=CD →的充要条件是A 与C 重合,B 与D 重合 C .数乘运算中,λ既决定大小,又决定方向 D .在四边形ABCD 中,一定有AB →+AD →=AC →2.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=33.如图,在四棱柱的上底面ABCD 中,AB →=DC →,则下列向量相等的是( )A .AD →与CB → B .OA →与OC → C .AC →与DB →D .DO →与OB →4.如图,在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1—→=c ,则A 1B —→等于( )A .a +b -cB .a -b +cC .b -a -cD .b -a +c5.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M ,N 分别为OA ,BC 的中点,则MN →等于( )A .12a -12b +12cB .-12a +12b +12cC .12a +12b -23cD .12a +12b -12c6.(多选)已知平行六面体ABCD -A ′B ′C ′D ′,则下列四式中正确的有( ) A .AB →-CB →=AC → B .AC ′——→=AB →+B ′C ′———→+CC ′——→ C .AA ′——→=CC ′——→ D .AB →+BB ′——→+BC →+C ′C ——→=AC ′——→7.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________.8.在正方体ABCD -A 1B 1C 1D 1中,点M 是AA 1的中点,已知AB →=a ,AD →=b ,AA 1—→=c ,用a ,b ,c 表示CM →,则CM →=________. 9.如图,已知正方体ABCD -A 1B 1C 1D 1. (1)化简AB →+CC 1—→+B 1D 1——→;(2)若AA 1—→+x +BC →+C 1D ——→+D 1A 1——→=0,则x 可以是图中有向线段所示向量中的哪一个?(至少写出两个)10.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.11.已知空间中任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AB → C .AC → D .BA →12.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AC 与BD 的交点为O ,点M 在BC ′上,且BM =2MC ′,则OM →等于( )A .-12AB →+76AD →+23AA ′——→ B .-12AB →+56AD →+13AA ′——→C .12AB →+16AD →+23AA ′——→ D .12AB →-16AD →+13AA ′——→13.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1—→表示OC 1—→,则OC 1—→=________________.14.如图,在四面体ABCD 中,E ,G 分别是CD ,BE 的中点,若记AB →=a ,AD →=b ,AC →=c ,则AG →=________.15.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′——→=xAB →+y 2BC →+z 3CC ′——→,则x +y +z =________.16.如图,在空间四边形SABC 中,AC ,BS 为其对角线,O 为△ABC 的重心. (1)求证:OA →+OB →+OC →=0; (2)化简:SA →+12AB →-32CO →-SC →.。
《1.1 空间几何体的结构》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列几何体中,哪一个是多面体?A、球体B、圆柱C、正方体D、圆锥2、在正方体的一个顶点上,有一个顶点到该顶点所在面的相邻三面的交线所形成的三角形,其内角和是多少?A. 180°B. 270°C. 360°D. 540°3、在长方体的长、宽、高分别为2cm、3cm、4cm的情况下,该长方体的对角线长度是:A. 5cmB. 7cmC. 9cmD. 10cm4、一个圆锥的底面半径为3cm,高为4cm,则其体积为()。
A、12π cm³B、24π cm³C、36π cm³D、48π cm³5、已知正方体ABCD-A1B1C1D1中,点E为棱CC1的中点,点F为棱A1B1上的一点,且BF=BB1,如果AE与EF垂直,则∠EFB=()A.30°B.45°C.60°D.90°6、已知正方体ABCD-A1B1C1D1的棱长为a,则体对角线A1D的长度为:A、√3aB、2√3aC、√6aD、√2a7、一个直三棱柱的底面是一个直角三角形,其中两个直角边的长度分别为3和4,斜边为5。
该直三棱柱的体积是多少?A. 6B. 12C. 18D. 248、正方体的所有棱长均为2厘米,该正方体的对角线长为()A、2√3 厘米B、4√2 厘米C、4√3 厘米D、6√3 厘米二、多选题(本大题有3小题,每小题6分,共18分)1、下列关于空间几何体的说法正确的是()A. 圆柱是由两个平行的圆形底面和一个曲面侧面组成的立体图形。
B. 棱锥的所有侧棱相交于一点,这一点叫做顶点。
C. 球体可以看作是一个半圆绕着它的直径所在的直线旋转一周形成的立体图形。
D. 棱台的上下底面不一定平行。
2、在下列各对几何体中,哪些是全等的关系?A. 正方体和长方体B. 正四面体和正六面体C. 球和圆柱D. 正方体和正方体的一个面E. 正四面体和正方体的一个面3、一个圆柱的底面半径为2,高为4,则该圆柱的侧面积和体积分别为()。
第一章 解三角形 1.1.1 正弦定理(一)课时目标 1.熟记正弦定理的内容.2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =________,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =________,bc =_____________________________. 3.一般地,我们把三角形的三个角及其对边分别叫做三角形的__________.已知三角形的几个元素求其他元素的过程叫做________.4.正弦定理:在一个三角形中,各边的长和它所对角的正弦的比相等,即_______,这个比值是______________________.一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <B C .A ≥BD .A ,B 的大小关系不能确定 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )7.在△ABC 中,AC =6,BC =2,B =60°,则C =___________________________.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.10.在△ABC中,已知a,b,c分别为内角A,B,C的对边,若b=2a,B=A +60°,则A=______.三、解答题11.在△ABC中,已知a=22,A=30°,B=45°,解三角形.12.在△ABC中,已知a=23,b=6,A=30°,解三角形.能力提升13.在△ABC中,角A,B,C所对的边分别为a,b,c若a=2,b=2,sin B +cos B=2,则角A的大小为________.14.在锐角三角形ABC中,A=2B,a,b,c所对的角分别为A,B,C,求ab的取值范围.1.利用正弦定理可以解决两类有关三角形的问题:(1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a、b和A,用正弦定理求B时的1.1.1 正弦定理(一)知识梳理1.π 2.sin A sin B 3.元素 解三角形 4.a sin A =b sin B =csin C 三角形外接圆的直径2R作业设计 1.D2.C [由正弦定理a sin A =b sin B ,得4sin 45°=bsin 60°,∴b =2 6.]3.A [sin 2A =sin 2B +sin 2C R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.]4.A [由sin A >sin B 2R sin A >2R sin B a >b A >B .]5.C [由a sin A =b sin B 得sin B =b sin A a =2sin 60°3=22.∵a >b ,∴A >B ,B <60°.∴B =45°.]6.A [∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°.] 7.75° 解析 由正弦定理得2sin A =6sin 60°,∴sin A =22. ∵BC =2<AC =6, ∴A 为锐角.∴A =45°. ∴C =75°. 8.102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010. 由正弦定理知BC sin A =AB sin C , ∴AB =BC sin C sin A =1×sin 150°1010=102.9.1解析 由正弦定理,得 3sin 2π3=1sin B ,∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6, ∴A =π6.∴a =b =1. 10.30°解析 ∵b =2a ∴sin B =2sin A , 又∵B =A +60°, ∴sin(A +60°)=2sin A , 即sin A cos 60°+cos A ,sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 11.解 ∵a sin A =b sin B =csin C , ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°,C =30°, c =2 3. 13.π6 解析 ∵sin B +cos B =2sin(π4+B )= 2. ∴sin(π4+B )=1. 又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb =2×222=12.又a <b ,∴A <B ,∴A =π6.14.解 在锐角三角形ABC 中,A ,B ,C <90°, 即⎩⎨⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知: a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3), 故ab 的取值范围是(2,3).。
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=. 第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b a m =-.第四步,若m d <,则得到25的近似值为5a ;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a .程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m3,应交纳水费y元,那么y与x之间的函数关系为1.2,071.9 4.9,7x xyx x≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x.第二步:判断输入的x是否不超过7. 若是,则计算 1.2y x=;若不是,则计算 1.9 4.9y x=-.第三步:输出用户应交纳的水费y.程序框图:2、算法步骤:第一步,令i=1,S=0.第二步:若i≤100成立,则执行第三步;否则输出S.第三步:计算S=S+i2.第四步:i= i+1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x,设收取的卫生费为m元.第二步:判断x与3的大小. 若x>3,则费用为5(3) 1.2=+-⨯;m x若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.INPUT “a ,b=”;a ,b sum=a+b程序框图:说明:本题在循环结构的循环体中包含了一个条件结构. 1.2基本算法语句 练习(P24) 1、程序:3练习(P29)INPUT “a ,b ,c=”;a ,b ,cINPUT “F=”;F C=(F -32)*5/94、程序:INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32)1习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩2习题1.2 B 组(P33) 1、程序:31.3算法案例 练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B组(P48)1、算法步骤:第一步,令45b=,0c=.i=,0a=,0n=,1第二步,输入()a i.第三步,判断是否0()60≤<. 若是,则1a i=+,并执行第六步.a a第四步,判断是否60()80≤<. 若是,则1a i=+,并执行第六步.b b第五步,判断是否80()100≤≤. 若是,则1a i=+,并执行第六步.c c第六步,1i≤. 若是,则返回第二步.i i=+. 判断是否45第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章复习参考题A组(P50)Array1、(1)程序框图:1、(2)程序框图:2、见习题1.2 B组第1题解答. Array34、程序框图:程序:5(1)向下的运动共经过约199.805 m(2)第10次着地后反弹约0.098 m(3)全程共经过约299.609 m1、3x 和它的位数n .INPUT “n=”;ni=1S=0WHILE i<=nS=S+1/ii=i+1WENDPRINT “S=”;SEND第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计2.1随机抽样练习(P57)1、.抽样调查和普查的比较见下表:抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)+≤<所对应的那些天构成样本,检测样本中所有个体的空气质a k k量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案.习题2.1 B组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程(2)你每月的零花钱平均是多少(3)你最喜欢看《新闻联播》吗(4)你每天早上几点起床(5)你每天晚上几点睡觉要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案.2.2用样本估计总体练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右.练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x≈,标准差 6.55s≈.(2)重量位于(,)x s x s-+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x≈,中位数为15.2,标准差12.50s≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,x>说明存在大的异常数据,值得关注. 这些异常数据使标准差增大.15.2习题2.2 A组(P81)1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm的方向,即多数鱼的汞含量分布在大于1.00 ppm的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm.(4)样本平均数 1.08x≈,样本标准差0.45s≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2、作图略. 从图形分析,发现这批棉花的纤维长度不是特别均匀,有一部分的纤维长度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑;(2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑;(4)对,从平均数和标准差的角度考虑;5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数.现在已知知道至少有一个人的收入为50100x=万元,那么其他员工的收入之和为4913.55010075 iix==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些.(2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .(3)将10名运动员的测试成绩标准化,得到如下的数据:从两次测试的标准化成绩来看,运动员G的平均体能最强,运动员E的平均体能最弱.2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不(1)散点图如下: 让天鹅活动,对比两组居民的出生率是否相同.练习(P92)1、当0x =时,$147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值$y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值$y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(2)回归直线如下图所示:(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:(2)回归方程为:$0.66954.933=+.y x(3)加工零件的个数与所花费的时间呈正线性相关关系.4、(1)散点图为:(2)回归方程为:$0.546876.425=+.y x(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B组(P95)1、(1)散点图如下:(2)回归方程为:$1.44715.843y x=-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为$42.037y≈(万元).2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章复习参考题A组(P100)1、A.2、(1)该组的数据个数,该组的频数除以全体数据总数;(2)nm N.3、(1)这个结果只能说明A城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A城市其他人群的想法.(2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好.8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章复习参考题B组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元时,月65%的推销员经过努力才能完成销售指标.2、(1)数据的散点图如下:(2)用y表示身高,x表示年龄,则数据的回归方程为$ 6.31771.984=+.y x (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.1、0.72、0.6153、0.44、D5、B 习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M 三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1, G1=H1,。
高中数学人教A版选2-1 同步练习1.下列语句是命题的是()A.是一个大数B.若两直线平行,则这两条直线没有公共点C.对数函数是增函数吗D.a≤15解析:选B.A、D不能判断真假,不是命题;B能够判断真假而且是陈述句,是命题;C是疑问句,不是命题.2.下列命题中的真命题是()A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角解析:选C.由平面几何知识可知A、B、D三项都是错误的.3.命题“函数y=2x+1是增函数”的条件是__________,结论是__________.答案:函数为y=2x+1该函数是增函数4.( ·临沂质检)下列命题:①y=x2+3为偶函数;②0不是自然数;③{x∈N|0<x<12}是无限集;④如果a·b=0,那么a=0,或b=0. 其中是真命题的是__________(写出所有真命题的序号).解析:①为真命题;②③④为假命题.答案:①[A级基础达标]1.下列语句不是命题的有()①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0个B.1个C.2个D.3个解析:选C.①④可以判断真假,是命题;②③不能判断真假,所以不是命题.2.下列命题是真命题的是()A.{∅}是空集x∈N||x-1|<3是无限集B.{}C.π是有理数D .x 2-5x =0的根是自然数解析:选D.x 2-5x =0的根为x 1=0,x 2=5,均为自然数.3.下列命题中真命题的个数为( )①面积相等的两个三角形是全等三角形;②若xy =0,则|x |+|y |=0;③若a >b ,则a +c >b +c ;④矩形的对角线互相垂直.A .1B .2C .3D .4解析:选A.①错;②错,若xy =0,则x ,y 至少有一个为0,而未必|x |+|y |=0;③对,不等式两边同时加上同一个常数,不等号开口方向不变;④错.4.( ·莱芜调研)命题“末位数字是0或5的整数,能被5整除”,条件p :__________;结论q :__________;是__________命题.(填“真”或“假”)解析:“末位数字是0或5的整数,能被5整除”改写成“若p ,则q ”的形式为:若一个整数的末位数是0或5,则这个数能被5整除,为真命题.答案:末位数字是0或5的整数 能被5整除 真5.命题“偶函数的图象关于y 轴对称”写成“若p ,则q ”形式为__________.答案:若一个函数是偶函数,则这个函数的图象关于y 轴对称6.判断下列命题的真假.(1)二次函数y =ax 2+bx +c (a ≠0)有最大值;(2)正项等差数列的公差大于零;(3)函数y =1x的图象关于原点对称. 解:(1)假命题.当a >0时,抛物线开口向上,有最小值.(2)假命题.反例:若此数列为递减数列,如数列20,17,14,11,8,5,2,它的公差是-3.(3)真命题.y =1x是奇函数,所以其图象关于(0,0)对称. [B 级 能力提升]7.下列命题,是真命题的是( )A .若ab =0,则a 2+b 2=0B .若a >b ,则ac >bcC .若M ∩N =M ,则N ⊆MD .若M ⊆N ,则M ∩N =M解析:选D.A 中,a =0,b ≠0时,a 2+b 2=0不成立;B 中,c ≤0时不成立;C 中,M ∩N =M 说明M ⊆N .故A 、B 、C 皆错误.8.(2011·高考四川卷)l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B.在空间中,垂直于同一直线的两条直线不一定平行,故A 错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B 正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C 错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D 错.9.给定下列命题:①“若k >0,则方程x 2+2x -k =0”有实数根;②若a >b ,则a -c >b -c ;③对角线相等的四边形是矩形.其中真命题的序号是__________.解析:①中Δ=4-4(-k )=4+4k >0,故为真命题;②显然为真命题;③也可能是等腰梯形.答案:①②10.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)当ac >bc 时,a >b ;(2)当m >14时,mx 2-x +1=0无实根; (3)当ab =0时,a =0或b =0.解:(1)若ac >bc ,则a >b .∵ac >bc ,c <0时,a <b ,∴是假命题.(2)若m >14, 则mx 2-x +1=0无实根.∵Δ=1-4m <0,∴是真命题.(3)若ab =0,则a =0或b =0,真命题.11.(创新题)已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若视A 为p ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”,由命题为真命题可知1+a 5≥1,解得a ≥4; 若视B 为p ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”,由命题为真命题可知1+a 5≤1,解得a ≤4. 故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x >1,则x >25”.。