图形奥数题
- 格式:doc
- 大小:1.06 MB
- 文档页数:10
平面图形(t úx íng)计算(一)经典图形:1. 任意三角形ABC 中,CD=AC ,EC=BC ,则三角形CDE 的面积占总面积的3143=(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。
(为什么?)3. 任意梯形,连接对角线,构成四个三角形。
(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。
(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方 2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。
例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。
例3. 如图,三角形ABC 的面积(miàn j ī)是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。
例4. 如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK 的面积。
FK BEC DGA例5. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。
三角形ABC 面积是500,求图中阴影部分的面积?例6. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?ABC DFEG例7. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?ABCD EFG H例8. 如图,在平行(P ÍNGX ÍNG)四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。
六年级奥数题图形题1.填空(1)以A1~A7六年级奥数题图形题共组成( )条线段(2)下图中小于180°的角各有多少个?(3)下图中各有多少个长方形?(4)下面图形中有多少个三角形?(5)下列图中分别有多少个正方形?2.在下面点子图上,以这些点为顶点的正方形可画几个?3.把下图各分成四个大小相等,形状相同的图形。
4.用下面的6个图形拼成一个5×6的长方形。
(用粗线条在5×6的格子图上框出拼的方法)5.用四条直线分别画出交点数是1·3·5个的图形。
(下图是交点数为4个的图形)。
4条直线最多能有几个交点?6.如果把下图沿格子线分成形状相同·大小相等的两部分,那么共有几种分法?7.把一张正方形的纸剪成8个正方形。
(在下面正方形图上画出剪的方法)8.画一个三角形,使它的面积与下面的五边形面积相等。
9.下面图形中各有多少个梯形?10.下面图形中各有多少个三角形?11.下图中正四棱锥的底面和正方体的面是同样大小的正方形,将这两个面对齐粘合后,这多面体有多少个面?多少条棱?多少个顶点?12.一个正方形把平面分成两部分(如下图中的A ·B 两部分),那么两个正方形最多能把平面分成几部分?答案A 卷 1.(1)6×7÷2=21(条) (2)4×5÷2=10(个) (3)5×6÷2=15(个) (4)5×6÷2=15 15×4=60(个)(5)左图;42+32+22+12=30(个)右图;6×4+5×3+4×2+3×1=50(个) 2.6个 3.4,5,6,运用中心对称的原理,可以得到九种分法 7,可分成下图所示的8个正方形8,运用等底等高的两个三角形面积相等的知识,把图形变换如下。
9,36个,90个 10,27个,180个11,9个面,16条棱,9个顶点 12,分成10部分应用题1·电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?2·甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
50道奥数题及答案解析以下是50道奥数题及答案解析。
希望对你有帮助。
1. 小明有三只球,他把其中一只球放进一个盒子里。
请问,小明有多少种放置球的方式?答案解析:小明可以把球放在第一只、第二只或者第三只盒子中,所以有3种放置方式。
2. 如果A和B是两个正整数,且A的平方减去B的平方等于15,问A和B的值分别是多少?答案解析:设A>B,由(A+B)(A-B)=15得出,只有3和5满足要求,所以A=4,B=1。
3. 一个矩形的宽度是20厘米,周长是70厘米。
请问这个矩形的长度是多少?答案解析:设矩形的长度为L,则2(L+20)=70,解得L=15厘米。
4. 甲、乙两位学生正在一起排队,甲比乙在队伍中靠前4人,甲在队伍中的位置是第7位,问乙在队伍中的位置是第几位?答案解析:甲比乙靠前4人,所以乙在队伍中的位置是第7+4=11位。
5. 有一个三位数恰好能被5和7整除,且每一位上的数字都不相同,问这个三位数是多少?答案解析:我们知道这个三位数必须是5和7的倍数,即35的倍数。
35的倍数中,只有105满足题目要求,所以答案是105。
6. 一个年龄为x岁的人,这个人的年龄2倍之后再加2岁得到的结果是44,那么这个人现在多少岁?答案解析:设这个人的年龄为x岁,则2x+2=44,解得x=21岁。
7. 在一个等差数列中,它的首项是4,公差是3,第10项是多少?答案解析:第n项的公式为a(n) = a(1) + (n-1)d,代入a(1)=4,d=3,n=10得到a(10) = 4 + (10-1)3 = 4 + 27 = 31。
8. 一个数字的百位、十位和个位分别是1、2和3。
把这个数字的百位和个位互换,得到的新数字是多少?答案解析:将百位和个位互换得到新数字是321。
9. 两个数之和是8,它们的差是4,这两个数分别是多少?答案解析:设这两个数分别为x和y,则x+y=8,x-y=4。
解以上方程组,得到x=6,y=2。
小学一年级奥数题:图形计数练习题【五篇】2.小敏到商店买文具用品。
她用所带钱的一半买了1支铅笔,剩下的一半买了1支圆珠笔,还剩下1元钱。
小敏原来有多少钱?3.有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?4.小明从家到学校跑步来回要10分钟,如果去时步行,回来时跑步一共需要12分钟,那么小明来回都是步行需要几分钟?5.小红和小绿都有10块橡皮,小兰给小绿2块后,现在小绿比小兰多几块橡皮?【第二篇】1.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?2.妈妈从家里到工厂要走3千米,一次,她上班走了2千米,又回家取一很重要工具,再到工厂。
这次妈妈上班一共走了多少千米?3.像18+81这样十位数字与个位数字顺序颠倒的一对两位数是好朋友,它们相加和是99,请问像这样的相加和是99的好朋友有几对?4.桌子上有三盘桃子,第一盘比第三盘多3只,第三盘比第二盘少5只。
问:哪盘桃子最少?5.13个小朋友玩"老鹰抓小鸡"的游戏,已经抓住了5只"小鸡",还有几只没抓住?6.修花坛要用94块砖,第一次搬来36块,第二次搬来38块,还要搬多少块?(用两种方法计算)7.海盗抓小孩去无人岛,一共抓了15个小孩,他让小孩排队报数,第一次把报单数的孩子都送去了无人岛,接着让剩下的孩子报数,又把报单数的孩子送去了无人岛,把其他孩子放回了家。
问强盗放多少个孩子回家?8.懒羊羊一次买来了30个苹果,它第一天吃了一些,第二天又吃了一些,这时还剩下12个苹果,懒羊羊两天一共吃了多少个苹果?9.5只兔子和4只猫一样重,那么一只兔重还是一只猫重?10.一只井底的蜗牛,白天能够爬2米,晚上下滑1米,已知井深5米,蜗牛多久能够爬到井外?【第三篇】1.小明把一根木棍锯成2段需要2分钟,那么依照这样的速度,把一根木棍据成3段需要多少分钟?2.一个猴子吃3个桃子多出一个,一个猴子吃4个桃子就少2个。
一、计算题。
( 共101题)1.图2-26是由四个扁而长的圆圈组成的,在交点处有8个小圆圈.请你把1、2、3、4、5、6、7、8这八个数分别填在8个小圆圈中。
要求每个扁长圆圈上的四个数字的和都等于18。
2.在图2-24中,三个圆圈两两相交形成七块小区域,分别填上1~7七个自然数,在一些小区域中,自然数3、5、7三个数已填好,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15。
3.图2-23中有三个大圆,在大圆的交点上有六个小圆圈。
请你把1、2、3、4、5、6六个数分别填在六个小圆圈里,要求每个大圆上的四个小圆圈中的数之和都是14。
4.将2、4、6、8、10、12、14、16、18填在下面图表,使每一横行、竖行、斜行的三个数相加的和都相等。
5.仔细观察下面的图形,找出变化规律,猜猜在第3组的右框空白格填一个什么样的图?6.请看下图,共有多少个正方形?7.仔细观察这些图案可以发现,他们是按照下面这5个图案为一组,循环往复排列的,请问第52个图形是什么?8.把上面一排的立体图形剪开,可以剪成下面哪种图形的样子?动手试一试。
9.请把下图中长方形分成形状相同、大小相等的两块,然后再拼成一个正方形.10.在空格中填入合适的数11.下图表示"宝塔",它们的层数不同,但都是由一样大的小三角形摆成的。
仔细观察后,请你回答:(1)五层的"宝塔"的最下层包含多少个小三角形?(2)整个五层"宝塔"一共包含多少个小三角形?(3) 从第(1)到第(10)的十个"宝塔",共包含多少个小三角形?12.数一数,有( )个长方形。
13.请你将下面图形分成形状大小相同的四部分,你能行吗?14.请你将下面的图形拼成一个大长方形的宣传板,上面从左到右写着"快乐学习"几个字。
请你在大长方形图中将这几个字表示出来。
15.你能将下面的图形分成形状大小相同的四部分吗?其中AB=AD=EF=BC,DE=FC16.如图有5个点,在两个点之间可以画出一条线段,画出的图形中一共可以得到( )条线段.17.将14个大小一样的小正方体摆成下面的图形,然后将表面涂成红色再分开,有( )个小正方形的面没有被涂色。
1. 用四个相同的长方形和一个小正方形拼成一个面积为 100cm^2 的大正方形〔如图〕求:〔1〕四个长方形的周长之和?〔2〕假设小正方形的边长是小正方形的宽的 3 倍,那么小正方形的面积是多少?正2. 用两块长方形和一块正方形纸片拼成一个大正方形〔如图〕,两块长方形的面积分别为44cm^2 和 28cm^2, 求:原小正方形的面积?正3、将一个大正方形划分成 10 个相同的小长方形,每个小长方形的周长为 42cm,求大正方形的周长?1、如图,由 5 个相同的长方形,拼成一个大长方形,大长方形的周长是 88CM,求大长方形的面积?2、将一个大正方形划分成 27 个相同的长方形,每个小长方形的周长为 80cm,求大正方形的面积?3、用四个相同的长方形和一个小正方形拼成一个大正方形,小正方形的面积为 9cm^2,每个小正方形的面积为13.75cm^2, 求:小长方形的长和宽各是多少?正1、正方形的边增加 5cm,另一边赠加 3cm,所得的长方形比原正方形的面积大 95cm^2, 求原正方形的面积?2、正方形的边减少 5cm,另一边减少 8cm,所得的长方形比原正方形的面积小 220cm^2,求原正方形的面积?作业1、一块长方形纸片,在长边上剪去 7cm 后,再在原宽边上剪去 2cm,获取一个正方形的面积比原长方形的面积少 41cm^2 ,求原长方形的周长?2、一块长方形纸片,在长边上加长3cm 后,再在原宽边上加长7cm,获取一个正方形的面积比原长方形的面积多 179cm^2 ,求原长方形的周长?3、如图:在长方形 ABCD中, AB=120cm,截去一个正方形 EBCF后,剩下的长方形的周长是多少?作业1、一个长方形的长边减少 7cm,原宽边增加 4cm,获取一个正方形的面积比原长方形的面积少 92cm^2 ,求:原长方形的周长?2、一个长方形的长边减少 2cm,原宽边增加 9cm,获取一个正方形的面积比原长方形的面积多 123cm^2 ,求:原长方形的周长?3、如图:阴影局部甲比阴影乙面积大 4cm^2,求长方形 ABCD的周长?7cm7cm1、正方形的一边减少 8cm,另一边增加 5cm,获取一个长方形的面积比原正方形的面积少 115cm^2 ,求原正方形的面积2、正方形的一边减少 3cm,另一边增加 7cm,获取一个长方形的面积比原正方形的面积多 95cm^2 ,求原正方形的面积4、如图:长方形被切割成 6 个正方形,中间的小正方形的面积为 1cm^2, 求原长方形的面积和周长?5。
6I图形的计数1段. 2. 的边A 1A 12OA 2,OA 3,_____个三角形3. 4. 5. 数一数(1)(2)(2)6. 7. ),如果用线绳围正方形,最多可以围出_____个.8. 一块相邻的横竖两排距离都相等的钉板,上面有4⨯4个钉(如下左图).以每个钉为顶点,你能用9. 如下左图_____个.10. 数一数.二、解答题11. 如下左图中共有7层小三角形,求白色小三角形的个数与黑色小三角形的个数之比. 12. 134厘米、8厘米、914.将ABC ∆的每一边4等分,过各分点作边的平行线,在所得下图中有多少个平行四边形?———————————————答 案—————————————————————— 1.30由例1注可知图形中每边有3+2+1=6(条)线段,因此整个图形中共有6⨯5=30条线段. 2. 371A 6A 12分解成以OA6为公共边的两个三角形1A 6中共有5+4+3+2+1=15(个)三角形, OA 6A 12中共6+5+4+3+2+1=21(个)三角形,这样,图中共有15+21+1=37(个)三角形. 3. 15这样的问题应该通过分类计数求解.此题中的三角形可先分成含顶点C 的和不含顶点C 的两大类.含顶点C 的又可分成另外两顶点在线段AB 上的和在线段BD 上的两小类.分类图解如下:,每行都有6⨯3=18(个)梯形. 5. 108,36(1)因为长方形是由长和宽组成的,因此可分别考虑所有长方形的长和宽的可能种数.按照前面所介绍的线段的计数方法可分别求出长和宽的线段条数,将它们相乘就是所有长方形的个数.因为AB 边上有8+7+6+…+2+1=289⨯=36条线段,AD 边上有2+1=3条线段,所以图中一共有36⨯3=108个长方形.(2)三角形一共有6行,每行都有3+2+1=6(个),所以一共有6⨯6=36(个)三角形. 6. 30由例5注可知整个图形中共有12+22+32+42=30个正方形. 7. 50此类问题一般用分类方法计数.对正方形的边长分八类计数如下: 边长为AB 的正方形有16个; 边长为AC 的正方形有9个; 边长为AD 的正方形有4个; 边长为AE 的正方形有1个; 边长为DF 的正方形有9个; 边长为CF 的正方形有8个; 边长为BF 的正方形有2个; 边长为CG 的正方形有1个. 所以,最多可围出50个正方形. 8. 44因为正方形是特殊的长方形,所以可以把正方形看成长方形,这样就不必分别求正方形和长方形的个数,仍用分类计数的方法求解.先考虑有一组对边平行于BC 的长方形有多少个.这一类按其水平边的位置可分为6小类,即位置在BF 、FE 、EC 、FC 、BE 、BC .同样,其竖直边也分为6类.所以这一类有6⨯6=36个长方形.2个长方形..所以,共有9+4+2+4+2=2110. 30将原立体图形从左至右分类计算,共有11+7+5+7=30个.11. 白色小三角形个数=1+2+3+ (6)26)61(⨯+=21, 黑色小三角形个数=1+2+3+…+7=27)71(⨯+=28,所以它们的比=2821=43.12. 解法一本图中三角形的个数为(1+2+3+4)⨯4=40(个).下面求梯形的个数.梯形由两底唯一确定.首先在AB ,CD ,EF ,MN 中,考虑两底所在的线段,共有(4⨯3)÷2=6(种)选法;对上述四条线段中确定的两条线段,共有10(10=4+3+2+1)个梯形.共60个梯形.故所求差为20.解法二在图4个三角形,6个梯形,梯形比三角图形图形多2个.而在题图中,这种恰有10个.故题图中,梯形个数与三角形的个数之差为2⨯10=20(个).13. 边长2厘米的正方形:2⨯2=4(个) ……红色 边长4厘米的正方形(4-1)⨯4=12(个) ……红色 (4-2)⨯(4-2)=4(个) ……白色 边长8厘米的正方形(8-1)⨯4=28(个) ……红色 (8-2)⨯(8-2)=36(个) ……白色 边长9厘米的正方形(9-1)⨯4=32(个) ……红色 (9-2)⨯(9-2)=49(个) ……白色 所以,红色小正方形共有 4+12+28+32=76(个) 白色小正方形共有 4+36+49=89(个)[注]本题的要求是由边长为1厘米的红色和白色两种正方形,分别组成边长是2厘米,4厘米,8厘米,9厘米的大小不同的正方形,可以看作方阵问题来解.四周的小正方形是涂红色的,可看成是空心方阵,因此,涂红色正方形的个数等于4⨯(n-1).其他小正方形是涂白色的,可当作实心方阵,所以,涂白色的正方形的个数等于(n-2)⨯(n-2).比如,由边长为1厘米的正方形组成边长为9厘米的正方形,涂红色的小正方形的个数是:4⨯(9-1)=32(个),涂白色的小正方形的个数是:(9-2)⨯(9-2)=49(个).14. 将平行四边形分为三类:①尖角在上、下方;②尖角在左下、右上方;③尖角在左上、右下方.就第③类而言: 型6个;型3个,与其对称的3个;型1个,与其对称的1个;型1个;共15个.同理,第②、①类也分别含15个,故上述三类平行四边形共45个.[注]这样数平行四边行,很麻烦,又易出错.我们试图找到一种对应关系:先考虑任一边不与BC平行的平行四边形,延长各边必与BC有4个交点,特殊情况下,第二个交点与第三个交点重合;反过来,BC上的任意四点或三点决定一个平行四边形,也就是说,边不与BC平行的平行四边形的个数与BC上的四交点组和三交点组的数目一样多。
小学二年级奥数题《图形的平移题目大全及答案》题库大全姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、下面的图形,平移哪些线段,就可以变成长方形,用笔画出来。
答案与解析:2、飞禽馆长颈鹿馆大象馆熊猫馆猴山(1)从入口向右平移5格是猴山。
(2)从猴山向上平移4格是熊猫馆。
(3)从熊猫馆向右平移3格是飞禽馆,再向右平移3格是长颈鹿馆。
(4)从长颈鹿馆向下平移6格是大象馆。
答案与解析:“略”3、电梯上下移动是()现象。
水龙头开关的转动是()现象。
(平移或旋转)答案与解析:平移;旋转4、画出平移后的图形。
答案与解析:5;5、请在()里填上“平移”或“旋转”(1)(2)(3)答案与解析:(1)平移;旋转;旋转(2)旋转;平移(3)旋转;旋转;平移;平移6、分别画出将向下平移3格和向右平移5格后得到的图形。
答案与解析:7、画出下图向左平移6格后的图形。
答案与解析:“略”8、画出下图向右平移8格得到的图形。
答案与解析:9、钟面上的指针是()现象。
(填“平移”或“旋转”)答案与解析:旋转10、把图案平移后的图形画出来。
答案与解析:“略”11、连线旋转平移答案与解析:旋转;平移12、把向左平移6格后得到的涂上颜色。
答案与解析:“略”13、下面的图形是平移的填“”,是旋转的填“○”。
(1)(2)(3)()()()(4)(5)(6)()()()(7)(8)(9)()()()答案与解析:(1)○;(2);(3)○;(4);(5)○;(6)○;(7);(8);(9)14、分别画出将凸向右平移5格,向下平移3格后得到的图形。
答案与解析:“略”15、下面现象中是平移的在()里打“”,是旋转的画“○”。
(1)建筑工地的升降机。
(2)直升机的螺旋桨。
()()(3)工作中的排气扇。
(4)行进中的滑雪板。
()()答案与解析:(1);(2)○;(3)○;(4)16、把可以平移到1号小鱼位置的小鱼涂上颜色。
一、计算题。
( 共101题)1.图2-26是由四个扁而长的圆圈组成的,在交点处有8个小圆圈.请你把1、2、3、4、5、6、7、8这八个数分别填在8个小圆圈中。
要求每个扁长圆圈上的四个数字的和都等于18。
2.在图2-24中,三个圆圈两两相交形成七块小区域,分别填上1~7七个自然数,在一些小区域中,自然数3、5、7三个数已填好,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15。
3.图2-23中有三个大圆,在大圆的交点上有六个小圆圈。
请你把1、2、3、4、5、6六个数分别填在六个小圆圈里,要求每个大圆上的四个小圆圈中的数之和都是14。
4.将2、4、6、8、10、12、14、16、18填在下面图表,使每一横行、竖行、斜行的三个数相加的和都相等。
5.仔细观察下面的图形,找出变化规律,猜猜在第3组的右框空白格内填一个什么样的图?6.请看下图,共有多少个正方形?7.仔细观察这些图案可以发现,他们是按照下面这5个图案为一组,循环往复排列的,请问第52个图形是什么?8.把上面一排的立体图形剪开,可以剪成下面哪种图形的样子?动手试一试。
9.请把下图中长方形分成形状相同、大小相等的两块,然后再拼成一个正方形.10.在空格中填入合适的数11.下图表示"宝塔",它们的层数不同,但都是由一样大的小三角形摆成的。
仔细观察后,请你回答:(1)五层的"宝塔"的最下层包含多少个小三角形?(2)整个五层"宝塔"一共包含多少个小三角形?(3) 从第(1)到第(10)的十个"宝塔",共包含多少个小三角形?12.数一数,有( )个长方形。
13.请你将下面图形分成形状大小相同的四部分,你能行吗?14.请你将下面的图形拼成一个大长方形的宣传板,上面从左到右写着"快乐学习"几个字。
请你在大长方形图中将这几个字表示出来。
15.你能将下面的图形分成形状大小相同的四部分吗?其中AB=AD=EF=BC,DE=FC16.如图有5个点,在两个点之间可以画出一条线段,画出的图形中一共可以得到( )条线段.17.将14个大小一样的小正方体摆成下面的图形,然后将表面涂成红色再分开,有( )个小正方形的面没有被涂色。