2020北师大版高中数学选修2-1《第一章 常用逻辑用语》章末复习学案(含答案)
- 格式:doc
- 大小:17.00 KB
- 文档页数:8
第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第一章常用逻辑用语测试题一、 选择题(每道题只有一个答案,每道题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( ) A 、真命题与假命题的个数相同 B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2、下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题 ④“若x -123是有理数,则x 是无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是() A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要6、函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A 、ab =0B 、a +b=0C 、a =bD 、a 2+b 2=0 7、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题() A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、 D 、若x =a 或x =b ,则x 2-(a +b )x +ab =08、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要9、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( )A 、 存在实数m ,使得方程x 2+mx +1=0无实根B 、不存在实数m ,使得方程x 2+mx +1=0有实根C 、对任意的实数m ,使得方程x 2+mx +1=0有实根D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根10.若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,其逆命题都是假命题,则"c d ≤"是"e f ≤"的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件 11.在下列结论中,正确的是( )①""q p ∧为真是""q p ∨为真的充分不必要条件 ②""q p ∧为假是""q p ∨为真的充分不必要条件 ③""q p ∨为真是""p ⌝为假的必要不充分条件 ④""p ⌝为真是""q p ∧为假的必要不充分条件 A. ①② B. ①③ C. ②④ D. ③④ 12.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>5 二、填空题(每道题4分,共16分)13、判断下列命题的真假性: ①、若m>0,则方程x 2-x +m =0有实根 ②、若x>1,y>1,则x+y>2的逆命题③、对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 14、“末位数字是0或5的整数能被5整除”的否定形式是 否命题是15、若把命题“A ⊆B ”看成一个复合命题,那么这个复合命题的形式是__________,构成它的两个简单命题分别是_____________________________________。
姓名,年级:时间:习题课——充分条件与必要条件的综合应用课后训练案巩固提升1。
下列四个条件中,使a 〉b 成立的充分不必要条件是 ( )A 。
a>b-1 B.a>b+1C 。
a 2>b 2D 。
a 3〉b 3解析:因为a>b+1⇒a —b>1⇒a —b>0⇒a>b ,所以a 〉b+1是a>b 的充分条件.又因为a>b ⇒a-b>0a>b+1,所以a>b+1不是a 〉b 的必要条件,故a>b+1是a>b 成立的充分而不必要条件.答案:B2。
已知集合A={x|a-2<x<a+2},B={x |x ≤-2或x ≥4},则A ∩B=⌀的充要条件是( ) A 。
0≤a ≤2 B 。
-2〈a 〈2C.0〈a ≤2D.0<a<2解析:A ∩B=⌀⇔{a -2≥-2,a +2≤4⇔0≤a ≤2。
答案:A3.“3x 2—8x-3〈0”的一个必要不充分条件是( )A 。
-13<x<3B.-13<x<4 C 。
-13<x<12D 。
—1<x<2 解析:3x 2-8x-3〈0⇔(3x+1)(x —3)〈0⇔-13<x<3⇒—13〈x 〈4。
故选B 。
答案:B4。
在△ABC 中,“sin(A —B )cos B+cos (A-B )sin B ≥1”是“△ABC 是直角三角形”的( )A.充分不必要条件 B 。
必要不充分条件C.充分必要条件 D 。
既不充分也不必要条件解析:sin(A-B )cos B+cos (A —B )sin B=sin[(A-B )+B ]=sin A ≥1,又因为sin A ≤1,所以sin A=1。
又因为0<A 〈π,所以A=π2,故△ABC 为直角三角形;若△ABC 为直角三角形,则A 不一定为直角,也可能为锐角,则sin A 不一定取到最大值1,即不一定有sin(A —B )cos B+cos (A —B )sin A=sin A ≥1,故“sin(A-B )cos B+cos(A —B )sin B ≥1”是“△ABC 是直角三角形”的充分不必要条件,故选A 。
§2充分条件与必要条件学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件(1)“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.(2)若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件思考在△ABC中,角A,B,C为它的三个内角,则“A,B,C成等差数列”是“B=60°”的什么条件?答案因为A,B,C成等差数列,故2B=A+C,又因为A+B+C=180°,故B=60°,反之,亦成立,故“A,B,C成等差数列”是“B=60°”的充要条件.梳理(1)一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q,此时,我们说,p是q的充分必要条件,简称充要条件.(2)充要条件的实质是原命题“若p,则q”和其逆命题“若q,则p”均为真命题,如果p是q的充要条件,那么q也是p的充要条件,即如果p⇔q,那么p与q互为充要条件.(3)从集合的角度判断充分条件、必要条件和充要条件.其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.q是p的必要条件时,p是q的充分条件.(√)2.若p是q的充要条件,则p和q是两个相互等价的命题.(√)3.q 不是p 的必要条件时,“p ⇏q ”成立.(√)类型一 充分条件、必要条件、充要条件的判定 例1 下列各题中,试分别指出p 是q 的什么条件. (1)p :两个三角形相似,q :两个三角形全等; (2)p :一个四边形是矩形,q :四边形的对角线相等; (3)p :A ⊆B ,q :A ∩B =A ; (4)p :a >b ,q :ac >bc .考点 充分条件、必要条件的判断 题点 充分、必要条件的判断解 (1)∵两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似, ∴p 是q 的必要不充分条件. (2)∵矩形的对角线相等,∴p ⇒q , 而对角线相等的四边形不一定是矩形, ∴q ⇏p ,∴p 是q 的充分不必要条件.(3)∵p ⇒q ,且q ⇒p ,∴p 既是q 的充分条件,又是q 的必要条件. (4)∵p ⇏q ,且q ⇏p ,∴p 是q 的既不充分又不必要条件. 反思与感悟 充分条件、必要条件的两种判断方法 (1)定义法①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件; ③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件. (2)命题判断法①如果命题:“若p ,则q ”为真命题,那么p 是q 的充分条件,同时q 是p 的必要条件; ②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件. 跟踪训练1 指出下列各题中,p 是q 的什么条件? (1)p :ax 2+ax +1>0的解集是R ,q :0<a <4; (2)p :|x -2|<3,q :6x -5<-1;(3)p :A ∪B =A ,q :A ∩B =B ;(4)p :⎩⎪⎨⎪⎧ α>2,β>2,q :⎩⎪⎨⎪⎧α+β>4,αβ>4.考点 充分条件、必要条件的判断解 (1)当a =0时,1>0满足题意;当a ≠0时,由⎩⎪⎨⎪⎧Δ=a 2-4a <0,a >0,可得0<a <4.故p 是q 的必要不充分条件. (2)易知p :-1<x <5,q :-1<x <5, 所以p 是q 的充要条件.(3)因为A ∪B =A ⇔A ∩B =B ,所以p 是q 的充要条件.(4)由⎩⎪⎨⎪⎧ α>2,β>2,根据同向不等式相加、相乘的性质,有⎩⎪⎨⎪⎧α+β>4,αβ>4,即p ⇒q ,但⎩⎪⎨⎪⎧ α+β>4,αβ>4⇏⎩⎪⎨⎪⎧α>2,β>2,比如,当α=1,β=5时,⎩⎪⎨⎪⎧α+β=6>4,αβ=5>4,而α<2,所以q ⇏p ,所以p 是q 的充分不必要条件.类型二 充要条件的探求与证明 命题角度1 充要条件的探求例2 求ax 2+2x +1=0至少有一个负实根的充要条件是什么? 考点 充要条件的概念及判断 题点 寻求充要条件解 (1)当a =0时,原方程变为2x +1=0,即x =-12,符合要求.(2)当a ≠0时,ax 2+2x +1=0为一元二次方程,它有实根的充要条件是Δ≥0,即4-4a ≥0,∴a ≤1.①方程ax 2+2x +1=0只有一个负根的充要条件是⎩⎪⎨⎪⎧Δ≥0,x 1x 2<0,即⎩⎪⎨⎪⎧a ≤1,1a<0,∴a <0.②方程ax 2+2x +1=0有两个负根的充要条件是⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧a ≤1,-2a<0,1a >0,∴0<a ≤1.综上所述,ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.反思与感悟 探求一个命题的充要条件,可以利用定义法进行探求,即分别证明“条件⇒结论”和“结论⇒条件”,也可以寻求结论的等价命题,还可以先寻求结论成立的必要条件,再证明它也是其充分条件. 跟踪训练2 已知数列{a n }的前n 项和S n =(n +1)2+t (t 为常数),试问t =-1是否为数列{a n }是等差数列的充要条件?请说明理由.题点寻求充要条件解是充要条件.(充分性)当t=-1时,S n=(n+1)2-1=n2+2n.a1=S1=3,当n≥2时,a n=S n-S n-1=2n+1.又a1=3符合上式,∴a n=2n+1(n∈N+),又∵a n+1-a n=2(常数),∴数列{a n}是以3为首项,2为公差的等差数列.故t=-1是{a n}为等差数列的充分条件.(必要性)∵{a n}为等差数列,则2a2=a1+a3,∵a1=S1=4+t,a2=S2-S1=5,a3=S3-S2=7,∴10=11+t,解得t=-1,故t=-1是{a n}为等差数列的必要条件.综上,t=-1是数列{a n}为等差数列的充要条件.命题角度2充要条件的证明例3求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0. 考点充要条件的概念及判断题点充要条件的证明证明充分性(由ac<0推证方程有一正根和一负根),∵ac<0,∴一元二次方程ax2+bx+c=0的判别式Δ=b2-4ac>0,∴原方程一定有两不等实根,不妨设为x1,x2,则x1x2=ca<0,∴原方程的两根异号,即一元二次方程ax2+bx+c=0有一正根和一负根.必要性(由方程有一正根和一负根推证ac<0),∵一元二次方程ax2+bx+c=0有一正根和一负根,不妨设为x1,x2,∴由根与系数的关系得x1x2=ca<0,即ac<0,此时Δ=b2-4ac>0,满足原方程有两个不等实根.综上可知,一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.跟踪训练3 求证:方程x 2+(2k -1)x +k 2=0的两个根均大于1的充要条件是k <-2. 考点 充要条件的概念及判断 题点 充要条件的证明 证明 必要性:若方程x 2+(2k -1)x +k 2=0有两个大于1的根,不妨设两个根为x 1,x 2,则 ⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0,即⎩⎪⎨⎪⎧k ≤14,(x 1+x 2)-2>0,x 1x 2-(x 1+x 2)+1>0.即⎩⎪⎨⎪⎧k ≤14,-(2k -1)-2>0,k 2+(2k -1)+1>0,解得k <-2. 充分性:当k <-2时,Δ=(2k -1)2-4k 2=1-4k >0. 设方程x 2+(2k -1)x +k 2=0的两个根为x 1,x 2.则(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=k 2+2k -1+1=k (k +2)>0. 又(x 1-1)+(x 2-1)=(x 1+x 2)-2=-(2k -1)-2=-2k -1>0, ∴x 1-1>0,x 2-1>0,∴x 1>1,x 2>1.综上可知,方程x 2+(2k -1)x +k 2=0有两个大于1的根的充要条件为k <-2. 类型三 利用充分条件、必要条件求参数的值(或范围)例4 设命题p :x (x -3)<0,命题q :2x -3<m ,已知p 是q 的充分不必要条件,则实数m 的取值范围为________.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 [3,+∞)解析 p :x (x -3)<0,即0<x <3; q :2x -3<m ,即x <m +32.由题意知p ⇒q ,q ⇏p ,则在数轴上表示不等式如图所示,则m +32≥3,解得m ≥3,反思与感悟 (1)在有些含参数的充要条件问题中,要注意将条件p 和q 转化为集合,从而转化为两集合之间的子集关系,再转化为不等式(或方程),从而求得参数的取值范围. (2)根据充分条件或必要条件求参数范围的步骤 ①记集合M ={x |p (x )},N ={x |q (x )};②若p 是q 的充分不必要条件,则M ?N ,若p 是q 的必要不充分条件,则N ?M ,若p 是q 的充要条件,则M =N ;③根据集合的关系列不等式(组); ④求出参数的范围.跟踪训练4 设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪ y =2x 2x +1,x ∈R ,B =⎩⎨⎧⎭⎬⎫y ⎪⎪y =13x +m ,x ∈[-1,1],记命题p :“y ∈A ”,命题q :“y ∈B ”,若p 是q 的必要不充分条件,则m 的取值范围为______________. 考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 ⎝⎛⎭⎫13,23解析 由题意知A ={y |0<y <1}., B =⎩⎨⎧⎭⎬⎫y | m -13≤y ≤m +13,依题意,得B ?A ,故⎩⎨⎧m -13>0,m +13<1,∴13<m <23.1.“x >0”是“x 2+x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 A解析 由x 2+x >0⇔x <-1或x >0,由此判断A 符合要求. 2.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件答案 A解析 当a +b =0时,得a =-b ,所以a ∥b ,但若a ∥b ,不一定有a +b =0. 3.“关于x 的不等式x 2-2ax +a >0,x ∈R 恒成立”的一个必要不充分条件是( ) A .0<a <1 B .0≤a ≤1 C .0<a <12D .a ≥1或a ≤0考点 充分条件、必要条件的概念及判断 题点 充分、必要条件的判断 答案 B解析 当关于x 的不等式x 2-2ax +a >0,x ∈R 恒成立时,应有Δ=4a 2-4a <0,解得0<a <1.所以一个必要不充分条件是0≤a ≤1.4.设p :1≤x <4,q :x <m ,若p 是q 的充分条件,则实数m 的取值范围是________.(用区间表示) 考点 充分条件的概念及判断 题点 由充分条件求取值范围 答案 [4,+∞)解析 因为p 为q 的充分条件,所以[1,4)⊆(-∞,m ), 得m ≥4.5.设p :|x |>1,q :x <-2或x >1,则q 是p 的__________条件.(填“充分不必要”“必要不充分”“既不充分又不必要”“充要”)考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 充分不必要解析 由已知,得p :x <-1或x >1,则q 是p 的充分不必要条件.充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,常采用如下方法(1)定义法:分清条件p 和结论q ,然后判断“p ⇒q ”及“q ⇒p ”的真假,根据定义下结论. (2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合A ={x |p (x )}及集合B ={x |q (x )},利用集合之间的包含关系加以判断.一、选择题1.“x 为无理数”是“x 2为无理数”的( ) A .充分不必要条件 B .必要不充分条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B解析 当x 2为无理数时,x 为无理数.2.设a ,b ∈R ,则“a +b >2”是“a >1且b >1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B3.设x ∈R ,则x >π的一个必要不充分条件是( ) A .x >3 B .x <3 C .x >4D .x <4考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 A4.在△ABC 中,若p :A =60°,q :sin A =32,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 A解析 因为sin 60°=32,故p ⇒q ,但当sin A =32时,A =60°或120°. 5.已知p :x 2+2x -3<0,q :1-a ≤x ≤1+a ,且q 是p 的必要不充分条件,则a 的取值范围是( ) A .(4,+∞) B .(-∞,0] C .[4,+∞)D .(-∞,0)考点 充分、必要条件的综合应用 题点 充分、必要条件求参数的范围 答案 C解析 由命题p :-3<x <1,因为p ⇒q ,q ⇏p ,所以⎩⎪⎨⎪⎧ 1-a ≤-3,1+a ≥1,即⎩⎪⎨⎪⎧a ≥4,a ≥0,所以a ≥4.A .a ≥b +1B .a >b -1C .a 2>b 2D .a 3>b 3考点 充分、必要条件的判断 题点 充分不必要条件的判断 答案 A解析 由a ≥b +1>b ,从而a ≥b +1⇒a >b ;反之,如a =4,b =3.5,则4>3.5⇏4≥3.5+1,故a >b ⇏a ≥b +1,故选A.7.设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别是集合M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 D解析 若a 1a 2=b 1b 2=c 1c 2<0,则M ≠N ,即a 1a 2=b 1b 2=c 1c 2⇏M =N ; 反之,若M =N =∅,即两个一元二次不等式的解集为空集时, 只要求判别式Δ1<0,Δ2<0(a 1<0,a 2<0), 而与系数之比无关.8.设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)内不是单调函数的充要条件是( ) A .0<m <12B .0<m <1 C.12<m <1 D .m >1考点 充要条件的概念及判断 题点 寻求充要条件 答案 B解析 f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1.f (x )的图像在(0,1)内单调递减, 在(1,+∞)内单调递增.则⎩⎪⎨⎪⎧m <1,2m +1>1⇔0<m <1. 二、填空题9.若a =(1,2x ),b =(4,-x ),则“a 与b 的夹角为锐角”是“0≤x <2”的________________条件. 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 既不充分又不必要10.“(x +1)(x +2)>0”是“(x +1)(x 2+2)>0”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 考点 充分、必要条件的判断 题点 必要不充分条件的判断 答案 必要不充分解析 (x +1)(x +2)>0⇒x <-2或x >-1,(x +1)·(x 2+2)>0⇒x >-1,因为x >-1⇒x <-2或x >-1,x <-2或x >-1⇏x >-1,所以应填“必要不充分”. 11.有下列命题:①“x >2且y >3”是“x +y >5”的充分条件;②“b 2-4ac <0”是“一元二次不等式ax 2+bx +c <0的解集为R ”的充要条件; ③“a =2”是“直线ax +2y =0平行于直线x +y =1”的充分不必要条件; ④“xy =1”是“lg x +lg y =0”的必要不充分条件. 其中真命题的序号为________. 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 ①④解析 ①当x >2且y >3时,x +y >5成立,反之不一定,所以“x >2且y >3”是“x +y >5”的充分不必要条件,故①为真命题;②不等式解集为R 的充要条件是a <0且b 2-4ac <0,故②为假命题;③当a =2时,两直线平行,反之,若两直线平行,则a 1=21,所以a =2,所以“a =2”是“两直线平行”的充要条件,故③为假命题;④lg x +lg y =lg(xy )=0,所以xy =1且x >0,y >0,所以xy =1必成立,反之不然,所以“xy =1”是“lg x +lg y =0”的必要不充分条件,故④为真命题. 综上可知,真命题是①④. 三、解答题12.判断下列各题中,p 是q 的什么条件. (1)p :|x |=|y |,q :x =y ;(3)p :四边形的对角线互相平分,q :四边形是矩形;(4)p :圆x 2+y 2=r 2(r >0)与直线ax +by +c =0相切,q :c 2=(a 2+b 2)r 2.考点 充分条件、必要条件的判断题点 充分、必要条件的判断解 (1)∵|x |=|y |⇏x =y ,但x =y ⇒|x |=|y |,∴p 是q 的必要不充分条件.(2)∵△ABC 是直角三角形⇏△ABC 是等腰三角形,△ABC 是等腰三角形⇏△ABC 是直角三角形,∴p 是q 的既不充分又不必要条件.(3)∵四边形的对角线互相平分⇏四边形是矩形,四边形是矩形⇒四边形的对角线互相平分,∴p 是q 的必要不充分条件.(4)若圆x 2+y 2=r 2(r >0)与直线ax +by +c =0相切,则圆心(0,0)到直线ax +by +c =0的距离等于r ,即r =|c |a 2+b 2, ∴c 2=(a 2+b 2)r 2;反过来,若c 2=(a 2+b 2)r 2, 则|c |a 2+b 2=r 成立, 说明圆x 2+y 2=r 2(r >0)的圆心(0,0)到直线ax +by +c =0的距离等于r ,即圆x 2+y 2=r 2(r >0)与直线ax +by +c =0相切,故p 是q 的充要条件.13.已知p :2x 2-3x -2≥0,q :x 2-2(a -1)x +a (a -2)≥0,且命题p 是命题q 的充分不必要条件,求实数a 的取值范围.考点 充分、必要条件的综合应用题点 由充分、必要条件求参数的范围解 令M ={x |2x 2-3x -2≥0}={x |(2x +1)(x -2)≥0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-12或x ≥2,N ={x |x 2-2(a -1)x +a (a -2)≥0} ={x |(x -a )[x -(a -2)]≥0}={x |x ≤a -2或x ≥a }.由已知p ⇒q 且q ⇏p ,得M ?N ,∴⎩⎪⎨⎪⎧ a -2≥-12,a <2或⎩⎪⎨⎪⎧a -2>-12,a ≤2, 解得32≤a <2或32<a ≤2,即32≤a ≤2.即实数a 的取值范围是⎣⎡⎦⎤32,2.四、探究与拓展14.下列各题中,p 是q 的充要条件的是________.(填序号)①p :m <-2或m >6,q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1,q :y =f (x )为偶函数; ③p :cos α=cos β,q :tan α=tan β;④p :A ∩B =A ,q :∁U B ⊆∁U A .考点 充分、必要条件的判断题点 充要条件的判断答案 ①④解析 对于①,q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ; 对于②,当f (x )=0时,q ⇏p ;对于③,若α,β=k π+π2(k ∈Z ),则有cos α=cos β,但没有tan α=tan β,p ⇏q ; 对于④,p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U B ⊆∁U A .15.已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.考点 充分、必要条件的综合应用题点 由充分、必要条件求参数的取值范围解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].。
一、选择题1.已知x ∈R ,条件2:p x x <,条件1:q a x≥,若p 是q 的充分不必要条件,则实数a 的取值不可能是( ) A .12B .1C .2D .2-2.已知命题:p 关于x 的方程210x ax ++=没有实根;命题:0q x ∀≥,20x a ->.若p ⌝和p q ∧都是假命题,则实数a 的取值范围是( ) A .()(),21,-∞-⋃+∞ B .(]2,1- C .(]1,2D .[)1,23.已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b<.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是( ) A .1B .2C .3D .44.下列命题错误的是( )A .命题“若p 则q ”与命题“若q ⌝,则p ⌝”互为逆否命题B .命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”C .∀ 0x >且1x ≠,都有12x x+> D .“若22am bm <,则a b <”的逆命题为真5.""6a π=是()tan a π-=的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件6.给出如下四个命题:①若“p 且q ”为假命题,则,p q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b <,则221a b ≤-”; ③“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”; 其中正确的命题的个数是( ) A .0B .1C .2D .37.下列命题中假命题是( )A .∃x 0∈R ,ln x 0<0B .∀x ∈(-∞,0),e x >x +1C .∀x >0,5x >3xD .∃x 0∈(0,+∞),x 0<sin x 0 8.下列说法正确的个数是( )①“若4a b +≥,则,a b 中至少有一个不小于2“的逆命题是真命题 ②命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题 ③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->” ④1a b +>是a b >的一个必要不充分条件 A .0B .1C .2D .39.设a ,b ,c +∈R ,则“1abc =”是a b c +≤++”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要的条件10.下列说法正确的是( ).A .若数列{}n a 为等差数列,则数列{}1n n a a ++为等差数列B .若14m ≤-,则函数2()lg lg f x x x m =+-无零点 C .在ABC ∆中,若sin A <,则04A π<<D .直线m ⊄平面α,直线n ⊂平面α,则“//m n ”是“//m α”的充要条件11.已知()0,x π∈,则“6x π>”是“1sin 2x >”成立的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要12.“1m =”是“椭圆22360mx y m +-=的焦距为4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.下列命题中假命题的序号是________.①若“1x >则21x >”的逆命题;②“若1sin 2α≠,则6πα≠”;③“若0xy =,则0x =且0y =”的逆否命题;④“在ABC 中,若sin sin A B >,则A B >”.14.若不等式21x m -<成立的一个充分不必要条件为1<x <2,则实数m 的取值范围为________.15.设命题P :实数,x y 满足:0222x y x y x -≤⎧⎪+≤⎨⎪≥-⎩,命题q :实数,x y 满足()221x y m ++≤,若p 是q 的必要不充分条件,则正实数m 的取值范围是__________.16.由命题p :“矩形有外接圆”,q :“矩形有内切圆”组成的复合命题“p 或q ”“p 且q ”“非p ”形式的3个命题中真命题有__________个(只填真命题的个数). 17.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数31()13f x x x =-++有两个零点; ③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 既与定圆22(2)4x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是28(0)y x x =≠;⑤若对任意的正数x ,不等式x e x a ≥+恒成立,则实数a 的取值范围是1a ≤. 其中正确的命题序号是________.18.若命题“p :x R ∀∈,2210ax x ++>”是假命题,则实数a 的取值范围是______. 19.设命题p :实数a 满足不等式39a ≤;命题q :函数329()(3)2772f x x a x x a =+-++无极值点.又已知“p q ∧”为真命题,记为r .命题t :211(2)()022a m a m m -+++>,若r 是t ⌝的必要不充分条件,则正整数m 的值为_____.20.“200,20o x R x x m ∃∈++≤”是假命题,则实数m 的取值范围是 ________.三、解答题21.若函数()y f x =满足“存在正数λ,使得对定义域内的每一个值1x ,在其定义域内都存在2x ,使12()()f x f x λ=成立”,则称该函数为“依附函数”.(1)分别判断函数①()2x f x =,②2()log g x x =是否为“依附函数”,并说明理由; (2)若函数()y h x =的值域为[,]m n ,求证:“()y h x =是‘依附函数’”的充要条件是“0[,]m n ∉”. 22.已知命题()221:12,:21003x p q x x m m --≤-+-≤>,若p 是q 的充分条件,求实数m 的取值范围.23.设命题p :实数x 满足22430x ax a -+<,命题q :实数x 满足31x -<. (1)若1a =,若,p q 同为真命题,求实数x 的取值范围.(2)若0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.24.设命题p :不等式2515x x a a ++->-对x R ∀∈恒成立;命题q :方程2680ax x a -+-=有两个不同的正根.当命题p 和命题q 不都为假命题时,求实数a 的取值范围.25.已知集合{}{}222430(0),540A x x ax a a B x x x =-+≤>=-+≥,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.26.设命题p :实数x 满足22430x mx m -+<;命题q :实数x 满足2680x x -+<. (1)若1m =,且p 为真,q 为假,求实数x 的取值范围; (2)若0m >,且q 是p 的充分不必要条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先解出命题所对应的集合,再将条件之间的关系转化为集合间的关系,即可得解. 【详解】因为x ∈R ,条件2:p x x <,条件1:q a x≥, 所以p 对应的集合()0,1A =,q 对应的集合1B x a x ⎧⎫=≥⎨⎬⎩⎭, 又p 是q 的充分不必要条件,所以A B ,当0a =时,集合{}100B x x x x ⎧⎫=≥=>⎨⎬⎩⎭,满足题意; 当>0a 时,集合110B xa x x x a ⎧⎫⎧⎫=≥=<≤⎨⎬⎨⎬⎩⎭⎩⎭,此时需满足11a≥即01a <≤; 当0a <时,集合()11,0,B xa x a ⎧⎫⎛⎤=≥=-∞⋃+∞⎨⎬ ⎥⎩⎭⎝⎦,满足题意;所以实数a 的取值范围为(],1-∞. 所以实数a 的取值不可能是2. 故选:C. 【点睛】关键点点睛:解决本题的关键是把命题间的关系转化为集合间的关系及分类求解命题q 对应的集合.2.D解析:D 【分析】计算出当命题p 为真命题时实数a 的取值范围,以及当命题q 为真命题时实数a 的取值范围,由题意可知p 真q 假,进而可求得实数a 的取值范围. 【详解】若命题p 为真命题,则240a ∆=-<,解得22a -<<;若命题q 为真命题,0x ∀≥,20x a ->,则()min21xa <=.由于p ⌝和p q ∧都是假命题,则p 真q 假,所以221a a -<<⎧⎨≥⎩,可得12a ≤<.因此,实数a 的取值范围是[)1,2. 故选:D. 【点睛】本题考查利用复合命题、全称命题的真假求参数,考查计算能力,属于中等题.3.B解析:B 【分析】根据条件分别判断两个命题的真假,结合复合命题的真假关系,进行判断,即可判定. 【详解】由题意,例如0x y ==时,此时330x y +=,所以命题p 为假命题;命题q :中当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题,所以命题p q ∧假命题;p q ∨为真命题;p ⌝为真命题;q ⌝为假命题,真命题的个数是2个,故选B. 【点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.D解析:D 【分析】对给出的四个选项分别进行判断可得结果. 【详解】对于选项A ,由逆否命题的定义可得,命题“若p 则q ”的逆否命题为“若q ⌝,则p ⌝”,所以A 正确.对于选项B ,由含量词的命题的否定可得,命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”,所以B 正确.对于选项C ,当0x >且1x ≠时,由基本不等式可得12x x+>.所以C 正确. 对于选项D ,命题“若a b <,则22am bm <”当0m =时不成立,所以D 不正确. 故选D . 【点睛】由于类似问题考查的内容较多,解题的关键是根据每个命题对应的知识解决,要求对相关知识要有一个整体性的掌握,本题考查综合运用知识解决问题的能力.5.A解析:A 【解析】 由6πα=,可得56ππα-=,得1sin()2πα-=,但由1sin()2πα-=不一定能够得到“6πα=”,即“6πα=”是()1sin 2πα-=的充分不必要条件,故选A. 6.B解析:B 【分析】结合命题相关知识,对选项逐个分析即可得到答案. 【详解】对于①,,p q 可能为一真一假也可能两个都为假,故①错误;对于②,命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故②错误;对于③,“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”,正确.故只有③正确,答案为B. 【点睛】本题考查了复合命题的性质,考查了命题的否定、原命题的否命题,属于基础题.7.D解析:D 【详解】∃x 0∈R ,lnx 0<0,的当x ∈(0,1)时,恒成立,所以正确;x ∈(﹣∞,0),令g (x )=e x ﹣x ﹣1,可得g ′(x )=e x ﹣1<0,函数是减函数,g (x )>g (0)=0,可得∀x ∈(﹣∞,0),e x >x +1恒成立,正确; 由指数函数的性质的可知,∀x >0,5x >3x 正确;令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.8.C解析:C 【解析】对于①,原命题的逆命题为:若,? a b 中至少有一个不小于2,则4a b +≥,而4,?4a b ==-满足,? a b 中至少有一个不小于2,但此时0a b +=,故①是假命题;对于②,此命题的逆否命题为“设,?a b R ∈,若3a =且3b =,则6a b +=”,此命题为真命题,所以原命题也是真命题,故②是真命题;对于③“20000x R x x ∃∈-<,”的否定是“20x R x x ∀∈-≥,”,故③是假命题;对于④,由a b >可推得1a b >-,故④是真命题,故选C .点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真假.9.A解析:A 【分析】证充分性时,利用“1”的代换,通过基本不等式论证,必要性时,取特殊值即可. 【详解】 因为1abc =,所以222c b a c a b a b c +++++=≤++=++,当且仅当1a b c ===,取等号,故充分,当4a b c ===a b c≤++,故不必要, 故选:A. 【点睛】本题主要考查逻辑条件涉及了基本不等式,还考查了运算求解的能力,属于中档题.10.A解析:A 【分析】A:利用等差数列的定义进行判断;B:令lg t x =,则2()f t t t m =+-,结合二次函数的零点存在问题,进行判断;C:结合正弦函数,可解不等式,进而可判断A 的取值范围;D:判断由“//m n ”是否能推出“//m α”,再判断由“//m α”是否能推出“//m n ”. 【详解】解:数列{}n a 为等差数列,不妨设数列{}n a 通项公式为n a pn q =+,则1(1)n a p n q pn p q +++=++=.122n n n b a a pn p q +∴=+=++则1232n b pn p q +=++.12n n b b p +∴-=与n 无关. 故数列{}1n n a a ++为等差数列,A 正确. 令lg t x =,则2()f t t t m =+-,当14m =-时, 21()04f t t t =++=此时12t =-,即10x =函数函数2()lg lg f x x x m =+-有零点,B 错误.由正弦函数图像可知,若sin 2A <,则04A π<<或34A ππ<<,C 错误. 当“//m α”时,直线n ⊂平面α,不一定有“//m n ”,所以D 项错误.故选:A . 【点睛】本题考查了等差数列的定义,考查了函数的零点与方程的根,考查了三角函数不等式,考查了充分必要条件的判断.判断一个数列是否为等差数列,可利用等差数列的定义,即判断后一项与前一项的差是否为一个常数;求解三角函数不等式时,常常结合三角函数的图像进行求解;判断两个命题的关系时,通常分为两步,判断由p 是否能推出q ,以及判断由q 是否能推出p .11.B解析:B 【分析】 求出不等式1sin 2x >在()0,x π∈上的解,然后利用集合的包含关系即可得出结论. 【详解】()0,x π∈,解不等式1sin 2x >,得566x ππ<<,5,66ππ⎛⎫ ⎪⎝⎭ ,6ππ⎛⎫⎪⎝⎭,因此,“6x π>”是“1sin 2x >”成立的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,涉及正弦不等式的求解,考查推理能力与运算求解能力,属于中等题.12.A解析:A 【分析】由椭圆22360mx y m +-=的焦距为4,分类讨论求得1c =或5c =时,再结合充分条件和必要条件的判定方法,即可求解. 【详解】由题意,椭圆22360mx y m +-=可化为22162x y m+=,当03m <<时,4c ==,解得1c =,当3m >时,4c ==,解得5c =, 即当1c =或5c =时,椭圆22360mx y m +-=的焦距为4,所以“1m =”是“椭圆22360mx y m +-=的焦距为4”的充分不必要条件. 故选:A . 【点睛】本题主要考查了椭圆的标准方程及几何性质,以及充分条件、必要条件的判定,其中解答中熟记椭圆的标准方程和几何性质,结合充分条件、必要条件的判定求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.①③【分析】根据四种命题的关系判断①②③由正弦定理判断④【详解】①若则的逆命题是若则这显然是假命题如;②若则的逆否命题是若则是真命题原命题也是真命题;③若则且的逆否命题是若或则是假命题④在中若则由得解析:①③ 【分析】根据四种命题的关系判断①②③,由正弦定理判断④. 【详解】①若“1x >则21x >”的逆命题是若21x >,则1x >,这显然是假命题,如2x =-; ②“若1sin 2α≠,则6πα≠”的逆否命题是若6πα=,则1sin 2α=,是真命题,原命题也是真命题;③“若0xy =,则0x =且0y =”的逆否命题是若0x ≠或0y ≠,则0xy ≠,是假命题, ④在ABC 中,若sin sin A B >,则由sin sin a bA B=得a b >,∴A B >,为真命题. 故答案为:①③ 【点睛】关键点点睛:本题考查命题的真假判断,在一个命题不能或不易判断其真假时,可考虑其逆否命题,判断出逆否命题的真假后,原命题的真假随之而得.特别是对一些否定性命题,含有至少、至多等词语的命题.常常选择判断其逆否命题的真假来判断原命题的真假.14.【分析】根据不等式的性质以及充分条件和必要条件的定义即可得到结论【详解】解:由题意不等式的解为且1<x<2是的充分不必要条件所以且等号不能同时取得则故答案为:【点睛】结论点睛:本题考查由充分不必要条解析:112⎡⎤⎢⎥⎣⎦, 【分析】根据不等式的性质,以及充分条件和必要条件的定义即可得到结论. 【详解】解:由题意不等式21x m -<的解为2121m x m -<<+,且1<x <2是2121m x m -<<+的充分不必要条件,所以211212m m -≤⎧⎨+≥⎩,且等号不能同时取得,则112m ≤≤, 故答案为:112⎡⎤⎢⎥⎣⎦,. 【点睛】结论点睛:本题考查由充分不必要条件求参数的范围,一般可根据如下规则建立不等式组:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.15.【分析】命题中点组成集合命题中点组成集合题意说明由集合的包含关系可得【详解】作出不等式组表示的平面区域如图内部(含边界)不等式表示的平面区域是以为圆心为半径的圆及内部如图若是的必要不充分条件则圆在内解析:1(0,]2【分析】命题p 中点(,)x y 组成集合M ,命题q 中点(,)x y 组成集合N ,题意说明N M ,由集合的包含关系可得. 【详解】作出不等式组0222x y x y x -≤⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图ABC ∆内部(含边界),不等式22(1)x y m ++≤表示的平面区域是以(1,0)Q -为圆心m 为半径的圆及内部,如图,若p 是q 的必要不充分条件,则圆C 在ABC ∆内部,圆心C 到直线y x =的距离为10222d --==,所以202m <≤,即102m <≤.故答案为:1(0,]2.【点睛】本题考查必要不充分条件的应用,考查不等式组表示的平面区域.解题方法是数形结合思想法.16.1【分析】先判断两个命题的真假再判断复合命题的真假即得解【详解】由题得命题:矩形有外接圆是真命题;:矩形有内切圆是假命题所以或是真命题且是假命题非是假命题故答案为:1【点睛】本题主要考查命题真假的判 解析:1【分析】先判断两个命题的真假,再判断复合命题的真假即得解.【详解】由题得命题p :“矩形有外接圆”,是真命题;q :“矩形有内切圆”,是假命题. 所以“p 或q ”是真命题,“p 且q ”是假命题,“非p ”是假命题.故答案为:1【点睛】本题主要考查命题真假的判断,考查复合命题真假的判断,意在考查学生对这些知识的理解掌握水平.17.①③⑤【分析】①用导数法求出在R 上的增函数的充要条件与对比即可判断结果;②求出函数的极值并判断正负即可判断结论;③列出从AB 中各任意取一个数所有情况算出两数之和等于4的基本事件即可求出概率判断结论真 解析:①③⑤【分析】①用导数法求出()sin f x ax x =-在R 上的增函数的充要条件,与2a >对比即可判断结果;②求出函数31()13f x x x =-++的极值,并判断正负,即可判断结论; ③列出从A ,B 中各任意取一个数所有情况,算出两数之和等于4的基本事件,即可求出概率,判断结论真假;④按求轨迹的方法求出动点轨迹方程,即可判断结论,或举出反例;⑤构造函数(),(0,)x f x e x x =-∈+∞,求出最小值或取值范围,进而得出a 的范围,即可判断命题真假.【详解】①()sin f x ax x =-在R 上的增函数,()cos 0,cos ,f x a x a x x R '∴=-≥≥∈恒成立,1a ≥.“2a >”是“1a ≥”的充分不必要条件,所以①正确; ②321()1,()1(1)(1)3f x x x f x x x x '=-++=-+=--+, ()0,11,()0,1f x x f x x ''>-<<<<-或1x >,()f x 递增区间是(1,1)-,递减区间是(,1),(1,)-∞-+∞,()f x ∴极大值为5(1),()3f f x =的极小值为1(1)3f -=, ()f x 只有一个零点,②不正确;③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,所以情况有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种取法,两数之和等于4有2种取法,所以概率为13,③正确; ④设圆心(,)C x y ,定圆22(2)4x y -+=圆心为(2,0),半径为2||2x =+,平方化简得244||y x x -=,当0x >时,28y x =,当0,0x y ==,C 在定圆上不合题意,当0x <时,0y =,④不正确;⑤设(),(0,),()10x x f x e x x f x e '=-∈+∞=->在(0,)x ∈+∞上恒成立,(),(0,)x f x e x x =-∈+∞单调递增,()(0)1f x f >=,不等式x e x a ≥+在(0,)x ∈+∞上恒成立,1a ∴≤,⑤正确.故答案为:①③⑤.【点睛】本题考查命题真假的判定,涉及到:充分不必要条件判断、函数零点、古典概型概率、轨迹方程、不等式恒成立问题,属于中档题.18.【分析】若命题p :∀x ∈Rax2+2x+1>0是假命题则a =0或a <0或进而得到实数a 的取值范围【详解】若命题p :∀x ∈Rax2+2x+1>0是假命题则∃x ∈Rax 2+2x+1≤0当a =0时y =2x解析:(],1-∞【分析】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题,则a =0,或a <0,或0440a a ⎧⎨=-≥⎩>,进而得到实数a 的取值范围.【详解】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题,则∃x ∈R ,ax 2+2x +1≤0,当a =0时,y =2x +1为一次函数,满足条件;当a <0时,y =ax 2+2x +1是开口朝下的二次函数,满足条件;当a >0时,y =ax 2+2x +1是开口朝上的二次函数,则函数图象与x 轴有交点,即△=4﹣4a ≥0,解得:0<a ≤1综上可得:实数a 的取值范围是:(],1-∞故答案为:(],1-∞【点睛】本题以命题的真假判断与应用为载体,考查了二次函数的图象和性质,难度中档.19.1【分析】先求命题为真命题时实数的取值范围再求交集得最后根据充要关系结合二次函数图象列不等式解得的取值范围即得结果【详解】因为所以因为函数无极值点所以中因为为真命题所以因为:而是的必要不充分条件所以 解析:1【分析】先求命题p ,q 为真命题时实数a 的取值范围,再求交集得r ,最后根据充要关系结合二次函数图象列不等式解得m 的取值范围,即得结果.【详解】因为39a ≤,所以2a ≤, 因为函数329()(3)2772f x x a x x a =+-++无极值点, 所以2()39(3)270f x x a x '=+-+=中281(3)4327015a a ∆=-⨯⨯≤∴≤≤- 因为“p q ∧”为真命题,所以:12r a , 因为t ⌝:211(2)()022a m a m m -+++≤, 而r 是t ⌝的必要不充分条件,所以不等式211(2)()022a m a m m -+++≤的解集1[,]2m m +为[1]2,一个真子集,即131,2122m m m ≤+≤∴≤≤ 从而正整数m 的值为1.【点睛】本题考查复合命题真假以及充要关系,考查综合分析求解能力,属中档题.20.【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可【详解】由题意可知命题为真命题据此有:求解不等式可得实数的取值范围是【点睛】本题主要考查命题的否定等价转化的数学思想等知识意在考查学生 解析:1m【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可.【详解】由题意可知,命题“2,20x R x x m ∀∈++>”为真命题,据此有:440m ∆=-<,求解不等式可得实数m 的取值范围是1m >.【点睛】本题主要考查命题的否定,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)①是,②不是;理由详见解析(2)详见解析.【分析】(1)①可取1λ=,说明函数()2x f x =是“依附函数”; ②对于任意正数λ,取11x =,此时关于2x 的方程12()()g x g x λ=无解,说明2()log g x x =不是“依附函数”; (2)先证明必要性,再证明充分性,即得证.【详解】(1)①可取1λ=,则对任意1x ∈R ,存在21x x =-∈R ,使得12221x x ⋅=成立, (说明:可取任意正数λ,则221log x x λ=-)∴()2x f x =是“依附函数”,②对于任意正数λ,取11x =,则1()0g x =,此时关于2x 的方程12()()g x g x λ=无解,∴2()log g x x =不是“依附函数”. (2)必要性:(反证法)假设0[,]m n ∈,∵()y h x =的值域为[,]m n ,∴存在定义域内的1x ,使得1()0h x =,∴对任意正数λ,关于2x 的方程12()()h x h x λ=无解,即()y h x =不是依附函数,矛盾,充分性:假设0[,]m n ∉,取0mn λ=>,则对定义域内的每一个值1x ,由1()[,]h x m n ∈,可得1[,][,]()m n h x n m λλλ∈=, 而()y h x =的值域为[,]m n ,∴存在定义域内的2x ,使得21()()h x h x λ=,即12()()h x h x λ=成立,∴()y h x =是“依附函数”.【点睛】本题主要考查函数的新定义,考查充分必要条件的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力. 22.9m ≥【分析】首先将命题p 对应的不等式化简得{}:210p x x x ∈-≤≤,p 是q 的充分条件可转化为对任意[2,10]x ∈-不等式()222100x x m m -+-≤>恒成立,故只需该不等式对应的函数22()21(0)f x x x m m =-+->的函数值(2)0f -≤且(10)0f ≤,即可求出m 的取值范围.【详解】 由1123x --≤知423x -≤,所以46x -≤,解得210x -≤≤,即{}:210p x x x ∈-≤≤设()2221f x x x m =-+-,因为p 是q 的充分条件,所以()()2229010810f m f m ⎧-=-≤⎪⎨=-≤⎪⎩,即3399m m m m ≥≤-⎧⎨≥≤-⎩或或,又0m >, 所以9m ≥.【点睛】本题主要考查由充分条件求参数范围,同时考查了利用集合法判断充分条件与必要条件.23.(1)()2,3;(2)423⎡⎤⎢⎥⎣⎦,【分析】(1)求出命题,p q 为真时变量x 的取值范围,然后求交集即可;(2)同样求出命题,p q 为真时变量x 的取值集合,由充分不必要条件得出集合的包含关系,从而得参数取值范围.【详解】命题p :实数x 满足22430x ax a -+<,命题q :实数x 满足31x -<.(1)若1a =,命题p :实数x 满足2430x x -+<,解得13x <<.命题q :实数x 满足31x -<,解得24x <<.若,p q 同为真命题,则1324x x <<⎧⎨<<⎩,解得23x <<. ∴实数x 的取值范围()2,3.(2)命题p :实数x 满足22430x ax a -+<,化为:()()30x a x a --<,0a >,∴3a x a <<.若0a >,且p ⌝是q ⌝的充分比必要条件,则q 是p 的充分比必要条件,∴243a a ≤⎧⎨≤⎩,解得:423a ≤≤. 实数a 的取值范围是423⎡⎤⎢⎥⎣⎦,. 【点睛】本题考查由复合命题真假及充分必要条件求参数范围.解题关键把问题转化为集合间的包含关系. 24.()()1,68,9a ∈-⋃【分析】命题p 为真时利用三角不等式求出a 的范围,命题q 为真时利用判别式及韦达定理求出a 的范围,命题p 和命题q 不都为假命题时即p q ∨为真,两范围取并集即可.∵516x x ++-≥,∴2560a a --<,解得16a -<<;∵方程2680ax x a -+-=有两不同正根,∴0a ≠,利用判别式和韦达定理可得: ()1212364806080a a x x a a x x a ⎧-->⎪⎪⎪+=>⎨⎪⎪-⋅=>⎪⎩解得89a <<, ∵p q ∨为真,∴()()1,68,9a ∈-⋃.【点睛】本题考查根据"或"的真假求参数范围,涉及三角不等式,韦达定理,属于中档题. 25.[)10,4,3⎛⎤+∞ ⎥⎝⎦.【分析】先化简两个集合,再根据充分必要性得到A 是B 的真子集,再列式计算即可.【详解】 解:{}{}224303(0)A x x ax a x a x a a =-+≤=≤≤>, {}2540{1B x x x x x =-+≥=≤或4}x ≥,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 是B 的真子集,故310a a ≤⎧⎨>⎩或40a a ≥⎧⎨>⎩,103a ∴<≤或4a ≥, ∴实数a 的取值范围是[)10,4,3⎛⎤+∞ ⎥⎝⎦.【点睛】 结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.26.(1)12x <≤;(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】(1)先化简命题,p q ,得到1324x x x <<⎧⎨≤≥⎩或,即得解; (2)先化简命题,p q ,得到243m m ≤⎧⎨<⎩或243m m <⎧⎨≤⎩,即得解.(1)若1m =,命题2:430,13p x x x -+<∴<<;命题q :2680x x -+<,则24x <<,因为p 为真,q 为假,所以x 的取值范围为1324x x x <<⎧⎨≤≥⎩或,即12x <≤;(2)q 是p 的充分不必要条件,命题p ;3m x m <<,命题q :2680x x -+<,则24x <<,所以243m m ≤⎧⎨<⎩或243m m <⎧⎨≤⎩,所以4,23m ⎡⎤∈⎢⎥⎣⎦.【点睛】方法点睛:充分必要条件的判定常用的方法有:(1)定义法;(2)集合法;(3)转化法.在解答此类问题时,要根据已知条件灵活选择.。
高中数学学习材料(灿若寒星精心整理制作)第一章常用逻辑用语(北京师大版选修2-1)一、选择题(本题共12小题,每小题5分,共60分)1. 下列说法中,不正确的是( )A.“若则”与“若则”是互逆命题B.“若﹁则﹁”与“若则”是互否命题C.“若﹁则﹁”与“若则”是互否命题D.“若﹁则﹁”与“若则”是互为逆否命题2.以下说法错误的是( )A.如果一个命题的逆命题为真命题,那么它的否命题也必为真命题B.如果一个命题的否命题为假命题,那么它本身一定为真命题C.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题3.命题“设a,b,c∈R,若a>b,则a>b”的逆命题、否命题、逆否命题中真命题共有( ) A.0个B.1个C.2个D.3个4.(2012·山东济宁一模)已知p:|x+1|≤4;q:<5x -6,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.设::,若﹁是﹁的必要不充分条件,则实数的取值范围是()A.B.C.D.6.命题:将函数的图像向右平移个单位长度得到函数的图像;命题:函数的最小正周期是,则复合命题“或”“且”“非”中真命题的个数是()A.0B.1C.2D.37.已知命题:“”,命题:,,若命题“”是真命题,则实数的取值范围是()A.或B.或C.D.8.给出下列命题:①若“或”是假命题,则“﹁且﹁”是真命题;②;③若关于的实系数一元二次不等式的解集为,则必有且;④,其中真命题的个数是()A.1B.2C.3D.49.关于的函数有以下命题:①,;②;③,都不是偶函数;④,使f是奇函数.其中假命题的序号是()A.①③B.①④C.②④D.②③10.下面有关命题的说法正确的是( )A.命题“若-3x+2=0,则x=1”的逆命题为“若x≠1,则-3x+2≠0”B.命题“若-3x+2=0,则x=1”的否命题为“若x≠1,则-3x+2≠0”C.命题“x∈R,≤0”的否定为“x∈R,>0”D.命题“x∈R,≤0”的否定为“x∈R,>0”11.有限集合中元素的个数记作,设A,B都是有限集合,给出下列命题:①的充要条件是=;②的必要条件是;③的充分条件是;④的充要条件是.其中正确的命题个数是()A.0B.1C.2D.312.已知命题使;命题,都有给出下列结论:①命题“”是真命题;②命题“﹁”是假命题;③命题“﹁”是真命题;④命题“﹁﹁”是假命题,其中正确的是()A.②④B.②③C.③④D.①②③二、填空题(本题共4小题,每小题4分,共16分)13.若为定义在D上的函数,则“存在D,使得”是“函数为非奇非偶函数”的________条件.14.已知与整数的差为的数;整数的,则是的________条件.15.已知命题p:命题q:若命题p是命题q的充分不必要条件,则实数的取值范围是____________.16.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“>-”是“一元二次不等式a +bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题(本题共6小题,共74分)17.(本小题满分12分)设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.18.(本小题满分12分)已知命题:任意,,如果命题﹁是真命题,求实数的取值范围.19.(本小题满分12分)已知P={x|-8x-20≤0},S={x|1-m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的取值范围.20.(本小题满分12分)设p:实数x满足-4ax+3<0,其中a>0;q:实数x满足--->(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.21.(本小题满分12分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?22.(本小题满分14分)设命题p:函数是R上的减函数,命题q:函数在上的值域为.若“”为假命题,“”为真命题,求的取值范围.第一章常用逻辑用语(北京师大版选修2-1)答题纸得分:________ 一、选择题二、填空题13. 14. 15. 16.三、解答题17.解:18.解:19.解:20.解:21.解:22.解:第一章常用逻辑用语(北京师大版选修2-1)答案一、选择题1.B 解析:“若﹁则﹁”与“若则”是互为逆否的命题,B不正确,故选B.2.B解析:两个命题互为逆否命题,它们之间有相同的真假性;两个命题为互逆或互否命题,它们的真假性没有关系.故B错误.3.B解析:原命题正确,所以其逆否命题正确.逆命题不正确,因为当c=0时,a=b.从而原命题的否命题也不正确.4. B解析:由|x+1|≤4-4≤x+1≤4,得-5≤x≤3,即p对应的集合为[-5,3];由<5x-6-5x+6<0,解一元二次不等式可得2<x<3,即q对应的集合为(2,3).因为(2,3)[-5,3],所以p是q成立的必要不充分条件.5.A解析:由已知得若成立,则,若成立,则.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以,<,或<,所以.6.C 解析:将函数y=的图像向右平移个单位长度得到函数y==的图像,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数,最小正周期为,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个,选C.7.A解析:若p成立,对有.因为所以即若q成立,则方程的判别式解得或因为命题“”是真命题,所以p真q真,故的取值范围为或8.B解析:“p或q”是假命题,则它的否定是真命题,即“﹁p且﹁q”是真命题,①是真命题;若,则,若,则,所以②是真命题;数形结合可得,若一元二次不等式的解集是,则必有且,所以③是假命题;当时,必有但当,y=5时,满足但,所以④是假命题.共有2个真命题.9. A解析:对于命题①,若==成立,必须是整数,所以命题①是假命题;对于函数f,当时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.所以选A.10.D解析:A错误,逆命题为“若x=1,则-3x+2=0”;B错误,否命题为“若-3x+2≠0,则x≠1”;C错误,否定为“x∈R,>0”.11.C 解析:,集合和集合没有公共元素,①正确;,集合中的元素都是集合中的元素,②正确;③错误;,则集合中的元素与集合中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.所以选C.12.B解析:因为,所以命题p是假命题,﹁是真命题;由函数y=的图像可得,命题q是真命题,﹁是假命题.所以命题“”是假命题, 命题“﹁”是假命题,命题“﹁”是真命题,命题“﹁﹁”是真命题.所以②③正确.二、填空题13.充分不必要解析:存在D,使得 –则函数为非奇非偶函数;若函数为非奇非偶函数,可能定义域不关于原点对称,所以“存在D,使得”是“函数为非奇非偶函数”的充分不必要条件.14.充分不必要解析:,可分别用集合表示,集合表示奇数的 ,集合表示整数的,因为Ü,所以是的充分不必要条件.15.解析:两个命题可分别表示为或,或,要使命题是命题的充分不必要条件,则,,,或,,,解得.16.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题17.解:否命题为“若,则关于的方程没有实数根”;逆命题为“若关于的方程有实数根,则”;逆否命题为“若关于的方程没有实数根,则”.由方程根的判别式,得,此时方程有实数根.因为使,所以方程有实数根,所以原命题为真,从而逆否命题为真.但方程有实数根,必须,不能推出,故逆命题为假,从而否命题为假.18.解:因为命题﹁是真命题,所以是假命题.又当是真命题,即恒成立时,应有,,解得,所以当是假命题时,.所以实数的取值范围是.19.解:(1)由-8x-20≤0可解得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P是x∈S的充要条件,∴P=S,∴--∴∴这样的m不存在.(2)由题意知,x∈P是x∈S的必要不充分条件,则S P.于是有--<或>∴或∴m≤3.∴当m≤3时,x∈P是x∈S的必要不充分条件.20.解:解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由--->得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若p是q的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B.又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.21.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.22.解:由得.因为在上的值域为,所以.又因为“”为假命题,“”为真命题,所以,一真一假.若真假,则;若假真,则.综上可得,的取值范围是或.。
第一章常用逻辑用语(北京师大版选修2-1)建议用时实际用时满分实际得分120分钟150分一、选择题(本题共12小题,每小题5分,共60分)1. 下列说法中,不正确的是( )A.“若p则p”与“若p则p”是互逆命题B.“若﹁p则﹁p”与“若p则p”是互否命题C.“若﹁p则﹁p”与“若p则p”是互否命题D.“若﹁p则﹁p”与“若p则p”是互为逆否命题以下说法错误的是( )A.如果一个命题的逆命题为真命题,那么它的否命题也必为真命题B.如果一个命题的否命题为假命题,那么它本身一定为真命题C.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题命题“设a,b,c∈R,若a p2>b p2,则a>b”的逆命题、否命题、逆否命题中真命题共有( )A.0个B.1个C.2个D.3个(2012·山东济宁一模)已知p:|x+1|≤4;q:p2<5x-6,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件设p:|4p−3|≤1,p:p2−(2p+1)p+p(p+1)≤0,若﹁p是﹁p的必要不充分条件,则实数p的取值范围是()[0,12]B.(0,12)(−∞,0]∪[12,+∞)D.(−∞,0)∪(12,+∞)命题p:将函数p=sin2p的图像向右平移π3个单位长度得到函数p=sin(2p−π3)的图像;命题p:函数p=sin(p+π6)cos(π3−p)的最小正周期是π,则复合命题“p或p”“p且p”“非p”中真命题的个数是()A.0B.1C.2D.37.已知命题p:“∀p∈[1,2],p2−p≥0”,命题p:“∃p∈p,p2+2pp+2−p=0”若命题“p⋀p”是真命题,则实数p的取值范围是()A. {p|p≤−2或p=1}B.{p|p≤−2或1≤p≤2}C. {p|p≥1}D. {p|−2≤p≤1}8.给出下列命题:①若“p或p”是假命题,则“﹁p且﹁p”是真命题;②|p|>|p|⇔p2>p2;③若关于p的实系数一元二次不等式pp2+pp+p≤0的解集为p,则必有p>0且p≤0;④{p>2,p>2⇔{p+p>4,pp>4.其中真命题的个数是()A.1B.2C.3D.49.关于p的函数p(p)=sin(pp+p)有以下命题:①∀ p∈p,p(p+2π)=p(p);②∃ p∈p,p(p+1)=p(p);③∀ p∈p,p(p)都不是偶函数;④∃ p∈p,使f(p)是奇函数.其中假命题的序号是()A.①③B.①④C.②④D.②③10.下面有关命题的说法正确的是( )A.命题“若p2-3x+2=0,则x=1”的逆命题为“若x≠1,则p2-3x+2≠0”B.命题“若p2-3x+2=0,则x=1”的否命题为“若x≠1,则p2-3x+2≠0”C.命题“∃x∈R,log2p≤0”的否定为“∃x∈R,log2p>0”D.命题“∃x∈R,log2p≤0”的否定为“∀x∈R,log2p>0”11.有限集合p中元素的个数记作card(p),设,B都是有限集合,给出下列命题:①p∩p=p的充要条件是card(p∪p)=card(p)+card(p);②p⊆p的必要条件是card(p)≤card(p);③p⊈p的充分条件是card(p)≤card(p);④p=p的充要条件是card(p)=card(p).其中正确的命题个数是()A.0B.1C.2D.312.已知命题p:∃ p∈p,使sin p=√52;命题p: ∀ p∈p,都有p2+p+1>0.给出下列结论:①命题“p∧p”是真命题;②命题“p∧(﹁p)”是假命题;③命题“(﹁p)∨p”是真命题;④命题“(﹁p)∨(﹁p)”是假命题,其中正确的是()A.②④B.②③C.③④D.①②③二、填空题(本题共4小题,每小题4分,共16分)13.若p=p(p)为定义在D上的函数,则“存在p0∈D,使得[p(−p0)]2≠[p(p0)]2”是“函数p=p(p)为非奇非偶函数”的________条件.14.已知p:与整数的差为12的数;p:整数的12,则p是p的________条件.15.已知命题p:(p−3)(p+1)>0,命题q:p2−2p+1−p2>0(p>0),若命题p是命题q的充分不必要条件,则实数p的取值范围是____________.16.下列四个结论中,正确的有 (填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“{p>0,p=p2-4pp≤0”是“一元二次不等式a p2+bx+c≥0的解集为R”的充要条件;③“x≠1”是“p2≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题(本题共6小题,共74分)17.(本小题满分12分)设命题为“若p>0,则关于p的方程p2+p−p=0有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.18.(本小题满分12分)已知命题p:任意p∈p,pp2+2p+3≥0,如果命题﹁p是真命题,求实数p的取值范围.19.(本小题满分12分)已知P={x|p2-8x-20≤0},S={x|1-m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的取值范围.20.(本小题满分12分)设p:实数x满足p2-4ax+3p2<0,其中a>0;q:实数x满足{p2-p-6≤0,p2+2p-8>0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.21.(本小题满分12分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?22.(本小题满分14分)设命题p:函数p(p)=(p−32)p是R上的减函数,命题q:函数p(p)= p2−4p+3在[0,p]上的值域为[−1,3].若“p∧p”为假命题,“p∨p”为真命题,求p的取值范围.答题纸得分:________ 一、选择题二、填空题13. 14. 15. 16.三、解答题17.解:18.解:19.解:20.解:21.解:22.解:答案一、选择题1.B 解析:“若﹁p则﹁p”与“若p则p”是互为逆否的命题,B不正确,故选B.2.B解析:两个命题互为逆否命题,它们之间有相同的真假性;两个命题为互逆或互否命题,它们的真假性没有关系.故B错误.3.B解析:原命题正确,所以其逆否命题正确.逆命题不正确,因为当c=0时,a p2=b p2.从而原命题的否命题也不正确.4. B解析:由|x+1|≤4⟹-4≤x+1≤4,得-5≤x≤3,即p对应的集合为[-5,3];由p2<5x-6⟹p2-5x+6<0,解一元二次不等式可得2<x<3,即q对应的集合为(2,3).因为(2,3)[-5,3],所以p是q成立的必要不充分条件.5.A解析:由已知得若p成立,则12≤p≤1,若p成立,则p≤p≤p+1.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以{p≤12,1<p+1,或{p<12,1≤p+1.所以0≤p≤12.6.C 解析:将函数y=sin2p的图像向右平移π3个单位长度得到函数y=sin2(p−π3)=sin(2p−2π3)的图像,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数p=sin(p+π6)cos(π3−p)=cos(π2−p−π6)cos(π3−p)=cos2(π3−p)=cos(2p−2π3)2+12,最小正周期为π,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个,选C.7.A解析:若p成立,对∀p∈[1,2],有p≤p2.因为1≤p≤2,所以1≤p2≤4,即p≤(p2)min=1.若q成立,则方程p2+2pp+2−p=0的判别式p=4p2−4(2−p)≥0,解得p≤−2或p≥1.因为命题“p∧p”是真命题,所以p真q真,故p的取值范围为{p|p≤−2或p=1}.8.B解析:“p或q”是假命题,则它的否定是真命题,即“﹁p且﹁q”是真命题,①是真命题;若|p|>|p|,则p2>p2,若p2>p2,则|p|>|p|,所以②是真命题;数形结合可得,若一元二次不等式pp2+pp+c≤0的解集是p,则必有p>0且p<0,所以③是假命题;当p>2,p>2时,必有p+p>4,pp>4.但当p= 1,y=5时,满足p+p>4,pp>4.但p<2,所以④是假命题.共有2个真命题.9. A解析:对于命题①,若p(p+2π)=sin(pp+2πp+p)=sin(pp+p)成立,p必须是整数,所以命题①是假命题;对于函数f(p)=sin(pp+p),当p=π2时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.所以选A.10. D解析:A错误,逆命题为“若x=1,则p2-3x+2=0”;B错误,否命题为“若p2-3x+2≠0,则x≠1”;C错误,否定为“∀x∈R,log2p>0”.11.C 解析:p∩p=p,集合p和集合p没有公共元素,①正确;p⊆p,集合p中的元素都是集合p中的元素,②正确;③错误;p=p,则集合p中的元素与集合p中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.所以选C.12.B解析:因为√52>1,所以命题p是假命题,﹁p是真命题;由函数y=p2+p+1的图像可得,命题q是真命题,﹁p是假命题.所以命题“p∧p”是假命题, 命题“p∧(﹁p)”是假命题,命题“(﹁p)∨p”是真命题,命题“(﹁p)∨(﹁p)”是真命题.所以②③正确.二、填空题13.充分不必要 解析:存在p 0∈D ,使得[p (–p 0)]2≠[p (p 0)]2,则函数p =p (p )为非奇非偶函数;若函数 p =p (p )为非奇非偶函数,可能定义域不关于原点对称,所以“存在p 0∈D ,使得[p (−p 0)]2≠[p (p 0)]2”是“函数p =p (p )为非奇非偶函数”的充分不必要条件.14.充分不必要 解析:p ,p 可分别用集合p ={p |p =p +12,p ∈p },p ={p |p =p2,p ∈p }表示,集合p 表示奇数的12,集合p 表示整数的12,因为p Üp ,所以p 是p 的充分不必要条件.15.(0,2)解析:两个命题可分别表示为p : p >3或p <−1,p : p >1+p 或p <1−p ,要使命题p 是命题p的充分不必要条件,则{1+p ≤3,1−p >−1,p >0,或{1+p <3,1−p ≥−1,p >0,解得0<p <2.16.①②④解析:∵原命题与其逆否命题等价,∴若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件.x ≠1⇏p 2≠1,反例:x =-1⟹p 2=1,∴“x ≠1”是“p 2≠1”的不充分条件.x ≠0⇏x +|x |>0,反例:x =-2⟹x +|x |=0. 但x +|x |>0⟹x >0⟹x ≠0,∴“x ≠0”是“x +|x |>0”的必要不充分条件.三、解答题17.解:否命题为“若p ≤0,则关于p 的方程p 2+p −p =0没有实数根”;逆命题为“若关于p 的方程p 2+p −p =0有实数根,则p >0”; 逆否命题为“若关于p 的方程p 2+p −p =0没有实数根,则p ≤0”.由方程p 2+p −p =0根的判别式p =1+4p >0,得p >−14,此时方程有实数根.因为p >0使1+4p >0,所以方程p 2+p −p =0有实数根,所以原命题为真,从而逆否命题为真.但方程p 2+p −p =0有实数根,必须p >−14,不能推出p >0,故逆命题为假,从而否命题为假.18.解:因为命题﹁p 是真命题,所以p 是假命题.又当p 是真命题,即pp 2+2p +3≥0恒成立时,应有 {p >0,p =4−12p ≤0,解得p ≥13,所以当p 是假命题时,p <13. 所以实数p 的取值范围是{p |p <13}.19.解:(1)由p 2-8x -20≤0可解得-2≤x ≤10, ∴P ={x |-2≤x ≤10}. ∵x ∈P 是x ∈S 的充要条件,∴P =S , ∴{1-p =-2,1+p =10,∴{p =3,p =9.∴这样的m 不存在.(2)由题意知,x ∈P 是x ∈S 的必要不充分条件,则SP .于是有{1-p≥-2,1+p<10或{1−p>−2,1+p≤10,∴p≤3或p<3,∴m≤3.∴当m≤3时,x∈P是x∈S的必要不充分条件.20.解:解:由p2-4ax+3p2<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由{p2-p-6≤0,p2+2p-8>0,得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若¬p是¬q的充分不必要条件,即¬p⟹¬q,且¬p⇏¬p.设A={x|¬p},B={x|¬q},则A B.又A={x|¬p}={x|x≤a或x≥3a},B={x|¬q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.21.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.22.解:由0<p−32<1得32<p<52.因为p(p)=(p−2)2−1在[0,p]上的值域为[−1,3],所以2≤p≤4. 又因为“p∧p”为假命题,“p∨p”为真命题,所以p,p一真一假.若p真p假,则32<p<2;若p假p真,则52≤p≤4.综上可得,p的取值范围是{p|32<p<2或52≤p≤4}.。
第1章常用逻辑用语1.四种命题及其关系(1)四种命题若p,则q若q,则p(2(3)四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.2.充分条件与必要条件(1)如果p⇒q,那么称p是q的充分条件,q是p的必要条件.(2)分类:①充要条件:p⇒q且q⇒p,记作p⇔q;②充分不必要条件:p⇒q,q_p;③必要不充分条件:q⇒p,p_q;④既不充分也不必要条件:p_q且q_p.3.简单的逻辑联结词与复合命题及其真假的判断(1)常见的逻辑联结词有“且”、“或”、“非”.ﻬ(2)用联结词“且”“或”“非”联结命题p和命题q,可得复合命题:p且q,p或q,p.(3)命题p且q中p、q有一假为假,p或q有一真为真,p与p必定是一真一假.4.量词与含有一个量词的命题否定(1)短语“所有”“任意”“每一个"等表示全体的量词在逻辑中通常称为全称量词.(2)短语“有一个”“有些”“存在一个”“至少一个”等表示部分的量词在逻辑中通常称为存在量词.(3)含有全称量词的命题叫作全称命题,含有存在量词的命题叫作特称命题.(4)对全称(特称)命题进行否定的两步操作①改写量词:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再改变量词.②否定结论:对原命题的结论进行否定.提醒:若命题p是真命题,则p是假命题;若命题p是假命题,则p是真命题.四种命题及其真假①“全等三角形的面积相等”的否命题;②“若lg x2=0,则x=-1"的逆命题;③若“x≠y或x≠-y,则|x|≠|y|”的逆否命题.其中真命题的个数是()A.0B.1C.2 ﻩ D.3B [对于①,否命题是“不全等三角形的面积不相等”,它是假命题;对于②,逆命题是“若x=-1,则lg x2=0",它是真命题;对于③,逆否命题是“若|x|=|y|,则x=y且x=-y”,它是假命题,故选B。
第一讲常用逻辑用语(一)§1命题1.了解命题的概念.(重点)2.掌握四种命题的结构形式.会写出命题的逆命题、否命题、逆否命题.(难点)3.熟练判断命题的真假性.(易混点)(1)定义:可以判断,用文字或符号表述的语句叫命题.(2)分类错误!未定义书签。
(3)形式:通常把命题表示为“若p则q”的形式,其中p是,q是.2.四种命题之间的关系互为逆命题、互为否命题、互为逆否命题都是说的两个命题之间的关系.考点一命题及其真假判断例1.命题:“两对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题 D.等价命题例2.将下列命题改写成“若p则q”的形式,并写出其逆命题、否命题、逆否命题,并判断相应命题的真假.(1)正数a的平方根不等于0;(2)两条对角线不相等的平行四边形不是矩形.练习1.命题“若x,y都是奇数,则x+y是偶数”的条件为________,结论为________.练习2.①x2-5x+6=0.②函数f(x)=x2是偶数.③若ac>bc则b>c.④证明x∈R,方程x2+x+1=0无实数根.以上语句是命题的为________.练习3.分别写出下列命题的逆命题、否命题和逆否命题:(1)若a2+b2=0,则a,b都为0;(2)两个奇数的和是偶数.名师指津1.当一个命题不是“若p,则q”的形式时,要先将命题改写成“若p,则q”的形式,明确条件是什么,结论是什么,然后结合四种命题的关系写出该命题的逆命题、否命题和逆否命题.2.“都是”的否定是“不都是”;“全是”的否定是“不全是”.考点二四种命题的真假判断例3.设命题为“若m>0,则关于x的方程x2+x-m=0有实数根”试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.名师指津对一个原命题来说,其逆命题和否命题、原命题和逆否命题同真同假.在进行真假判断时,应抓住四个命题之间的关系,在二者之间选择较简单的命题进行判断.练习1.设命题为:“若q<1,则方程x2+2x+q=0有实根”.试写出它的逆命题、否命题、逆否命题并判断它们的真假.练习2.将命题“当a>0时,函数y=ax+b的值随x的增大而增大,”写成“若p,则q”的形式,并写出其否命题.练习3.写出命题“已知x,y为正整数,当y=x+1时,y=3,x=2”的逆命题.基础通关一、选择题1.下列语句不是命题的有()①《非常学案》是最畅销的教辅材料吗?②2x-1>3.③7+6=14. ④两直线平行内错角相等.A.①②B.①③C.②④D.①②③2.若命题p的逆命题是假命题,则下列判断一定正确的是( )A.命题p是真命题 B.命题p的否命题是假命题C.命题p的逆否命题是假命题D.命题p的否命题是真命题3.(2016·烟台高二检测)命题“平行四边形的对角线既互相平分,也互相垂直”的结论是( )A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形4.(2016·大理高二检测)在下列命题中,真命题是()A.“x=2时,x2-3x+2=0”的否命题B.“若b=3,则b2=9”的逆命题C.若x∈R,则x2+3<0 D.“相似三角形的对应角相等”的逆否命题5.(2016·湖北黄冈调研)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图像不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3B.2C.1 ﻩD.0二、填空题6.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的________命题.7.把下列不完整的命题补充完整,并使之成为真命题.若函数f(x)=3+log2x的图像与g(x)的图像关于________对称,则函数g(x)=________.(填上你认为可以成为真命题的一种情况既可)8.给定下列命题:①“若k>0,则方程x2+2x-k=0”有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形; ④若xy=0,则x、y中至少有一个为0.其中真命题的序号是________.三、解答题9.(2016·苏州高二检测)将下列命题改写为“若p,则q”的形式,并判断真假.(1)偶数能被2整除;(2)奇函数的图像关于原点对称.10.分别写出下列命题的逆命题、否命题及逆否命题,并判断这四个命题的真假:(1)若一个整数的末位数字是0,则这个整数能被5整除;(2)四条边相等的四边形是正方形.[能力提升]1.有下列四个命题:①“若x+y=0,则x、y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题; ④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为()A.①② B.②③ C.①③ D.③④2.(2016·长春高二检测)若命题p的逆否命题是q,q的逆命题是r,则p与r是()A.互逆命题B.互否命题C.互逆否命题D.不确定3.(2016·唐山高二检测)下列说法正确的是________.①“若x2+y2=0,则x,y全为零”的否命题为“若x2+y2≠0,则x,y全不为零”.②“正多边形都相似”的逆命题是真命题.③“若x-3错误!未定义书签。
高中数学第一章《常用逻辑用语》全部教案北师大版选修2-11.1命题及其关系第一课时1.1.1 命题一、教学目标:1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、教学重点与难点:重点:命题的概念、命题的构成;难点:分清命题的条件、结论和判断命题的真假。
三、教学方法:探析归纳,讲练结合三、教学过程(一)、复习回顾:初中已学过命题的知识,请同学们回顾:什么叫做命题?(二)、探析新课1、思考、分析:下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.2、讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
3、抽象、归纳:定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.4、练习、深化:判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
复习课(一) 推理与证明近几年的高考中归纳推理和类比推理有时考查,考查的形式以填空题为主,其中归纳推理出现的频率较高,重点考查归纳、猜想、探究、类比等创新能力.[考点精要]1.归纳推理的特点及一般步骤2.类比推理的特点及一般步骤[典例] (1)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……,据此规律,第n 个等式可为___________________________________________. (2)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________. [解析] (1)等式的左边的通项为12n -1-12n ,前n 项和为1-12+13-14+…+12n -1-12n;右边的每个式子的第一项为1n +1,共有n 项,故为1n +1+1n +2+…+1n +n. (2)正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.[答案] (1)1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n(2)127 [类题通法](1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.[题组训练]1.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.则f (4)=________,f (n )=________.解析:因为f (1)=1,f (2)=7=1+6,f (3)=19=1+6+12,所以f (4)=1+6+12+18=37,所以f (n )=1+6+12+18+…+6(n -1)=3n 2-3n +1.答案:37 3n 2-3n +12.若数列{a n }为等差数列,S n 为其前n 项和,则有性质“若S m =S n (m ,n ∈N +且m ≠n ),则S m +n =0.”类比上述性质,相应地,当数列{b n }为等比数列时,写出一个正确的性质:____________________.答案:数列{b n }为等比数列,T m 表示其前m 项的积,若T m =T n (m ,n ∈N +,m ≠n ),则T m +n =1(1)综合法与分析法是高考重点考查内容,一般以某一知识点作为载体,考查由分析法获得解题思路以及用综合法有条理地表达证明过程.(2)理解综合法与分析法的概念及区别,掌握两种方法的特点,体会两种方法的相辅相成、辩证统一的关系,以便熟练运用两种方法解题.[考点精要](1)综合法:是从已知条件推导出结论的证明方法;综合法又叫做顺推证法或由因导果法. (2)分析法:是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“只需证……”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.[典例] 设a >0,b >0,a +b =1, 求证:1a +1b +1ab ≥8.[证明] 法一:综合法 因为a >0,b >0,a +b =1,所以1=a +b ≥2ab ,ab ≤12,ab ≤14,所以1ab ≥4,又1a +1b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥4,所以1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).法二:分析法因为a >0,b >0,a +b =1,要证1a +1b +1ab ≥8. 只要证⎝⎛⎭⎫1a +1b +a +bab ≥8, 只要证⎝⎛⎭⎫1a +1b +⎝⎛⎭⎫1b +1a ≥8, 即证1a +1b≥4.也就是证a +b a +a +bb ≥4.即证b a +ab ≥2,由基本不等式可知,当a >0,b >0时,b a +ab ≥2成立, 所以原不等式成立.[类题通法]综合法和分析法的特点(1)综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.(2)分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.[题组训练]1.若a>b>c>d>0且a+d=b+c,求证:d+a<b+c.证明:要证d+a<b+c,只需证(d+a)2<(b+c)2,即a+d+2ad<b+c+2bc,因a+d=b+c,只需证ad<bc,即ad<bc,设a+d=b+c=t,则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0,故ad<bc成立,从而d+a<b+c成立.2.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R有f(a +b)=f(a)·f(b).(1)证明:f(0)=1;(2)证明:对任意的x∈R,恒有f(x)>0.证明:(1)令a=b=0,得f(0)=f(0)·f(0),又f(0)≠0,所以f(0)=1.(2)由已知当x>0时,f(x)>1,由(1)得f(0)=1,故当x≥0时,f(x)>0成立.当x<0时,-x>0,所以f(-x)>1,而f(x-x)=f(x)f(-x),所以f(x)=1f(-x),可得0<f(x)<1.综上,对任意的x∈R,恒有f(x)>0成立.(1)反证法是证明问题的一种方法,在高考中很少单独考查,常用来证明解答题中的一问.(2)反证法是间接证明的一种基本方法,使用反证法进行证明的关键是在正确的推理下得出矛盾.[考点精要]1.使用反证法应注意的问题:利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.2.一般以下题型用反证法:(1)当“结论”的反面比“结论”本身更简单、更具体、更明确;(2)否定性命题、唯一性命题,存在性命题、“至多”“至少”型命题;(3)有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明比较困难,往往用反证法.[典例](1)否定:“自然数a,b,c中恰有一个偶数”时正确的反设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数(2)已知:ac≥2(b+d).求证:方程x2+ax+b=0与方程x2+cx+d=0中至少有一个方程有实数根.[解析](1)自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a,b,c中都是奇数或至少有两个偶数.”[答案] D(2)证明:假设两方程都没有实数根.则Δ1=a2-4b<0与Δ2=c2-4d<0,有a2+c2<4(b +d),而a2+c2≥2ac,从而有4(b+d)>2ac,即ac<2(b+d),与已知矛盾,故原命题成立.[类题通法]反证法是利用原命题的否命题不成立则原命题一定成立来进行证明的,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.[题组训练]1.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.证明:假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3,而a+b+c=2x2-2x+12+3=2⎝⎛⎭⎫x-122+3≥3,两者矛盾,所以假设不成立,故a,b,c至少有一个不小于1.2.设二次函数f(x)=ax2+bx+c(a≠0)中的a,b,c都为整数,已知f(0),f(1)均为奇数,求证:方程f(x)=0无整数根.证明:假设方程f(x)=0有一个整数根k,则ak2+bk+c=0,∵f(0)=c,f(1)=a+b+c都为奇数,∴a+b必为偶数,ak2+bk为奇数.当k为偶数时,令k=2n(n∈Z),则ak2+bk=4n2a+2nb=2n(2na+b)必为偶数,与ak2+bk为奇数矛盾;当k为奇数时,令k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为一奇数与一偶数乘积,必为偶数,也与ak2+bk为奇数矛盾.综上可知方程f(x)=0无整数根.(1)数学归纳法在近几年高考试题中都有所体现,常与数列、不等式结合在一起考查,一般涉及通项公式的求解,相关等式、不等式的证明等,考查模式一般为“归纳——猜想——证明”.(2)数学归纳法是一种特殊的直接证明的方法,在证明一些与正整数有关的数学命题时,往往是非常有用的研究工具.在使用时注意“归纳奠基”和“归纳递推”两个步骤缺一不可.[考点精要](1)定义:数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.(2)注意问题:①n=n0时成立,要弄清楚命题的含义.②由假设n=k成立证n=k+1时,要推导详实,并且一定要运用n=k成立的结论.③要注意n=k到n=k+1时增加的项数.[典例]设a>0,f(x)=axa+x,令a1=1,a n+1=f(a n),n∈N+.(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.[解](1)∵a1=1,∴a2=f(a1)=f(1)=a1+a;a3=f(a2)=a2+a;a4=f(a3)=a3+a.猜想a n=a(n-1)+a(n∈N+).(2)证明:①易知,n=1时,猜想正确.②假设n=k(k∈N+)时猜想正确,即a k=a(k-1)+a,则a k+1=f(a k)=a·a ka+a k=a·a(k-1)+aa+a(k-1)+a=a(k-1)+a+1=a[(k+1)-1]+a.这说明,n=k+1时猜想正确.由①②知,对于任何n∈N+,都有a n=a(n-1)+a.[类题通法]与“归纳—猜想—证明”相关的常用题型的处理策略(1)与函数有关的证明:由已知条件验证前几个特殊值正确得出猜想,充分利用已知条件并用数学归纳法证明.(2)与数列有关的证明:利用已知条件,当直接证明遇阻时,可考虑应用数学归纳法.[题组训练]1.设数列{a n}的前n项和为S n,且对任意的自然数n都有:(S n-1)2=a n S n,通过计算S1,S2,S3,猜想S n=________.解析:由(S1-1)2=S21得:S1=1 2;由(S2-1)2=(S2-S1)S2得:S2=2 3;由(S3-1)2=(S3-S2)S3得:S3=3 4.猜想S n=nn+1.答案:n n +12.已知正项数列{a n }中,对于一切的n ∈N +均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n 的大小关系,并证明你的结论.解:(1)证明:由a 2n ≤a n -a n +1得a n +1≤a n -a 2n .∵在数列{a n }中,a n >0, ∴a n +1>0,∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)由(1)知0<a 1<1,那么a 2≤a 1-a 21=-⎝⎛⎭⎫a 1-122+14≤14<12, 由此猜想a n <1n.下面用数学归纳法证明: 当n ≥2,且n ∈N +时猜想正确. ①当n =2时已证;②假设当n =k (k ≥2,且k ∈N +)时, 有a k <1k 成立,即1k ≤12,那么a k +1≤a k -a 2k =-⎝⎛⎭⎫a k -122+14<-⎝⎛⎭⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1, ∴当n =k +1时,猜想正确.综上所述,对于一切n ∈N +,都有a n <1n.1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.2.数列{a n }中,已知a 1=1,当n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3解析:选B 求得a 2=4,a 3=9,a 4=16,猜想a n =n 2.3.在平面直角坐标系内,方程x a +yb =1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间直角坐标系内,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +zc =1 B.x ab +y bc +zca =1 C.xy ab +yz bc +zxca=1 D .ax +by +cz =1解析:选A 类比到空间应选A.另外也可将点(a,0,0)代入验证.4.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”.5.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起.他们除懂本国语言外,每人还会说其他三国语言中的一种.有一种语言是三个人会说的,但没有一种语言四人都懂,现知道:①甲是日本人,丁不会说日语,但他俩能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③乙、丙、丁交谈时,不能只用一种语言;④乙不会说英语,当甲与丙交谈时,他能做翻译.针对他们懂的语言,正确的推理是( )A .甲日德、乙法德、丙英法、丁英德B .甲日英、乙日德、丙德法、丁日英C .甲日德、乙法德、丙英德、丁英德D .甲日法、乙英德、丙法德、丁法英解析:选A 分析题目和选项,由①知,丁不会说日语,排除B 选项;由②知,没有人既会日语又会法语,排除D 选项;由③知乙、丙、丁不会同一种语言,排除C 选项,故选A.6.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD =2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AOOM =( )A .1 B.2 C .3D .4解析:选C 如图,设正四面体的棱长为1,则易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3. 7.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是 .解析:分别观察正方体的个数为:1,1+5,1+5+9,…归纳可知,第n 个叠放图形中共有n 层,构成了以1为首项,以4为公差的等差数列, 所以S n =n +[n (n -1)×4]÷2=2n 2-n , 所以S 7=2×72-7=91. 答案:918.用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n (3n +1)2(n ∈N +)的第二步中,当n =k +1时等式左边与n =k 时的等式左边的差等于________.解析:当n =k +1时,左边=(k +2)+(k +3)+…+(2k +2);当n =k 时,左边=(k +1)+(k +2)+…+2k ,其差为(2k +1)+(2k +2)-(k +1)=3k +2.答案:3k +29.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.答案:1和310.已知|x |≤1,|y |≤1,用分析法证明:|x +y |≤|1+xy |.证明:要证|x +y |≤|1+xy |,即证(x +y )2≤(1+xy )2,即证x 2+y 2≤1+x 2y 2,即证(x 2-1)(1-y 2)≤0,因为|x |≤1,|y |≤1,所以x 2-1≤0,1-y 2≥0,所以(x 2-1)(1-y 2)≤0,不等式得证.11.设函数f (x )=e xln x +2e x -1x ,证明:f (x )>1. 证明:由题意知f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,g (x )>h (x ),即f (x )>1.12.各项都为正数的数列{a n }满足a 1=1,a 2n +1-a 2n =2.(1)求数列{a n }的通项公式;(2)求证:1a 1+1a 2+…+1a n ≤2n -1对一切n ∈N +恒成立. 解:(1)∵a 2n +1-a 2n =2,∴数列{a 2n }为首项为1,公差为2的等差数列,∴a2n=1+(n-1)·2=2n-1,又a n>0,则a n=2n-1.(2)证明:由(1)知,即证1+13+…+12n-1≤2n-1.①当n=1时,左边=1,右边=1,所以不等式成立.当n=2时,左边<右边,所以不等式成立.②假设当n=k(k≥2,k∈N+)时不等式成立,即1+13+…+12k-1≤2k-1,当n=k+1时,左边=1+13+…+12k-1+12k+1≤2k-1+12k+1<2k-1+22k+1+2k-1=2k-1+2(2k+1-2k-1)2=2k+1=2(k+1)-1.所以当n=k+1时不等式成立.由①②知对一切n∈N+不等式恒成立.。
一、选择题1.设x ∈R ,则“1x >”是“2320x x -+<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.以下四个命题中,真命题的个数是( )①存在正实数M ,N ,使得()log log log a a a M N MN +=;②“若函数()f x 满足()()201920200f f ⋅<,则()f x 在()2019,2020上有零点”的否命题;③函数()()()log 320,1a f x x a a =->≠的图象过定点()1,0; ④“1x =-”是“2230x x --=”的必要不充分条件. A .1 B .2C .3D .43.""6a π=是()tan a π-= ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件4.若数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=,下面给出关于数列{}n a 的四个命题:①{}n a 可以是等差数列;②{}n a 可以是等比数列;③{}n a 可以既是等差又是等比数列;④{}n a 可以既不是等差又不是等比数列.正确命题的个数为( ). A .1B .2C .3D .45.已知命题p :在ABC 中,若A B >,则cos cos A B <,命题q :()0,x ∃∈+∞,sin x x >,则下列命题中为真命题的是( )A .p q ∧B .()p q ⌝∧C .()p q ∨⌝D .()()p q ⌝∧⌝6.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假7.在等比数列{}n a 中,“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.设0a >,0b >.下列说法正确的是( )A .2ln 2ln a b a b +<+则a b >B .2ln 2ln a b a b +<+则a b <C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b <9.下列说法错误的是( )A .“若2560x x -+=,则2x =”的逆否命题是“若2x ≠,则2560x x -+≠”B .“2x >”是“2230x x +->”的充分不必要条件C .“x R ∀∈,2650x x -+≠”的否定是“0x R ∃∈,200650x x -+=”D .若“p q ∧”为假命题,则,p q 均为假命题 10.命题p :在数列{}n a 中,“132n n a a -=,2,3,4,n =”是“{}n a 是公比为32的等比数列”的充分不必要条件;命题q :若k ϕπ=,k ∈Z ,则()()()sin 0f x x ωϕω=+≠为奇函数,则在四个命题()()p q ⌝∨⌝,p q ∧,()p q ⌝∧,()p q ∨⌝中,真命题的个数为( ) A .1B .2C .3D .411.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >12.已知点A ,B ,C 不共线,则“AB 与AC 的夹角为3π”是“AB AC BC +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.设命题P :实数,x y 满足:0222x y x y x -≤⎧⎪+≤⎨⎪≥-⎩,命题q :实数,x y 满足()221x y m ++≤,若p 是q 的必要不充分条件,则正实数m 的取值范围是__________.14.给出下列命题:①纯虚数z 的共轭复数是z -; ②若120z z -=,则12z z =;③若12R z z +∈,则1z 与2z 互为共轭复数; ④若120z z -=,则1z 与2z 互为共轭复数. 其中正确命题的序号是_________. 15.有下列命题:①在ABC 中,若角A B >,则sin sin A B >;②函数2y ax bx c =++为偶函数的充要条件是0b =;③b =,,a b c 成等比的必要不充分条件;④若函数()()2f x x x c =-在2x =处有极大值,则c 的值为2或6; ⑤1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭的最小值是2. 其中正确命题的序号是____________(注:把你认为正确的命题的序号都填上).16.由命题p :“矩形有外接圆”,q :“矩形有内切圆”组成的复合命题“p 或q ”“p 且q ”“非p ”形式的3个命题中真命题有__________个(只填真命题的个数).17.给出下列命题:①1y =是幂函数;②函数2()2log xf x x =-的零点有且只有1;2)0x -≥的解集为[2,)+∞;④“1x <”是“2x <”的充分非必要条件;其中真命题的序号是______________.18.已知集合{}|A x x a =>,{}|22,B x x x R =-<∈,若“x A ∈”是“x B ∈”的必要不充分条件,则a 的取值范围_________.19.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx+1>0.若p ∧q 为真命题,则实数m 的取值范围_____. 20.给出下列四个命题中:①命题“若x ≥2且y ≥3,则x +y ≥5”为假命题.②命题“若x 2-4x +3=0,则x =3”的逆否命题为:“若x ≠3,则x 2-4x +3≠0”. ③“x >1”是“|x |>0”的充分不必要条件④关于x 的不等式|x +1|+|x -3|≥m 的解集为R ,则m ≤4. 其中所有正确命题的序号是______.三、解答题21.已知命题p :实数x 满足27100,x x -+≤命题q :实数x 满足22430.x mx m -+≤其中m > 0.(1)若m =4且命题p , q 都为真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.22.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥. (1)当1a =时,求集合B .(2)问:12a ≥是A B =∅的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.23.已知命题甲:对任意实数x ∈R ,不等式223022ax ax x x -+-+≥恒成立;命题乙:已知*x y R ∈,满足3x y xy +=-,且a xy ≤恒成立. (1)分别求出甲、乙为真命题时,实数a 的取值范围; (2)求实数a 的取值范围,使命题甲、乙中有且只有一个真命题.24.已知0m >,2:4120p x x --≤, :22q m x m -≤≤+.(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,命题p 、q 其中一个是真命题,一个是假命题,求实数x 的取值范围. 25.已知命题p :实数x 满足245220x x ⋅-⋅+≥,命题q :实数x 满足2(21)(1)0x m x m m -+++≥.(1)求命题p 为真命题,求实数x 的取值范围;(2)若命题q 是命题p 的必要不充分条件,求实数m 的取值范围.26.已知集合{}228120A x x ax a =-+>,其中0a >;集合()(){}120B x x x =--≥.(1)若1a =,求A B ;(2)若:p x A ∈,:q x B ∈,且p 是q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先解不等式2320x x -+<得12x <<,再根据基本关系判定即可得答案. 【详解】解:解不等式2320x x -+<得12x <<, 因为()()1,21,+∞,所以“1x >”是“2320x x -+<”的必要不充分条件.故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】根据对数的运算判断①;根据零点存在性定理判断②;根据对数函数的性质判断③,根据充分条件、必要条件判断④; 【详解】解:对于①,根据对数运算法则知正确;对于③,无论a 取何值都有()10f =,所以函数()f x 的图象过定点()1,0,故正确; 对于②,函数()f x 在()2019,2020上有零点时,函数()f x 在2019x =和2020x =处的函数值不一定异号,故其逆命题是错误的,所以否命题也是错误的;对于④,当1x =-时,2230x x --=,当2230x x --=时,1x =-或3x =,所以是充分不必要条件,故④错误. 故选:B 【点睛】本题考查命题真假性的判断以及相关知识点,属于中档题.3.A解析:A 【解析】 由6πα=,可得56ππα-=,得1sin()2πα-=,但由1sin()2πα-=不一定能够得到“6πα=”,即“6πα=”是()1sin 2πα-=的充分不必要条件,故选A. 4.C解析:C 【分析】根据题意得到14n n a a --=或13n n a a -=,结合等差数列和等比数列的定义,即可判定. 【详解】由题意知,数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=, 所以14n n a a --=或13n n a a -=,则:对于①中,数列{}n a 可以是公差为4的等差数列; 对于②中,数列{}n a 可以是公比为3的等比数列;对于③中,若数列{}n a 既是等差又是等比数列,则此时数列{}n a 必为非零的常数列, 则公差为0,公比为1,由①②可知,③不正确;对于④{}n a 中,数列{}n a 可以既不是等差又不是等比数列,例如:1,5,15,19,,满足题设条件,此数列既不是等差又不是等比数列,所以④正确. 故选:C. 【点睛】本题主要以命题的真假判定与应用为载体,考查了等差数列、等比数列的定义及判定,其中解答中熟记等差数列、等比数列的定义,合理判定是解答的关键,着重考查推理与运算能力.5.C解析:C 【分析】由函数cos y x =在(0,)π上的单调性即可判断p 为真命题;当(0,)2x π∈时,令()sin f x x x =-,利用导数判断函数()f x 在(0,)2π上的单调性从而证明sin x x <,当[,)2x π∈+∞时,根据图象判断sin x x <,即可确定q 为假命题,利用复合命题的真假判断规则进行判断即可. 【详解】命题p :在ABC 中,,(0,)A B π∈,因为函数cos y x =在(0,)π上单调递减,所以若A B >,则cos cos A B <,命题p 为真命题.命题q :令()sin f x x x =-,当(0,)2x π∈时,cos 10y x '=-<,函数()sin f x x x=-在(0,)2π上单调递减,所以()(0)0f x f <=,即sin x x <;当[,)2x π∈+∞时,由下图可知sin x x <,所以q 为假命题.所以()p q ∨⌝为真命题. 故选:C 【点睛】本题考查复合命题的真假判断,涉及正、余弦函数的图象与性质,利用导数证明不等式,属于中档题.6.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.7.B解析:B 【分析】由韦达定理可得2101a a ⋅=,且a 2和a 10均为负值,由等比数列的性质可得61a =-,故必要性满足充分性不满足. 【详解】∵由2a ,10a 是方程2410x x ++=的两根, ∴2102104,1a a a a +=-⋅=, ∴a 2和a 10均为负值,由等比数列的性质可知a 6为负值,且622101a a a =⋅=,∴61a =-,故“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的必要不充分条件, 故选:B . 【点睛】本题考查充分条件、必要条件,根据充分条件和必要条件的定义,结合等比数列的性质、二次方程根与系数关系等进行判断即可,属于基础题.8.B解析:B 【分析】举反例说明C,D 不成立,再根据函数2ln xy x =+单调性,进而确定选项. 【详解】因为311123112ln12ln 2,2ln 2ln ,ee e e-<--<-所以CD 不成立;因为2ln xy x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B 【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题.9.D解析:D 【分析】根据逆否命题的定义、集合间的关系、全称命题的否定、p q ∧为假命题的定义,对选项进行一一验证,即可得答案. 【详解】对A ,根据逆否命题的定义可知命题正确,故A 正确;对B ,若2230x x +->,则1x >或3x <-,所以“2x >”是“2230x x +->”的充分不必要条件,故B 正确;对C ,因为全称命题的否定是特称命题,且将结论否定,故C 正确;对D ,若“p q ∧”为假命题,则p 、q 中只要有一个为假命题,故D 错误. 故选:D. 【点睛】本题考查命题真假性的判断,考查对概念的理解与应用,属于基础题.10.B解析:B 【分析】可判断p 为假命题,q 为真命题,继而可判断()()p q ⌝∨⌝,p q ∧,()p q ⌝∧,()p q ∨⌝的真假.【详解】因为当0n a =时也有132n n a a -=,2,3,4,n =,但{}n a 是等差数列,不是等比数列,因此充分性不成立.又因为当{}n a 是公比为32的等比数列时,有132n n a a -=,2,3,4,n =,所以必要性成立,所以命题p 为假命题;当,k k ϕπ=∈Z 时,可以推得()sin s n ()i f x x x ωϕω=+=±为奇函数;当()()sin f x x ωϕ=+为奇函数时,可以得到k ϕπ=, 故命题q 为真命题,因此()()p q ⌝∨⌝真,p q ∧假,()p q ⌝∧真,()p q ∨⌝假, 故选:B . 【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,概念理解,数学运算的能力,属于中档题.11.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数, ()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.12.A解析:A 【分析】利用向量数量积的性质,可判断AB AC BC +>与AB 与AC 的夹角为3π的推出关系,即可求解. 【详解】当AB 与AC 的夹角为3π时 222=||+2+||2=2||||cos03AB AC AB AB AC AC AB AC AB AC π+⋅⋅⋅⋅>,,222222=||+2+||||2+||||AB AC AB AB AC AC AB AB AC AC AC AB ∴+⋅>-⋅=-,||AB AC AC AB BC ∴+>-=,当AB AC BC +>时,2222222=||+2+||||2+|||||AB AC AB AB AC AC AB AB AC AC AC AB BC +⋅>-⋅=-=,化简得:0AB AC ⋅>, A ,B ,C 不共线,∴AB 与AC 的夹角为锐角,所以“AB 与AC 的夹角为3π”是“AB AC BC +>”的充分不必要条件,故选:A 【点睛】本题主要考查了数量积的运算性质,充分不必要条件,属于中档题.二、填空题13.【分析】命题中点组成集合命题中点组成集合题意说明由集合的包含关系可得【详解】作出不等式组表示的平面区域如图内部(含边界)不等式表示的平面区域是以为圆心为半径的圆及内部如图若是的必要不充分条件则圆在内解析:1(0,]2【分析】命题p 中点(,)x y 组成集合M ,命题q 中点(,)x y 组成集合N ,题意说明N M,由集合的包含关系可得. 【详解】作出不等式组0222x y x y x -≤⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图ABC ∆内部(含边界),不等式22(1)x y m ++≤表示的平面区域是以(1,0)Q -为圆心m 为半径的圆及内部,如图,若p 是q 的必要不充分条件,则圆C在ABC ∆内部,圆心C 到直线y x =的距离为10222d --==,所以202m <≤,即102m <≤.故答案为:1(0,]2.【点睛】本题考查必要不充分条件的应用,考查不等式组表示的平面区域.解题方法是数形结合思想法.14.①④【分析】对于①根据纯虚数和共轭复数的定义可知正确;对于②由得出再由复数相等和共轭复数的定义可知不一定有可知②不正确;对于③则可能均为实数但不一定相等或与的虚部互为相反数但实部不一定相等即可判断出解析:①④ 【分析】对于①,根据纯虚数和共轭复数的定义可知正确;对于②,由120z z -=得出12z z =,再由复数相等和共轭复数的定义,可知不一定有12z z =,可知②不正确;对于③,12R z z +∈,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,,即可判断出③;对于④,由120z z -=得出12z z =,则1z 与2z 互为共轭复数,则④正确;综合得出答案. 【详解】解:根据纯虚数和共轭复数的定义,可知命题①显然正确;对于②,若120z z -=,只能得到12z z =,不一定有12z z =,所以命题②不正确; 对于③,若12R z z +∈,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,则1z 与2z 不一定互为共轭复数,所以命题③不正确;由120z z -=得出12z z =,则1z 与2z 互为共轭复数,可知命题④正确;所以正确命题的序号是①④.故答案为:①④.【点睛】本题考查复数相关命题的真假,考查对复数的概念中实数、虚数、纯虚数以及相等复数和共轭复数的特征的理解,属于基础题.15.①②【分析】分别对所给选项进行逐一判断即可【详解】若角则由正弦定理得所以故①正确;若是偶函数则即所以反过来当时显然为偶函数故②正确;若时满足但不成等比;若成等比则不一定有所以是成等比的既不充分也不必解析:①②【分析】分别对所给选项进行逐一判断即可.【详解】若角A B >,则a b >,由正弦定理,得2sin 2sin R A R B >,所以sin sin A B >,故①正确;若2()f x ax bx c =++是偶函数,则()()f x f x =-,即22ax bx c ax bx c ++=-+,所以0b =,反过来,当0b =时,2()f x ax c =+,显然为偶函数,故②正确;若0,0b a ==时,满足b =,,a b c 不成等比;若,,a b c 成等比,则b =不一定有b =,所以b =,,a b c 成等比的既不充分也不必要条件,故③错;若函数()()2f x x x c =-在2x =处有极大值,则'(2)0f =,即2(2)4(2)0c c -+-=,解得2c =或6c =,当2c =时,'()(2)(32)f x x x =--,此时2x =是极小值点, 所以不满足题意,故④错;令sin (0,1)t x =∈,则1(2,)y t t=+∈+∞,无最小值,故⑤错.故答案为:①②【点睛】本题考查命题真假的判断,涉及到奇偶性、充分条件、必要条件、极值、最值等,考查学生的逻辑推理能力,是一道中档题. 16.1【分析】先判断两个命题的真假再判断复合命题的真假即得解【详解】由题得命题:矩形有外接圆是真命题;:矩形有内切圆是假命题所以或是真命题且是假命题非是假命题故答案为:1【点睛】本题主要考查命题真假的判 解析:1【分析】先判断两个命题的真假,再判断复合命题的真假即得解.【详解】由题得命题p :“矩形有外接圆”,是真命题;q :“矩形有内切圆”,是假命题. 所以“p 或q ”是真命题,“p 且q ”是假命题,“非p ”是假命题.故答案为:1【点睛】本题主要考查命题真假的判断,考查复合命题真假的判断,意在考查学生对这些知识的理解掌握水平.17.④【分析】没有零点的解集为是的充分非必要条件【详解】①是常数函数或者考虑所以不是幂函数故错;②根据指数函数和对数函数的图象和性质得:函数没有零点故错;③或解得或故的解集为错;④但是推不出因此是的充分解析:④【分析】01,0y x x ==≠,2()2log x f x x =-2)0x -≥的解集为[){}2,1+∞,“1x <”是“2x <”的充分非必要条件.【详解】①1y =是常数函数,或者考虑01,0y x x ==≠,所以不是幂函数.故错;②根据指数函数和对数函数的图象和性质得:函数2()2log x f x x =-没有零点,故错;102)020x x x ->⎧-≥⇔⎨-≥⎩,或1x =,解得2x ≥或1x =2)0x -≥的解集为[){}2,1+∞,错; ④“1x <”⇒“2x <”,但是“2x <”推不出“1x <”,因此“1x <”是“2x <”的充分不必要条件,正确.故答案为:④.【点睛】此题考查幂函数概念辨析,函数零点讨论,解不等式,根据集合的包含关系讨论充分条件和必要条件,知识容量大,综合性强. 18.【分析】根据必要不充分条件得到集合之间的关系从而求解出参数的取值范围【详解】因为是的必要不充分条件所以又因为所以因为所以即的取值范围是:【点睛】集合:若是的必要不充分条件则有:;若是的充分不必要条件 解析:0a ≤【分析】根据必要不充分条件得到集合,A B 之间的关系,从而求解出参数的取值范围.【详解】因为“x A ∈”是“x B ∈”的必要不充分条件,所以B A ,又因为{}|22,B x x x R =-<∈,所以()0,4B =,因为(),A a =+∞,所以0a ≤,即a 的取值范围是:0a ≤.【点睛】集合()(){|},{|}A x x p x B x x q x =∈=∈:若“x A ∈”是“x B ∈”的必要不充分条件,则有:B A ; 若“x A ∈”是“x B ∈”的充分不必要条件,则有:A B .19.【解析】【分析】结合非命题的性质根据不等式恒成立分别求出命题中的取值范围利用且命题的性质即可得到结论【详解】若为真则为真则若为真则若为真命题则实数的取值范围是故答案为【点睛】本题主要考查复合命题之间 解析:(2,0)-【解析】【分析】结合非命题的性质,根据不等式恒成立分别求出命题,p q 中m 的取值范围,利用且命题的性质即可得到结论.【详解】2:,10p x R mx ⌝∀∈+>,若p ⌝为真,则0m ≥ ,p ∴为真,则0m <,若q 为真,则240,22m m -<-<<, 若p q ∧为真命题,{}{}{}|0|22|20m m m m m m <⋂-<<=-<<,则实数m 的取值范围是()2,0-,故答案为()2,0- .【点睛】本题主要考查复合命题之间的关系,以及一元二次不等式恒成立问题,属于中档题. 一元二次不等式恒成立问题主要方法:(1)若实数集上恒成立,考虑判别式小于零即可;(2)若在给定区间上恒成立,则考虑运用“分离参数法”转化为求最值问题.20.②③④【分析】命题的判断一一进行判断即可对于①显然为假命题;对于②逆否命题条件和结论都否定正确;对于③若x >1则|x|>0若|x|>0则x 不一定大于1;对于④f (x )=|x+1|+|x ﹣3|表示数轴解析:②③④【分析】命题的判断,一一进行判断即可.对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和.【详解】对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和,最小为4,所以m 4≤.故答案为②③④.【点睛】本题考查命题真假的判断,综合考查了不等式性质及绝对值的意义,属于中档题.三、解答题21.(1)[]4,5 ;(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)首先解一元二次不等式得到p 、q ,再根据命题p 、q 均为真命题,取交集即可得解;(2)因为p 是q 的充分不必要条件,则[][]()2,5,30m m m >,即可得到不等式组,解得即可;【详解】解:因为27100x x -+≤,解得25x ≤≤, 22430x mx m -+≤()0m >,解得3m x m ≤≤所以:25p x ≤≤,():30q m x m m ≤≤>(1)当4m =时,:412q x ≤≤因为命题p 、q 均为真命题,所以25412x x ≤≤⎧⎨≤≤⎩,解得45x ≤≤,即[]4,5x ∈ (2)因为p 是q 的充分不必要条件,所以[][]()2,5,30m m m >所以3520m m m ≥⎧⎪≤⎨⎪>⎩解得523m ≤≤,即5,23m ⎡⎤∈⎢⎥⎣⎦ 【点睛】考查解一元二次不等式的解得以及充分条件、必要条件、必要不充分条件的概念.属于中档题.22.(1)[2,0]B =-;(2)充分非必要条件.【分析】(1)根据绝对值的性质解不等式得集合B ;(2)解不等式得集合,A B ,由AB =∅求出a 的范围,再判断是什么条件. 【详解】(1)由110x -+≥得11x +≤,111x -≤+≤,20x -≤≤,所以[2,0]B =-; (2)由题意(31,32)A a a =-+,[1,1]B a a =---+,若AB =∅,则321a a +≤--或311a a -≥-+,解得34a ≤-或12a ≥. ∴12a ≥是A B =∅的充分非必要条件. 【点睛】本题考查解绝对值不等式,考查解一元二次不等式,考查充分必要条件的判断,掌握集合的包含关系与充分必要条件之间的联系是解题关键.23.(1)甲为真命题时,012a ≤≤;乙为真命题时,9a ≤(2)912a <≤或0a <【分析】(1)甲为真命题时,先转化为一元二次不等式恒成立问题,根据二次函数图象解得实数a 的取值范围,乙为真命题时,利用基本不等式求得xy 最小值,再根据恒成立得实数a 的取值范围;(2)分类求交集:甲真乙假与乙真甲假,最后求并集得结果.【详解】(1)222303022ax ax ax ax x x -+∴-+-+≥≥ 当0a =时,03≥成立;当0a ≠时,要使230ax ax -+≥恒成立,需20012120a a a a >⎧∴<≤⎨-≤⎩综上,甲为真命题时,012a ≤≤; *33,9x y R x y xy xy ∈+=-≥≥,,(当且仅当3x y ==时取等号) a xy ≤恒成立,min )9a xy ∴=≤(综上, 乙为真命题时,9a ≤(2)命题甲、乙中有且只有一个真命题,即甲真乙假与乙真甲假,所以0129a a ≤≤⎧⎨>⎩或1209a a a ><⎧⎨≤⎩或 即912a <≤或0a <【点睛】本题考查不等式恒成立问题以及根据命题真假求参数范围,考查综合分析求解能力,属中档题.24.(1)[)4,+∞;(2)[)(]3,26,7--.【分析】(1)由p 是q 的充分条件,可得出[][]2,62,2m m -⊆-+,可得出关于正实数m 的不等式组,由此可解得实数m 的取值范围;(2)求出q ,分p 真q 假和p 假q 真两种情况讨论,求出两种不同情况下x 的取值范围,综合可求得结果.【详解】解:解不等式24120x x --≤,解得26x -≤≤,即:26p x -≤≤.(1)p 是q 的充分条件,[]2,6-∴是[]2,2m m -+的子集,故02226m m m >⎧⎪-≤-⎨⎪+≥⎩,解得:4m ≥,所以m 的取值范围是[)4,+∞; (2)当5m =时,:37p m -≤≤,由于命题p 、q 其中一个是真命题,一个是假命题,分以下两种情况讨论:①p 真q 假时,2673x x x -≤≤⎧⎨><-⎩或,解得x ∈∅; ②p 假q 真时,6237x x x ><-⎧⎨-≤≤⎩或,解得32x -≤<-或67x <≤. 所以实数x 的取值范围为[)(]3,26,7--.【点睛】 结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 25.(1){1x x ≤-或}1x ≥;(2)[]1,0-.【分析】(1)根据题意得(22)(221)0x x -⋅-≥,进而得122x ≤或22x ≥,即可得{1x x ≤-或}1x ≥(2)解不等式2(21)(1)0x m x m m -+++≥得{B x x m =≤或}1x m ≥+,结合(1)得{1A x x =≤-或}1x ≥,根据题意得A B ,进而根据集合关系即可得答案.【详解】(1)由命题p 为真命题,则245220x x ⋅-⋅+≥可化为(22)(221)0x x -⋅-≥ 解得122x ≤或22x ≥,所以实数x 的取值范围是{1x x ≤-或}1x ≥(2)命题q :由2(21)(1)0x m x m m -+++≥,得[]()(1)0x m x m --+≥,解得x m ≤或1x m ≥+. 设{1A x x =≤-或}1x ≥,{B x x m =≤或}1x m ≥+因为命题q 是命题p 的必要不充分条件,所以A B 111m m ≥-⎧⎨+≤⎩,解得10m -≤≤, 所以实数m 的取值范围为[]1,0-.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, 则q 对的集合与p 对应集合互不包含. 26.(1){}12x x ≤<;(2)106a <<或1a >. 【分析】(1)解一元二次不等式化简集合A ,B ,代入a 的值,求出A ,B 的交集即可; (2)问题转化为B 是A 的真子集,根据集合的包含关系列不等式求出a 的范围即可.【详解】由已知,0a > 所以{}()(){}{2281202602A x x ax a x x a x a x x a =-+>=-->=<或}6x a > ()(){}{}12012B x x x x x =--≥=≤≤(1)当1a =时{2A x x =<或}6x > {}12B x x =≤≤ 所以{}12A B x x ⋂=≤<.(2){2A x x a =<或}6x a > {}12B x x =≤≤因为p 是q 的必要不充分条件,所以B 是A 的真子集,所以22a <或16a > ,即16a <或1a > 又因为0a >,所以106a <<或1a >. 【点睛】关键点点睛:转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将必要不充分条件问题转化为集合之间的包含关系是解题的关键.。
章末综合测评(一) 常用逻辑用语(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题:①5>4或4>5;②9≥3;③命题“若a>b,则a+c>b+c”的否命题;④命题“矩形的两条对角线相等”的逆命题.其中假命题的个数为( ) A.0 B.1C.2 D.3【解析】①是p或q形式的命题,p真q假,故p或q为真命题;②是p 或q形式的命题,同理为真命题;③否命题是“若a≤b,则a+c≤b+c”,是真命题;④逆命题是“两条对角线相等的四边形是矩形”,是假命题,比如等腰梯形的对角形也相等.【答案】 B2.下列命题中是全称命题的是( )A.圆有内接四边形B.3> 2C.3< 2D.若三角形的三边长分别为3,4,5,则这个三角形为直角三角形【解析】“圆有内接四边形”即为“任意圆都有内接四边形”故为全称命题.【答案】 A3.下列特称命题中,是假命题的是( )A.存在x0∈R,x20-2x0-3=0B.至少有一个x∈Z,x能被2和3整除C.存在两个相交平面垂直于同一直线D.存在x0∈{x|x是无理数},使x20是有理数【解析】对于A,当x=-1时,x2-2x-3=0,故A为真命题;对于B,当x=6时,符合题目要求,为真命题;C为假命题;对于D,x=3时,x2=3,故D为真命题.【答案】 C4.“a=18”是“对任意的正数x,2x+ax≥1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】当a=18时,2x+ax=2x+18x≥1,当且仅当x=14时取“=”,故充分性成立,当2x+ax≥1对x∈R恒成立时,a≥(x-2x2)max得a≥18,故必要性不成立.故选A.【答案】 A5.有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则方程x2-2x+m=0有实数解”的逆否命题;④“若A∩B=A,则A⊆B”的逆否命题.其中真命题个数为( ) A.1 B.2C.3 D.4【解析】①②④显然成立.③∵x2-2x+m=0有实数解,∴Δ=4-4m≥0,即m≤1.所以③成立.【答案】 D6.命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数【解析】根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.【答案】 B7.已知命题p:∅⊆{0},q:{1,2}∈{1,2,3},由p与q构成的“p或q”、“p且q”、“非p”形式的命题中,真命题的个数为( )A .0B .1C .2D .3【解析】 p 是真命题,q 是假命题,则“p 或q ”是真命题,“p 且q ”“非p ”是假命题.故选B.【答案】 B8.已知集合A = ⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪12<2x<8,B ={x ∈R |-1<x <m +1},若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .-2<m <2【解析】 A =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪12<2x<8 ={}x |-1<x <3.∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A ⊆B ,∴m +1>3,即m >2. 【答案】 C9.已知命题p :存在x 0∈(-∞,0),2x 0>3x 0,命题q :任意x ∈(0,1),log 2x <0,则下列命题为真命题的是( )A .p 且qB .p 或(綈q )C .(綈p )且qD .p 且(綈q ) 【解析】 ∵p 为真,q 为真, ∴綈p 为假,綈p 且q 为假. 【答案】 A10.函数f (x )=x |x +a |+b 是奇函数的充要条件是( ) A .ab =0 B .a +b =0 C .a 2+b 2=0D .a =b【解析】 ∵f (x )为奇函数,且x ∈R ,∴f (0)=0⇒b =0.又∵f (-x )=-f (x ),即-x |-x +a |=-x |x +a |,即|x +a |=|-x +a |,即|x +a |=|x -a |恒成立,∴a =0.综上可知a =b =0,即a 2+b 2=0,故选C. 【答案】 C11.下列叙述中正确的是( )A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β【解析】由b2-4ac≤0推不出ax2+bx+c≥0.这是因为a的符号不确定,故A不正确;当b2=0时,由a>c推不出ab2>cb2,所以B不正确;“对任意x ∈R,有x2≥0”的否定是“存在x0∈R,使x20<0”,所以C不正确.故选D.【答案】 D12.“sin α=cos α”是“cos 2α=0 ”的( )【导学号:32550018】A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【解析】先将cos 2α=0等价转化,再利用充分条件、必要条件的定义进行判断.cos 2α=0等价于cos2α-sin2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.【答案】 A二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是________.【解析】可以把原命题先逆再否,也可以先否再逆即可得到逆否命题.【答案】圆的切线到圆心的距离等于半径14.已知p(x):x2+2x-m>0,如果p(1)是假命题,p(2)是真命题,则实数的取值范围是________.【解析】p(1):3-m>0即m<3,p(2):8-m>0,即m<8,若p(1)是假命题,p(2)是真命题则3≤m<8.【答案】[3,8)15.设有两个命题:①关于x 的不等式mx 2+1>0的解集是R ;②函数f (x )=log m x 是减函数,如果这两个命题有且只有一个真命题,则实数m 的取值范围是________.【解析】 ①关于x 的不等式mx 2+1>0的解集为R ,则m ≥0; ②函数f (x )=log m x 为减函数,则0<m <1.①与②有且只有一个正确,则m 的取值范围是m =0或m ≥1. 【答案】 m =0或m ≥116.设p :(4x -3)2≤1;q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.【解析】 p :12≤x ≤1,q :a ≤x ≤a +1,易知p 是q 的真子集,∴⎩⎨⎧a ≤12,a +1≥1.∴0≤a ≤12.【答案】 ⎣⎢⎡⎦⎥⎤0,12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的逆命题、否命题和逆否命题:【导学号:32550019】(1)若a >b ,则ac 2>bc 2;(2)若在二次函数y =ax 2+bx +c 中b 2-4ac <0, 则该二次函数的图像与x 轴有公共点. 【解】 (1)逆命题:若ac 2>bc 2,则a >b ; 否命题:若a ≤b ,则ac 2≤bc 2; 逆否命题:若ac 2≤bc 2,则a ≤b .(2)逆命题:若二次函数y =ax 2+bx +c 的图像与x 轴有公共点,则b 2-4ac <0;否命题:若在二次函数y =ax 2+bx +c 中b 2-4ac ≥0,则该二次函数图像与x 轴没有公共点;逆否命题:若二次函数y =ax 2+bx +c 的图像与x 轴没有公共点,则b 2-4ac ≥0.18.(本小题满分12分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除. (2)任意x ∈{x |x >0},x +1x≥2.(3)存在x 0∈{x |x ∈Z },log 2x 0>2.【解】 (1)命题中含有存在量词“至少有一个”因此是特称命题,真命题. (2)命题中含全称量词“任意”,是全称命题,真命题. (3)命题中含存在量词,是特称命题,真命题.19.(本小题满分12分)已知p :三个数2x ,22x ,⎝ ⎛⎭⎪⎫12x 成等比数列;q :三个数lg x ,lg(x +1),lg(x +3)成等差数列,则p 是q 的什么条件?【解】 2x ,22x ,⎝ ⎛⎭⎪⎫12x 成等比数列⇔⎝ ⎛⎭⎪⎫22x 2=2x ⎝ ⎛⎭⎪⎫12x ⇔x =1.lg x ,lg(x +1),lg(x +3)成等差数列⇔2lg(x +1)=lg x +lg(x +3)⇔ ⎩⎨⎧x >0(x +1)2=x (x +3)⇔x =1.由以上可知p ⇔q ,故p 是q 的充要条件.20.(本小题满分12分)已知三个方程:x 2+4mx -4m +3=0,x 2+(m -1)x +m 2=0,x 2+2mx -2m =0.若这三个方程中至少有一个方程有实数根,求实数m 的取值范围.【解】 设原命题的否定所对应m 的范围为A ,则原命题所求m 的范围即为∁R A .三个方程都没有实数根等价于⎩⎨⎧(4m )2-4(-4m +3)<0,(m -1)2-4m 2<0,(2m )2-4(-2m )<0⇔⎩⎪⎨⎪⎧-32<m <12,m <-1或m >13,-2<m <0⇔A =⎝⎛⎭⎪⎫-32,-1⇔∁R A =⎝ ⎛⎦⎥⎤-∞,-32∪[-1,+∞). 故实数m 的取值范围为⎝⎛⎦⎥⎤-∞,-32∪[-1,+∞).21.(本小题满分12分)已知c >0,设命题p :函数y =c x 为减函数,命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.【解】 由命题p 知:0<c <1. 由命题q 知:2≤x +1x ≤52,要使此式恒成立,则2>1c ,即c >12.又由p 或q 为真,p 且q 为假知p 、q 必有一真一假, 当p 为真,q 为假时,0<c ≤12.当p 为假,q 为真时,c ≥1. 综上,c 的取值范围为⎩⎨⎧⎭⎬⎫c ⎪⎪⎪0<c ≤12或c ≥1.22.(本小题满分12分)已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1,且给定条件p :x <π4或x >π2,x ∈R .若条件q :-2<f (x )-m <2,且綈p 是q 的充分条件,求实数m 的取值范围.【解】 由条件q 可得⎩⎨⎧m >f (x )-2,m <f (x )+2.∵綈p 是q 的充分条件,∴在π4≤x ≤π2的条件下,⎩⎨⎧m >f (x )-2,m <f (x )+2恒成立.又f (x )=2⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x -23cos 2x -1=2sin 2x -23cos 2x +1=4sin ⎝ ⎛⎭⎪⎫2x -π3+1,由π4≤x ≤π2,知π6≤2x -π3≤2π3, ∴3≤4sin ⎝ ⎛⎭⎪⎫2x -π3+1≤5,故当x =5π12时,f (x )max =5, 当x =π4时,f (x )min =3. ∴只需⎩⎨⎧m >5-2,m <3+2成立,即3<m <5.∴m 的取值范围是3<m <5.。
第一章常用逻辑用语§1命题(教师用书独具)●三维目标1.知识与技能(1)了解命题的概念.(2)通过简单的例子,让学生体会四种命题的构成形式.(3)通过实际例子,让学生体会四种命题的关系.2.过程与方法经历从具体数学实例中抽象出命题概念的过程,感受命题在数学学习中的重要性和广泛性.3.情感、态度与价值观通过命题的学习过程,使学生了解命题的基本知识,认识命题的相互关系,提高思维的严谨性.●重点难点重点:1.命题的概念.2.四种命题的关系.难点:1.写出一个命题的逆命题、否命题、逆否命题.2.利用四种命题之间的关系判断命题的真假.对于命题概念的教学,要从具体实例中去认知,从命题与开语句的比较中去把握.对于命题的四种形式及其关系的教学,要遵循认知规律,通过例子,引导学生探究四种形式及其关系,即让学生经历概念的形成和抽象过程,再通过例题分析得出四种命题之间的关系.(教师用书独具)●教学建议1.教学中应多举出一些学生熟悉的数学中的例子或生活中的实例.2.教师可以通过总结引例、例1、例2中的判断结果,引导学生归纳总结出四种命题的相互关系,以及互为逆否命题的两命题之间的等价关系图.3.在高中常用逻辑用语部分,一般只要求学生讨论“若p,则q”形式的命题,或者可以改写成“若p,则q”的形式的命题,而超出这一形式的命题,在这里不做讨论.●教学流程创设问题情境,引出问题――――→抽象概括命题的概念⇑命题的结构⇓命题的分类――――→提出问题学生探究四种命题――→例题四种命题之间的关系⇒反馈矫正⇒归纳总结课标解读 1.了解命题的概念,会判断命题的真假.(重点)2.掌握四种命题的结构形式,会写出命题的逆命题、否命题、逆否命题.(重点)3.能用四种命题之间的相互关系判断四种命题的真假.(难点)命题及其形式【问题导思】下列能判断真假的语句序号是? ①π是无理数吗? ②x >1. ③2∈N .④若a ⊥b ,则a ·b ≤0. 【提示】 ③④能判断真假. 命题及其形式(1)定义:可以判断真假、用文字或符号表述的语句.(2)分类⎩⎪⎨⎪⎧真命题:判断为真的语句.假命题:判断为假的语句.(3)形式:通常表示为“若p ,则q ”的形式,其中p 是条件,q 是结论.四种命题及其相互关系1.下面有四个命题. ①若x >1,则x >0. ②若x >0,则x >1. ③若x ≤1,则x ≤0. ④若x ≤0,则x ≤1.它们的条件和结论分别是什么?【提示】 命题①的条件是x >1,结论是x >0. 命题②的条件是x >0,结论是x >1. 命题③的条件是x ≤1,结论是x ≤0.命题④的条件是x≤0,结论是x≤1.2.命题②、③、④的条件与结论与命题①的条件与结论有什么关系?【提示】命题②的条件与结论分别是命题①的结论与条件.命题③的条件与结论分别是命题①的条件的否定与结论的否定.命题④的条件与结论分别是命题①的结论的否定与条件的否定.1.四种命题互逆一个命题的条件和结论分别是另一个命题的结论和条件命题互否一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定命题互为逆一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定否命题2.四种命题之间的关系互为逆命题、互为否命题、互为逆否命题都是说的两个命题之间的关系.命题及其真假判断判断下列语句是否为命题,若是命题,判断其真假.①若a>b,则2a>2B.②y=sin x是奇函数吗?③x2-1<0(x∈Z).④空集是任何集合的子集.【思路探究】判断一个语句是否为命题,关键是看能否判断其真假.【自主解答】①由指数函数y=2x的性质知,①是真命题.②不是命题,不涉及真假.③不是命题,未给x赋值之前,无法判断真假.④由空集的性质知,④是真命题.1.判断一个语句是否为命题,关键看这个语句能否判断真假.2.判断一个命题是真命题,一般需要经过严格的推理论证;判断一个命题是假命题,只需举出一个反例即可.判断下列语句是否为命题,若是命题,判断其真假.(1)斜率相同的两直线平行.(2)若x+y是有理数,则x,y均为有理数.(3)这是一棵大树.(4)当x=1时,x2+2x-3=0.【解析】 (1)是假命题.(2)是假命题.当x =2时,y =-2时,x +y 是有理数. (3)无法判断真假,不是命题. (4)是真命题.命题的结构把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)矩形的对角线相等.(2)当m >14时,方程mx 2-x +1=0无实根.(3)已知x ,y ∈N +,当x +y =2时,x =y =1.【思路探究】 分清命题的条件和结论,是解决这类问题的关键. 【自主解答】 (1)若一个四边形是矩形,则它的对角线相等;是真命题. (2)若m >14,则方程mx 2-x +1=0无实根;是真命题.(3)已知x ,y ∈N +,若x +y =2,则x =y =1;是真命题. 改写命题时,需要注意的事项:①分清命题中的条件和结论;②要注意叙述的完整性,比如第(1)题;③当命题有大前提时,不能把大前提写在条件中,应写在前面,仍然作为命题的大前提,比如第(3)题.指出下列命题的条件和结论.(1)若a ,b ,c 成等差数列,则a +c =2B . (2)当x =1时,x 2=1. (3)两个奇数的和是偶数.【解】 (1)条件:a ,b ,c 成等差数列,结论:a +c =2B . (2)条件:x =1,结论:x 2=1.(3)条件:两个数都是奇数,结论:它们的和是偶数.四种命题及其真假判断写出命题“若不等式x 2+px +q >0的解集为R ,则p 2-4q ≤0”的逆命题、否命题、逆否命题,并判断其真假.【思路探究】 根据逆命题、否命题、逆否命题的定义去写,要注意: (1)分清命题的条件和结论; (2)“>”的否定是“≤”.【自主解答】 逆命题:若p 2-4q ≤0,则不等式x 2+px +q >0的解集为R ;假命题. 否命题:若不等式x 2+px +q >0的解集不是R ,则p 2-4q >0;假命题.逆否命题:若p2-4q>0,则不等式x2+px+q>0的解集不是R;真命题.互为逆否命题的两个命题同真假,因此,在直接判断一个命题的真假困难时,通常转化为判断它的逆否命题的真假.写出命题“末位数字是0的整数能被5整除”的逆命题、否命题、逆否命题,并判断其真假.【解】逆命题:能被5整除的整数的末位数字是0,假命题.否命题:末位数字不是0的整数不能被5整除,假命题.逆否命题:不能被5整除的整数的末位数字不是0,真命题.对四种命题的结构认识不清致误已知a,b∈R,命题“若a+b=2,则a2+b2≥2”的否命题是( ) A.若a+b≠2,则a2+b2<2B.若a+b=2,则a2+b2<2C.若a+b≠2,则a2+b2≥2D.若a2+b2≥2,则a+b=2【错解】只否定结论,错选B;只否定条件,错选C;误将互否理解成互逆,错选D.【答案】 D【错因分析】对四种命题的结构形式认识不清致误.【防范措施】掌握四种命题的结构形式.原命题:若p,则q.逆命题:若q,则p.否命题:若p的否定,则q的否定.逆否命题:若q的否定,则p的否定.【正解】“a+b=2”的否定是“a+b≠2”,“a2+b2≥2”的否定是“a2+b2<2”,由否命题的定义知,选项A正确.【答案】 A1.判断一个语句是否为命题,关键看它能否判断真假.2.对于四种命题要掌握其结构形式.3.由于互为逆否命题的两个命题是等价命题,它们同真假,所以当一个命题不易判断真假时,可以通过判断其逆否命题的真假来判断原命题的真假.1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,可作为命题的是( )A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思【解析】只有A选项能判断真假.【答案】 A2.与命题“若a∈M,则b∉M”等价的命题是( )A.若b∉M,则a∈M B.若a∉M,则b∈M C.若b∈M,则a∉M D.若a∈M,则b∈M 【解析】由原命题与其逆否命题等价知:选项C正确.【答案】 C3.命题:“菱形的对角线互相垂直”的条件是__________,结论是____________.【解析】该命题可写成:若一个四边形是菱形,则它的对角线互相垂直.所以,命题的条件是一个四边形是菱形,命题的结论是它的对角线互相垂直.【答案】一个四边形是菱形它的对角线互相垂直4.命题:若q<1,则方程x2+2x+q=0有实根.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.【解】逆命题:若方程x2+2x+q=0有实根,则q<1,假命题.否命题:若q≥1,则方程x2+2x+q=0无实根,假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,真命题.一、选择题1.下列语句不是命题的是( )A.3是15的约数B.3小于2C.0不是自然数 D.正数大于负数吗?【解析】选项D是疑问句,没有对正数与负数的大小关系作出判断,故选D.【答案】 D2.若一个命题p的逆命题是一个假命题,则下列判断一定正确的是( )A.命题p是真命题B.命题p的否命题是假命题C.命题p的逆否命题是假命题D.命题p的否命题是真命题【解析】一个命题的逆命题与否命题互为逆否命题,故它们同真假,故选B.【答案】 B3.命题“若x2<1,则-1<x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1【解析】 此命题的逆否命题为:若x ≥1或x ≤-1,则x 2≥1. 【答案】 D4.假设坐标平面上一非空集合S 内的点(x ,y ),具有以下性质:“若x >0,则y >0”,试问下列哪个叙述对S 内的点(x ,y )必定成立( )A .若x ≤0,则y ≤0 B.若y ≤0,则x ≤0 C .若y >0,则x >0 D .若y >0,则x ≤0【解析】 若x >0,则y >0⇔若y ≤0,则x ≤0,故选B . 【答案】 B5.有下列四个命题,其中真命题是( ) ①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若a +b ≥2,则a ,b 中至少有一个不小于1”的否命题; ③“面积相等的三角形全等”的否命题;④“若x ≠π4+2k π(k ∈Z ),则tan x ≠1”的逆否命题.A .①②B .②③C .①③D .③④【解析】 ①逆命题为“若x ,y 互为相反数,则x +y =0”,真命题; ②否命题为“若a +b <2,则a ,b 都小于1”,假命题; ③否命题为“面积不相等的三角形不全等”,真命题;④逆否命题为“若tan x =1,则x =π4+2k π(k ∈Z )”,假命题.【答案】 C 二、填空题6.若命题p 的否命题为r ,命题r 的逆命题为s ,则s 是p 的逆命题t 的________命题. 【解析】 根据四种命题的关系,易知s 是t 的否命题. 【答案】 否7.在命题“若a >b ,则a 2>b 2”的逆命题、否命题、逆否命题中,假命题的个数为________.【解析】 当a =1,b =-2时,a 2<b 2,故原命题为假,所以它的逆否命题为假;当a =-2,b =1时,a <b ,故原命题的逆命题为假,所以原命题的否命题为假,故假命题的个数为3.【答案】 38.命题“负数的平方是正数”的否命题是________.【解析】负数的否定是非负数,是正数的否定是不是正数,故命题的否定是:非负数的平方不是正数.【答案】非负数的平方不是正数三、解答题9.将下列命题改写成“若p,则q”的形式.(1)偶数能被2整除;(2)奇函数的图像关于原点对称;【解】(1)若一个数是偶数,则它能被2整除;(2)若一个函数是奇函数,则它的图像关于原点对称.10.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.【解】(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.它是成立的,可用反证法证明:假设a+b<0,则a<-b,b<-a.因为f(x)是(-∞,+∞)上的增函数,则f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b)与条件矛盾,逆命题真.(2)逆否命题是:若f(a)+f(b)<f(-a)+f(-b),则a+b<0.它为真,可用证明原命题为真来证明:由a+b≥0,得a≥-b,b≥-a.∵f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).∴f(a)+f(b)≥f(-a)+f(-b).∴逆否命题为真.11.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c的年龄不是最小,那么a的年龄最大”都是真命题,则a,b,c的年龄的大小顺序是否能确定?请说明理由.【解】显然命题A和B的原命题的结论是矛盾的,因此我们应该从它的逆否命题来看.由命题A为真可知,b不是最大时,则a是最小,∴c最大,即c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,即b>a>c.同理由命题B为真可得:a>c>b或b>a>c.故由A 与B 均为真可知b >a >c .∴a ,b ,c 三人的年龄的大小顺序是:b 最大,a 次之,c 最小.(教师用书独具)判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,则a ≥1”的逆否命题的真假.【思路探究】 解答本题可先根据已知的命题利用判别式求出a 的范围,再去判断命题的真假.【自主解答】 法一 写出原命题的逆否命题:已知a ,x 为实数,若a <1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.判断真假如下:抛物线y =x 2+(2a +1)x +a 2+2开口向上,判别式Δ=(2a +1)2-4(a 2+2)=4a -7,因为a <1,所以4a -7<0,即抛物线y =x 2+(2a +1)x +a 2+2与x 轴无交点.所以关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.故原命题的逆否命题为真命题.法二 先判断原命题的真假.因为a ,x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,所以Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a ≥74.因为a ≥74,所以a ≥1,所以原命题为真.也说明逆否命题为真.此类问题的求解,可先写出原命题的逆否命题,再判断其真假.也可以通过判断原命题的真假,来间接判断其真假.至于用哪种方法,要看原命题与它的逆否命题哪一个更好判断.若a 2+b 2=c 2,求证:a ,b ,c 不可能都是奇数.【解】 法一 (逆否证法)依题意,就是证明命题“若a 2+b 2=c 2,则a ,b ,c 不可能都是奇数”为真命题.为此,只需证明其逆否命题“若a ,b ,c 都是奇数,则a 2+b 2≠c 2”为真命题即可.若a ,b ,c 都是奇数,则a 2,b 2,c 2都是奇数.于是a 2+b 2为偶数,而c 2为奇数,即a 2+b 2≠c 2.∴原命题的逆否命题为真命题,所以原命题成立.法二 (反证法)假设a ,b ,c 都是奇数,则a 2,b 2,c 2都是奇数. 得a 2+b 2为偶数,而c 2为奇数,即a 2+b 2≠c 2,与a 2+b 2=c 2矛盾.所以假设不成立,从而原命题成立.§2充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件(教师用书独具)●三维目标1.知识与技能通过具体实例中条件之间关系的分析,理解充分条件、必要条件和充要条件的含义.2.过程与方法(1)通过判定定理、性质定理,帮助学生抓住充分条件、必要条件等概念的本质,更好地理解概念.(2)通过充分条件、必要条件的学习,培养学生进行简单推理的技能,发展学生的思维能力.3.情感、态度与价值观(1)在日常生活和学习中,养成说话准确、做事有条理的良好习惯.(2)在探求未知、认识客观世界的过程中,能运用数学语言合乎逻辑地进行讨论和质疑,提高思维的逻辑性.●重点难点重点:1.理解充分条件、必要条件的含义.2.充分条件、必要条件、充要条件的判断.难点:对必要条件的理解.在教学过程中,注重把教材内容与生活实际结合起来,加强数学教学的实践性,在教学方法上采用“合作—探索”的开放式教学模式,在合作中去领会充分条件、必要条件的含义;在探索中,体会充分条件、必要条件的判断方法.(教师用书独具)●教学建议教学必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,引导学生分析实例,让学生从实例中抽象出数学概念.在巩固练习时,选题内容尽量涉及几何、代数较广领域,但不可拔高要求,追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善.●教学流程创设情境,激发兴趣引导归纳,给出定义深入探究,获得新知反馈练习,形成方法总结反馈,拓展引申课标解读1.理解充分条件、必要条件与充要条件的意义.(重点) 2.充分条件、必要条件与充要条件的判断.(难点) 3.利用条件关系求字母的取值范围.(难点)充分条件与必要条件已知直线l1:y=k1x+b1,l2:y=k2x+b2.(1)由k1=k2能推出l1∥l2吗?【提示】当k1=k2,b1=b2时,l1与l2重合,故由k1=k2不能推出l1∥l2.(2)由l1∥l2能推出k1=k2吗?【提示】由l1∥l2能推出k1=k2.1.推断符号“⇒”的含义“若p,则q”为真,是指由条件p经过推理可以得到结论q,记作p⇒q,读作“p推出q”.2.充分条件与必要条件推式“若p,则q”真,即p⇒q“若p,则q”的逆命题真,即q⇒pp是q的充分条件必要条件q 是p 的 必要条件 充分条件充要条件【问题导思】一天,你与你的妈妈到她的同事家做客,你的妈妈向她的同事介绍:“这是我的女儿”,请问:你还需要介绍:“这是我的妈妈”吗?为什么?【提示】 不需要,因为由A 是B 的女儿,可推出B 是A 的妈妈,反之亦然. 如果p ⇒q ,且q ⇒p ,那么称p 是q 的充分必要条件,简称充要条件,记作p ⇒q .充分条件、必要条件、充要条件的判断(1)“b 2-4ac <0”是“一元二次不等式ax 2+bx +c >0的解集为R ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【思路探究】着眼点分清条件p 与结论q 分别判断“若p ,则q ”与“若q ,则p ”的真假 【自主解答】 (1)当a =c =-1,b =0时,不等式ax 2+bx +c >0的解集为∅. 反过来,由一元二次不等式ax 2+bx +c >0的解集为R ,得⎩⎪⎨⎪⎧a >0Δ=b 2-4ac <0,因此,b 2-4ac <0是一元二次不等式ax 2+bx +c >0的解集为R 的必要不充分条件. (2)由a n +1>|a n |≥a n ,得a n +1>a n , ∴{a n }是递增数列.反过来,由{a n }是递增数列,知a n +1>a n ,但不一定有a n +1>|a n |,如递增数列{-(12)n }中,a 1=-12,a 2=-14,a 2>|a 1|不成立.因此,“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的充分不必要条件. 【答案】 (1)B (2)A除了用定义判断充分条件与必要条件外,还可以利用集合间的关系判断:已知集合A ={x |p (x )},B ={x |q (x )},若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.提醒:在判断充分条件与必要条件时,要注意分清条件和结论. (1)“|x |<1且|y |<1”是“点P (x ,y )在圆x 2+y 2=1内”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【解析】 (1)当x =y =32时,x 2+y 2=32>1,所以点P (x ,y )不在圆内;反过来,当点P (x ,y )在圆内时,x 2+y 2<1,所以x 2<1,y 2<1,所以|x |<1,|y |<1.因此,“|x |<1且|y |<1”是“点P (x ,y )在圆x 2+y 2=1内”的必要不充分条件. (2){a n }是递增数列,可得a 1<a 2<a 3;反过来,由a 1<a 2<a 3, 得a 1<a 1q <a 1q 2,当a 1>0时,q >1;当a 1<0时,0<q <1. ∴a n +1-a n =a 1q n -1(q -1)>0,∴a n +1>a n , ∴{a n }是递增数列.因此,“a 1<a 2<a 3”是“数列{a n }是递增数列”的充要条件. 【答案】 (1)B (2)C充分条件、必要条件的应用已知p :4x +k ≤0,q :x 2-x -2>0,且p 是q 的充分条件,求k 的取值范围.【思路探究】 求出p 、q 对应的集合A 、B ――→充分条件A ⊆B →k 满足的条件――→解不等式k 的取值范围【自主解答】 由4x +k ≤0,得x ≤-k4.由x 2-x -2>0,得x <-1或x >2.设A ={x |x ≤-k4},B ={x |x <-1或x >2}.由p 是q 的充分条件,得A ⊆B . ∴-k4<-1,∴k >4.即k 的取值范围为(4,+∞).1.涉及与充分、必要条件有关的求参数取值范围问题,常借助集合的观点来处理. 2.解决本题的关键是把p 、q 之间的关系转化为p 、q 所表示集合之间包含关系,然后,建立关于参数的不等式(组)求解.已知p :4x +k ≤0,q :x 2-x -2<0,且p 是q 的必要条件,求k 的取值范围. 【解】 由4x +k ≤0,得x ≤-k4;由x 2-x -2<0,得-1<x <2.设A ={x |x ≤-k4},B ={x |-1<x <2},由p 是q 的必要条件,得A ⊇B . ∴-k4≥2,∴k ≤-8.即k 的取值范围为(-∞,-8].充要条件的证明已知数列{a n }的前n 项和为S n ,求证:“对任意n ∈N +,S n =a 1+a n n2”是“数列{a n }是等差数列”的充要条件.【思路探究】 分清条件和结论,证明充分性即证“条件⇒结论”,证明必要性即证“结论⇒条件”.【自主解答】 必要性:由等差数列的前n 项和计算公式,得S n =a 1+a n n2.充分性:由S n =a 1+a n n2,得S n +1=a 1+a n +1n +12.两式相减得,a n +1=a 12+n +1a n +12-na n 2整理得(n -1)a n +1=na n -a 1,na n +2=(n +1)a n +1-a 1,两式相减得,na n+2-(n-1)a n+1=(n+1)a n+1-na n整理得2na n+1=na n+2+na n∴2a n+1=a n+2+a n,∴数列{a n}是等差数列.1.首先分清条件和结论.本例中条件是“对任意n∈N+,S n=a1+a n n2”,结论是“数列{a n}是等差数列”.2.分两步证明,既要证明充分性,又要证明必要性(证明先后顺序不作要求).3.证明充分性时,把条件当已知去推证结论的正确性;证明必要性时,结论当已知去推证条件的正确性.已知数列{a n}满足a n+a n+1=2n+1(n∈N+),求证:数列{a n}为等差数列的充要条件是a1=1.【证明】必要性:由a n+a n+1=2n+1,得a2=3-a1,a3=5-a2=2+a1,由数列{a n}是等差数列,得2a2=a3+a1,∴2(3-a1)=(2+a1)+a1,解得a1=1.充分性:由a n+a n+1=2n+1,得a n+1+a n+2=2(n+1)+1=2n+3,两式相减得a n+2-a n=2,∴数列{a2n-1}是首项为a1=1,公差为2的等差数列.∴a2n-1=1+2(n-1)=2n-1,即当n为奇数时,a n=n.当n为偶数时,n+1是奇数,∴a n+1=n+1,∴a n=(2n+1)-a n+1=(2n+1)-(n+1)=n.综上得a n=n,∴a n+1-a n=(n+1)-n=1.因此,数列{a n}是等差数列.充分、必要条件颠倒致误已知p:x2-x-2<0,q:x∈(-1,m),且p是q的充分不必要条件,则( )A.m>2 B.m≥2C .-1<m <2D .-1<m ≤2【错解】 由x 2-x -2<0,得x ∈(-1,2). ∵p 是q 的充分不必要条件,∴(-1,m )(-1,2).∴⎩⎪⎨⎪⎧m >-1m <2即-1<m <2,故选C.【答案】 C【错因分析】 颠倒了充分条件和必要条件,把充分条件当成必要条件致误. 【防范措施】 在求解与充分条件、必要条件有关的问题时,要分清条件p 和结论q .只有分清条件和结论才能正确判断p 与q 的关系,才能利用p 与q 的关系解题.在由条件p 与结论q 之间的关系求字母的取值范围时,将p 与q 之间的关系转化为集合之间的关系,是求解这一类问题的常用方法.【正解】 由x 2-x -2<0,得x ∈(-1,2). ∵p 是q 的充分不必要条件,∴(-1,2)(-1,m ),∴m >2.故选A. 【答案】 A1.判断p 是q 的什么条件,其实质是判断p ⇒q 与q ⇒p 两个命题的真假.2.当不易判断p ⇒q 与q ⇒p 的真假时,可从集合的角度入手.首先建立与p 、q 相应的集合,即p :A ={x |p (x )},q :B ={x |q (x )}.若A ⊆B ,则p 是q 的充分条件,若A B ,则p 是q 的充分不必要条件若B ⊆A ,则p 是q 的必要条件,若B A ,则p 是q 的必要不充分条件若A =B ,则p ,q 互为充要条件若A ⃘B ,且B ⃘A ,则p 既不是q 的充分条件,也不是q 的必要条件3.命题“若p ,则q ”为真、p ⇒q 、p 是q 的充分条件、q 是p 的必要条件,这四种形式表达的是同一逻辑关系,只是说法不同而已.1.“x =π4”是“函数y =sin 2x 取得最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 当x =π4时,y =sin 2x 取最大值1;但当y =sin 2x 取最大值1时,x 不一定等于π4,比如x =54π.因此“x =π4”是“函数y =sin 2x 取得最大值”的充分不必要条件.【答案】 A2.(2013·福建高考)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且 a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.【答案】 A3.用符号“⇒”、“⇐”、“⇔”填空: (1)x =0________x <1;(2)整数a 能被2整除________整数a 是偶数; (3)M >N ________log 2M >log 2N .【解析】 利用这三种符号的意义求解. 【答案】 (1)⇒ (2)⇔ (3)⇐4.直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是什么? 【解】 由直线x +y +m =0与圆(x -1)2+(y -1)2=2相切,得|1+1+m |12+12= 2. 解得m =0或-4.又当m =0或-4时,直线x +y +m =0与圆(x -1)2+(y -1)2=2相切.因此,直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是m =0或-4.一、选择题1.设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】 当a =1时,N ={1}⊆M ;但当N ⊆M 时,推不出a =1,比如a = 2.故选A. 【答案】 A2.“sin A >cos B ”是△ABC 为锐角三角形的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】 当A =120°,B =45°时,△ABC 为钝角三角形;当△ABC 是锐角三角形时,A +B >90°,A >90°-B ,又0°<A,90°-B <90°,则sin A >sin(90°-B )=cos B .【答案】 B3.已知p :lg x <0,那么命题p 的一个必要不充分条件是( ) A .0<x <1 B .-1<x <1 C.12<x <23 D .12<x <2 【解析】 由x 2lg x <0,得0<x <1.设p 的一个必要不充分条件为q ,则p ⇒q ,但q ⇒/p .故选B .【答案】 B4.(2012·天津高考)设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【解析】 不等式2x 2+x -1>0的解集为x >12或x <-1,所以“x >12”是“2x 2+x -1>0”成立的充分不必要条件,选A.【答案】 A5.(2013·江浙高考)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 若f (x )是奇函数,则f (0)=0,所以cos φ=0,所以φ=π2+k π(k ∈Z ),故φ=π2不成立;若φ=π2,则f (x )=A cos(ωx +π2)=-A sin(ωx ),f (x )是奇函数.所以f (x )是奇函数是φ=π2的必要不充分条件.【答案】 B 二、填空题6.关于x 的不等式ax 2+bx +c >0的解集为R 的充要条件是________________. 【解析】 对a 分a =0和a ≠0两种情况讨论.【答案】 ⎩⎪⎨⎪⎧a >0b 2-4ac <0或⎩⎪⎨⎪⎧a =b =0c >07.在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种填空:(1)“a =0”是“函数f (x )=x 2+ax (x ∈R )为偶函数”的________; (2)“sin α>sin β”是“α>β”的________; (3)“x ∈M ∩N ”是“x ∈M ∪N ”的________;(4)对于实数a ,b ,c ,“a >b ”是“ac 2>bc 2”的________. 【解析】 利用定义求解.【答案】 (1)充要条件(2)既不充分也不必要(3)充分不必要(4)必要不充分 8.若命题“若p ,则q ”为真,则下列说法正确的是________. ①p 是q 的充分条件; ②p 是q 的必要条件; ③q 是p 的充分条件; ④q 是p 的必要条件.【解析】 由充分条件与必要条件的定义知,①④正确. 【答案】 ①④三、解答题9.已知:p :x >1,q :1x<1,试判断p 是q 的什么条件?【解】 由1x <1,得1-xx<0,∴x (x -1)>0, ∴x >1或x <0. ∴{x |x >1}{x |1x<1},∴p 是q 的充分不必要条件.10.已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,试问:(1)s 是q 的什么条件;(2)r 是q 的什么条件;(3)p 是q 的什么条件.【解】 p 、q 、r 、s 的关系可以用右图表示: (1)∵s ⇒r ,r ⇒q , ∴s ⇒q ,又q ⇒s , ∴s 是q 的充要条件. (2)∵q ⇒s ,s ⇒r , ∴q ⇒r ,又r ⇒q , ∴r 是q 的充要条件. (3)∵q ⇒s ,s ⇒r ,r ⇒p ∴q ⇒p ,∴p 是q 的必要条件.11.已知p :x -2x -3a +1<0,q :x -a 2-2x -a<0,若q 是p 的必要条件,求实数a 的取值范围.【解】 由q 是p 的必要条件,可知{x |x -2x -3a +1<0}⊆{x |x -a 2-2x -a <0}.由a 2+2>a ,得{x |x -a 2-2x -a<0}={x |a <x <a 2+2},当3a +1>2,即a >13时,{x |x -2x -3a +1<0}={x |2<x <3a +1},∴⎩⎪⎨⎪⎧a ≤2a 2+c ≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,{x |x -2x -3a +1<0}=∅,符合题意;当3a +1<2,即a <13时,{x |x -2x -3a +1<0}={x |3a +1<x <2},∴⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得-12≤a <13.综上得,a ∈[-12,3-52].(教师用书独具)设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 【思路探究】 先由必要性求出n 值,再验证所求得的n 值满足充分性. 【自主解答】 ∵x 2-4x +n =0有整数根, ∴x =4±16-4n2=2±4-n ,∴4-n 为某个整数的平方且4-n ≥0, ∴n =3或n =4.当n =3时,x 2-4x +3=0,得x =1或x =3; 当n =4时,x 2-4x +4=0,得x =2. ∴n =3或n =4. 【答案】 3或4在一些充要条件的命题中往往是“A 的充要条件是B ”,这种情况下的条件实际是B ,结论是A ,因此其充分性是B ⇒A ,必要性是A ⇒B .在寻求A 成立的充要条件时,可先由A ⇒B ,再验证B ⇒A .函数f (x )=cos 2ax -sin 2ax 的最小正周期是π的充要条件是a =________. 【解析】 f (x )=cos 2ax ,由f (x )的最小正周期是π,得2π|2a |=π,∴a =±1.当a =1时,f (x )=cos 2x ;当a =-1时,f (x )=cos(-2x )=cos 2x . ∴当a =±1时,f (x )的最小正周期都是2π2=π.∴a=±1.【答案】±1§3全称量词与存在量词3.1 全称量词与全称命题 3.2 存在量词与特称命题3.3 全称命题与特称命题的否定(教师用书独具)●三维目标 1.知识与技能(1)通过生活和数学中的丰富实例,让学生理解全称量词与存在量词的意义. (2)能正确地对含有一个量词的命题进行否定. 2.过程与方法在使用量词的过程中,加深对以往所学知识的理解,并通过对所学数学知识的梳理,构建新的理解.3.情感、态度与价值观通过量词的学习,体会运用量词表述数学内容的准确性、简洁性,并能运用数学语言进行讨论和交流.●重点难点重点:理解全称量词和存在量词. 难点:1.含有一个量词的命题的否定. 2.含有一个量词的命题的真假判断.教学时,要从学生的认知水平入手,通过几组例子,引导学生观察、比较、分析,来理解量词的含义;并通过讨论、探索、发现归纳出含有一个量的命题的否定方法及真假判断方法,从而突出重点,化解难点.(教师用书独具)●教学建议本节课宜采用探究式教学模式,即在教学过程中,在教师的启发引导下,以含有一个量词的命题的否定方法及真假判断方法为探究内容,让学生通过个人探究、小组讨论等多种解难释疑的尝试活动去发现方法、总结规律,通过例题与练习让学生在应用规律方法解决问题的过程中加深对规律方法的认识.●教学流程 通过实例引入课题――→探究全称量词与存。
一、选择题1.已知函数()y f x =的定义域为R ,有下面三个命题,命题p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有()()()+<+f x a f x f a 恒成立,命题1q :()y f x =在R 上是严格减函数,且()0f x >恒成立;命题2q :()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =,则下列说法正确的是( )A .1q 、2q 都是p 的充分条件B .只有1q 是p 的充分条件C .只有2q 是p 的充分条件D .1q 、2q 都不是p 的充分条件2.设x ∈R ,则“1x >”是“2320x x -+<”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.下列命题错误的是( )A .命题“若p 则q ”与命题“若q ⌝,则p ⌝”互为逆否命题B .命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”C .∀ 0x >且1x ≠,都有12x x+> D .“若22am bm <,则a b <”的逆命题为真4.命题“若{}n a 是等比数列,则n n k n k na a a a +-=(n k >且*,n k N ∈)的逆命题、否命题与逆否命题中,假命题的个数为( ) A .0 B .1 C .2D .3 5.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( )A .p ∧qB .¬p ∨qC .¬p ∧qD .¬p ∨q ⌝ 6.下列说法不正确的是( )A .命题“若a b >,则ac bc >”是真命题B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”7.设0a >,0b >.下列说法正确的是( )A .2ln 2ln a b a b +<+则a b >B .2ln 2ln a b a b +<+则a b <C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b < 8.下列说法中正确的是( )A .命题“若x y =,则22x y =”的逆命题为真命题B .若p q ∧为假命题,则,p q 均为假命题C .若p q ∧为假命题,则p q ∨为真命题D .命题“若两个平面向量,a b 满足||||||a b a b ⋅>⋅,则,a b 不共线”的否命题是真命题. 9.已知命题:,sin cos 10p x R x x ∀∈++;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-;则下列命题中是真命题的是( )A .pB .()p q ∨⌝C .()p q ⌝∧D .p q ∧10.已知ABC 的三个内角分别为A ,B ,C ,则“A B C <<”是“cos cos cos A B C >>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件二、填空题13.若命题“方程230x mx -+=在[]1,2上有解”为假命题,则m 的取值范围是______. 14.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 15.若命题“存在,x R ∈220x x a ++≤”是假命题,则实数a 的取值范围是________. 16.已知a R ∈ ,则“16a =”是“两直线1:210l x ay +-=与()2:3110l a x ay ---=平行”的___________条件(填“充分非必要”、“必要非充分”、“充要”、“既不充分也不必要”). 17.“2a =”是“集合{(,)|}{(,)|||}x y y x a x y y a x =+=的子集恰有4个”的________条件(填充分不必要、必要不充分、充要、既不充分又不必要之一)18.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________.19.有下列命题: ①“若0x y +>,则00x y >>且”的否命题;②“矩形的对角线相等”的否命题;③“若m 1≥,则22(1)30mx m x m -+++>的解集是R ”的逆命题;④“若7a +是无理数,则a 是无理数”的逆否命题.其中正确命题的序号是____________20.下列说法:(1)设a ,b 是正实数,则“a >b >1”是“log 2a >log 2b”的充要条件;(2)对于实数a ,b ,c ,如果ac >bc ,则a >b ;(3)“m=12”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;(4)等比数列{a n }的公比为q ,则“a 1>0且q >1”是对任意n ∈N +,都有a n+1>a n 的充分不必要条件;其中正确的命题有______三、解答题21.已知p :2443x -⎛⎫≤ ⎪⎝⎭, q :22210x x m -+-≤(0m >).若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围.22.已知命题p :方程2220x ax a +-=在[]1,1-上有解;命题q :只有一个实数0x 满足不等式20020x ax a ++≤,若命题“p q ∨”是假命题,求a 的范围. 23.已知函数()1-=+x a f x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭. (1)求实数a ;(2)若函数()1322⎛⎫=+- ⎪⎝⎭g x f x ,求函数()g x 的解析式; (3)已知命题p :“任意x ∈R 时,()220++≤g ax ax ”,若命题p ⌝是假命题,求实数a 的取值范围.24.设有两个命题.命题p :不等式()2110x a x -++≤的解集是∅;命题q :函数()(1)x f x a =+在定义域内是增函数.如果p q ∧为假命题,p q ∨为真命题,求a 的取值范围.25.已知集合{}228120A x x ax a =-+>,其中0a >;集合()(){}120B x x x =--≥. (1)若1a =,求A B ;(2)若:p x A ∈,:q x B ∈,且p 是q 的必要不充分条件,求实数a 的取值范围. 26.设命题p :实数x 满足()()20x a x a --<,其中0a >;命题q :实数x 满足()()216220x x --≤. (1)若2a =,,p q 都是真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先由命题1q 成立时,利用单调性和函数值为正,结合不等式性质即推出命题p 成立,再由命题2q 成立时,利用单调性和函数零点,推出命题p 成立,即得结果.【详解】命题1q 成立,即()y f x =在R 上是严格减函数,且()0f x >恒成立,故取0a >时,对任意的x ∈R ,x a x +>,则()()f x a f x +<,()0f a >即0()f a <,故()()()+<+f x a f x f a ,即命题1q 可推出命题p ,1q 是p 的充分条件;命题2q 成立,()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =, 故取00a x =<时,对任意的x ∈R ,x a x +<,则()()f x a f x +<,0()()0f a f x ==,()()()f x a f x f a +<+,即命题2q 可推出命题p , 2q 是p 的充分条件;故1q 、2q 都是p 的充分条件.故选:A.【点睛】本题解题关键在于分别由命题1q 、2q ,利用函数的单调性和值的分布特征去证明命题p ,即突破难点.2.B解析:B【分析】先解不等式2320x x -+<得12x <<,再根据基本关系判定即可得答案.【详解】解:解不等式2320x x -+<得12x <<,因为()()1,21,+∞,所以“1x >”是“2320x x -+<”的必要不充分条件.故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 3.D解析:D【分析】对给出的四个选项分别进行判断可得结果.【详解】对于选项A ,由逆否命题的定义可得,命题“若p 则q ”的逆否命题为“若q ⌝,则p ⌝”,所以A 正确.对于选项B ,由含量词的命题的否定可得,命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”,所以B 正确.对于选项C ,当0x >且1x ≠时,由基本不等式可得12x x+>.所以C 正确. 对于选项D ,命题“若a b <,则22am bm <”当0m =时不成立,所以D 不正确. 故选D .【点睛】由于类似问题考查的内容较多,解题的关键是根据每个命题对应的知识解决,要求对相关知识要有一个整体性的掌握,本题考查综合运用知识解决问题的能力.4.A解析:A【分析】先判断原命题为真命题,由此得出逆否命题是真命题;判断出原命题的逆命题为真命题,由此判断原命题的否命题也是真命题,由此确定假命题的个数.【详解】若{}n a 是等比数列,则n a 是n k a -与n k a +的等比中项,所以原命题是真命题,从而,逆否命题是真命题; 反之,若(*)n n k n k n a a n k n k a a +-=>∈N ,,,则当1k =时,11(1*)n n n na a n n a a +-=>∈N ,, 所以{}n a 是等比数列,所以逆命题是真命题,从而,否命题是真命题.故选:A .【点睛】本小题主要考查四种命题及其相互关系,考查等比数列的性质,属于基础题.5.D解析:D【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案.【详解】∵命题q 是假命题,命题p 是真命题,∴“p ∧q”是假命题,即A 错误;“¬p ∨q”是假命题,即B 误;“¬p ∧q”是假命题,即C 错误;“p q ⌝∨⌝ ”是真命题,故D 正确错;故选D .【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.6.A解析:A【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可.【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式.所以答案选A【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目. 7.B解析:B【分析】举反例说明C,D 不成立,再根据函数2ln x y x =+单调性,进而确定选项.【详解】 因为311123112ln12ln 2,2ln 2ln ,ee e e-<--<-所以CD 不成立; 因为2ln x y x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题. 8.D解析:D【分析】A 中,利用四种命题的的真假判断即可;B 、C 中,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题;D 中,写出该命题的否命题,再判断它的真假性.【详解】对于A ,命题“若x y =,则22x y =”的逆命题是:若22x y =,则x y =;因为y x =-也成立.所以A 不正确;对于B ,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题,所以B 错误;C 错误;对于D ,“平面向量,a b 满足||||||a b a b ⋅>⋅”,则,a b 不共线的否命题是,若“平面向量,a b 满足||||||a b a b ⋅≤⋅”,则,a b 共线; 由||||cos a b a b θ⋅=⋅⨯知:||||||a b a b ⋅≥⋅,一定有||||||a b a b ⋅=⋅,cos 1θ=±, 所以,a b 共线,D 正确.故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题.9.C解析:C【分析】由辅助角公式化简命题p ,利用特殊值判断命题p 为假命题;根据直线与圆相切的性质,结合点到直线距离公式,可求得m 的值,判断出命题q 为真命题.即可由复合命题真假判断选项.【详解】命题:,sin cos 10p x R x x ∀∈++≥由辅助角化简可得sin cos 114x x x π⎛⎫++=++ ⎪⎝⎭,可知当34x π=-104x π⎛⎫++< ⎪⎝⎭,故p 为假; 命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-若直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切,则d ==, 即|1|4d m =+=,解得3m =或5m =-,故q 为真,故()p q ⌝∧为真,故选:C.【点睛】本题考查了三角函数式的化简,根据直线与圆位置关系求参数的值,充分必要条件的判定,复合命题真假的判断,综合性强,属于中档题. 10.C解析:C【分析】结合余弦函数在()0,π上的单调性,分别判断充分性与必要性,可得出答案.【详解】先来判断充分性:ABC 的三个内角分别为A ,B ,C ,由A B C <<可得0πA B C <<<<,因为函数cos y x =在()0,π上单调递减,所以cos cos cos A B C >>,故充分性成立; 再来判断必要性:ABC 的三个内角分别为A ,B ,C ,且0πA <<,0πB <<,0πC <<,因为函数cos y x =在()0,π上单调递减,且cos cos cos A B C >>,所以0πA B C <<<<,即A B C <<,故必要性成立.所以“A B C <<”是“cos cos cos A B C >>”的充分必要条件.故选:C.【点睛】本题考查命题的充分性与必要性,考查余弦函数单调性的应用,考查学生的推理论证能力,属于基础题.11.B解析:B【分析】利用导数法求出()cos f x ax x =+为R 上的增函数等价命题,进而根据集合的包含关系即可判断.【详解】()cos f x ax x =+,()sin f x a x '=-,若函数()y f x =在R 上单调递增,则()0f x '≥在R 上恒成立,即()max sin 1a x ≥=. 由于{}1a a > {}1a a ≥,故命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的充分不必要条件,故选:B.【点睛】本题考查充分不必要条件的判断,同时也考查了利用函数的单调性求参数,一般转化为导数不等式恒成立问题,考查推理能力与运算求解能力,属于中等题. 12.A解析:A【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可.【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立.故选:A .【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.二、填空题13.【分析】先求出方程在上有解为真命题时的取值范围即在上有解然后再求补集即可得到答案【详解】若方程在上有解为真命题即在上有解设由勾型函数的单调性易得函数在上单调递减在上单调递增由则此时所以在上有解则所以解析:((4,)-∞⋃+∞【分析】先求出方程230x mx -+=在[]1,2上有解为真命题时m 的取值范围,即3m x x =+在[]1,2上有解,然后再求补集即可得到答案.【详解】若方程230x mx -+=在[]1,2上有解为真命题. 即3m x x=+在[]1,2上有解,设()3f x x x =+由勾型函数的单调性,易得函数()3f x x x =+在1⎡⎣, 上单调递减,在2⎤⎦上单调递增.由f =()()714,22f f ==,则此时()4f x ≤所以3m x x=+在[]1,2上有解,则4m ≤≤所以若方程230x mx -+=在[]1,2上有解为真命题,则4m ≤≤所以命题“方程230x mx -+=在[]1,2上有解”为假命题时,4m >或m <故答案为:((4,)-∞⋃+∞【点睛】关键点睛:本题考查根据命题的真假求参数的范围,解答本题的关键是先求出方程230x mx -+=在[]1,2上有解为真命题时m 的取值范围,即即3m x x=+在[]1,2上有解得到4m ≤≤,从而得出当4m >或m <“方程230x mx -+=在[]1,2上有解”为假命题,属于中档题.14.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围.【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min 2a x x≤-, 因为22y x x =-图象开口向上,对称轴为1x =,则()2min 2121x x -=-=-,∴1a ≤-,故答案为: (],1-∞-.【点睛】本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.15.【分析】根据所给的特称命题的否定:任意实数是真命题得到判别式小于0解不等式即可【详解】命题存在的否定任意实数是真命题解得:故答案为:【点睛】本题考查命题的否定写出正确的全称命题并且根据这个命题是一个 解析:1a >【分析】根据所给的特称命题的否定:任意实数x ,220x x a ++>是真命题,得到判别式小于0,解不等式即可.【详解】命题“存在x ∈R , 220x x a ++≤”的否定“任意实数x , 220x x a ++>”是真命题,∴440a ∆=-<,解得:1a >,故答案为:1a >.【点睛】本题考查命题的否定,写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况,属于容易题.16._充分非必要【解析】【分析】由两直线l1:x+2ay ﹣1=0与l2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值再由充分必要条件的判定得答案【详解】解:由两直线l1:x+2ay ﹣1=0与l2:(3a解析:_充分非必要【解析】【分析】由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值,再由充分必要条件的判定得答案.【详解】解:由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行,可得()23101310a a a a ⎧---=⎨-+-≠⎩ ,即a =0或a =16 .∴“a =16”是“两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行”的充分非必要条件. 故答案为充分非必要.【点睛】本题考查充分必要条件的判定,考查两直线平行与系数的关系,是基础题.17.充分不必要【分析】将代入函数解析式画出函数图像根据交点个数即可判断是否有4个子集;根据有有4个子集可知两个函数有2个交点即可求得的取值范围进而判断充分必要性【详解】当时集合为画出两个函数图像如下图所 解析:充分不必要【分析】将2a =代入函数解析式, 画出函数图像,根据交点个数即可判断是否有4个子集;根据有有4个子集,可知两个函数有2个交点,即可求得a 的取值范围,进而判断充分必要性.【详解】当2a =时,集合为{(,)|2}x y y x =+,{(,)|2||}x y y x =,画出两个函数图像如下图所示:由图像可知, 2y x =+与2y x =有2个交点,所以{(,)|}{(,)|||}x y y x a x y y a x =+=有两个元素.则有4个子集,所以是充分性若集合{(,)|}{(,)|||}x y y x a x y y a x =+=的子集恰有4个,则两个函数必有2个交点,满足条件的得a 的取值范围为1a >,所以是非必要性综上可知, “2a =”是“集合{(,)|}{(,)|||}x y y x a x y y a x =+=的子集恰有4个”的充分不必要条件故答案为: 充分不必要【点睛】本题考查了充分必要条件的简单应用,注意问题最后不是求的交点个数,而是交集的子集个数,属于中档题.18.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值解析:(,0)(2,)-∞+∞【分析】根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t t t >->,求解2t t -的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭值域为R 当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,201104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞ 故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识. 19.①③④【解析】对于①若则的逆命题为若则故逆命题为真命题则否命题也为真故①正确;对于②矩形的对角线相等的逆命题为对角线相等的四边形是矩形为假命题故其逆命题也为假故②错误;对于③其逆命题为:若的解集是则解析:①③④【解析】对于①“若0x y +>,则00x y >>且”的逆命题为“若00x y >>且,则0x y +>”故逆命题为真命题,则否命题也为真,故①正确;对于②“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”为假命题,故其逆命题也为假,故②错误;对于③其逆命题为:若()22130mx m x m -+++>的解集是R ,则1m ≥,当该不等式解集为R 时,1.0m =时,不合题意,2.()()2041430m m m m >⎧⎪⎨=+-+<⎪⎩解得1m ,故逆命题为真,即③正确;对于④,原命题为真,故逆否命题也为真,故④正确,即正确的序号为①③④,故答案为①③④.20.(3)(4)【分析】利用充要条件不等式性质两直线垂直的充要条件等比数列为递增数列的条件逐一判断即可【详解】对于(1)求得所以是的充分不必要条件所以错误对于(2)不成立所以错误对于(3)直线与直线相互 解析:(3)(4)【分析】利用充要条件、不等式性质、两直线垂直的充要条件、等比数列为递增数列的条件,逐一判断即可.【详解】对于(1)22"log log "a b >求得0a b >>,所以"1"a b >>是22"log log "a b >的充分不必要条件,所以错误对于(2)0c <不成立,所以错误对于(3)直线()2310m x my +++=与直线()()2230m x m y -++-=相互垂直,12m =或2m =-,所以正确 对于(4)1"0a >且1"q >可以推出对任意n N +∈,都有1n n a a +>,反之不成立,如数列16,8,4,2----,所以正确故答案为(3)(4)【点睛】本题考查了命题真假的判断,涉及到不等式性质、充要条件、等比数列的单调性等知识,属于中档题.三、解答题21.9m ≥【分析】本题根据题意先化简p ⌝、q ⌝,再根据p ⌝是q ⌝的必要非充分条件判断出B 是A 的真子集,最后根据包含关系求参数范围即可.【详解】p ⌝:24()43x ->,解得:2x <-或10x >,则{|2A x x =<-或10}x >, q ⌝:22210x x m +-->,即[(1)][(1)]0x m x m ---+>,又11m m -<+, 解得:1x m <-或1x m >+,则{|1B x x m =<-或1}x m >+, ∵p ⌝是q ⌝的必要非充分条件,∴B A ⊆且B A ≠,即12110m m -≤-⎧⎨+≥⎩(等号不同时成立),∴9m ≥. 【点睛】本题考查根据必要不充分条件求参数,是中档题.22.2a >且8a ≠或2a <-【分析】先根据条件求出命题,p q 的等价命题,再根据命题“p q ∨”是假命题求解即可.【详解】由2220x ax a +-=,得:()()20x a x a -⋅+=, 解得:2a x =或x a =-, 当命题p 为真命题时,12a ≤或1a -≤, 所以22p a ⇔-≤≤, 又因为“只有一个实数0x 满足不等式20020x ax a ++≤”,即抛物线22y x ax a =++与x 轴只有一个交点,所以280a a ∆=-=,解得:0a =或8a =,即q ⇔0a =或8a =,若命题“p q ∨”是假命题,即命题,p q 均为假命题,所以有:2a >且8a ≠或2a <-【点睛】本题考查了命题的等价命题的计算以及p q ∨为假命题的等价命题,考查了学生的计算能力,属于一般题.23.(1)12a =(2)11()22x g x ⎛⎫=- ⎪⎝⎭(3)[0,4] 【分析】(1)因为函数()1-=+x a f x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭,可得1212a a -+=,即可求得答案;(2)因为()121121x x a f x a --=+=+,13()22g x f x ⎛⎫=+- ⎪⎝⎭,即可求得答案; (3)命题p ⌝是假命题,故命题p 是真命题,当x ∈R 时,()220++≤g ax ax 恒成立, 函数11()22x g x ⎛⎫=- ⎪⎝⎭,不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立,即可求得答案.【详解】(1)函数()1-=+x a f x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭. 1212a a -∴+= ,即121a a -= 解得:12a =, (2)由(1)12a = ∴()121121x x a f x a --=+=+1122131311()1222222x xg x f x ⎛⎫+- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴=+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11()22xg x ⎛⎫∴=- ⎪⎝⎭ (3)命题p ⌝是假命题,故命题p 是真命题, ∴当x ∈R 时,()220++≤g ax ax 恒成立, 函数11()22xg x ⎛⎫=- ⎪⎝⎭ ∴不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立, 即221122++⎛⎫≤ ⎪⎝⎭ax ax 在R 上恒成立 根据指数函数单调可知:12x y ⎛⎫= ⎪⎝⎭是减函数 ∴221ax ax ++≥在R 上恒成立即210ax ax ++≥在R 上恒成立,当0a =时,不等式化为10≥成立;当0a ≠时,则需满足2040a a a >⎧⎨-≤⎩, 解得04a <≤,综上所述,实数a 的取值范围是[0,4].【点睛】本题主要考查了求解函数解析式和根据不等式恒成立求参数范围,解题关键是掌握函数的基础知识和含参数一元二次不等式恒成立的解法,属于难题.24.][()3,01,-⋃+∞【分析】根据一元二次不等式的解集、指数函数单调性可分别求得,p q 为真命题时a 的范围;由复合命题真假性可知,p q 一真一假,则分别讨论两种情况得到结果.【详解】若命题p 为真,则()2140a ∆=+-<,解得:31a -<<若命题q 为真,则11a +>,解得:0a >p q ∧为假命题,p q ∨为真命题 ,p q ∴一真一假若p 真q 假,则30a -<≤;若p 假q 真,则1a ≥a ∴的取值范围为(][)3,01,-+∞【点睛】 本题考查根据复合命题真假性求解参数范围的问题,涉及到根据一元二次不等式的解集求解参数范围、根据指数函数单调性求解参数范围的问题;关键是能够根据复合命题的真假性确定两个命题的真假性.25.(1){}12x x ≤<;(2)106a <<或1a >. 【分析】(1)解一元二次不等式化简集合A ,B ,代入a 的值,求出A ,B 的交集即可; (2)问题转化为B 是A 的真子集,根据集合的包含关系列不等式求出a 的范围即可.【详解】由已知,0a > 所以{}()(){}{2281202602A x x ax a x x a x a x x a =-+>=-->=<或}6x a > ()(){}{}12012B x x x x x =--≥=≤≤(1)当1a =时{2A x x =<或}6x > {}12B x x =≤≤ 所以{}12A B x x ⋂=≤<.(2){2A x x a =<或}6x a > {}12B x x =≤≤因为p 是q 的必要不充分条件,所以B 是A 的真子集,所以22a <或16a > ,即16a <或1a > 又因为0a >,所以106a <<或1a >. 【点睛】关键点点睛:转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将必要不充分条件问题转化为集合之间的包含关系是解题的关键.26.(1)()2,4;(2)[]1,2.【分析】(1)先分别求出命题p ,q 为真时对应的集合,取交集即可求出x 的范围;(2)根据集合间的基本关系与充分、必要条件的关系列出不等式即可求出a 的取值范围.【详解】(1)当2a =时,由()()240x x --<,得命题p :{}24P x x =<<,由()()216220x x --≤,所以命题q :{}14Q x x =≤≤, ,p q 都是真命题,即()2,4P Q =,因此x 的取值范围是()2,4;(2)由题意可得{}2P x a x a =<<,{}14Q x x =≤≤,若p 是q 的充分不必要条件所以P Q .当=P ∅即0a ≤时,因为0a >不成立;当P ≠∅即0a >时, 124a a ≥⎧⎨≤⎩[]11,22a a a ≥⎧⇒⇒∈⎨≤⎩, 故a 的取值范围是[]1,2.【点睛】结论点睛:本题主要考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.。
第一章常用逻辑用语§命题课时目标.了解命题的概念,会判断一个命题的真假.了解四种命题及四种命题的相互关系,并会判断四种命题的真假..命题的定义可以判断、用或表述的语句叫作命题,其中的命题叫作真命题,的命题叫作假命题..命题的结构一般地,一个命题由和两部分组成.在数学中,通常把命题表示为“”的形式,其中是条件,是结论..四种命题的概念:()对于两个命题,如果一个命题的条件和结论分别是另一个命题的,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.()对于两个命题,如果一个命题的条件和结论恰好是另一个命题的,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.()对于两个命题,如果一个命题的条件和结论恰好是另一个命题的,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题..四种命题的真假性之间的关系:()两个命题互为逆否命题,它们有的真假性;()两个命题为互逆命题或互否命题,它们的真假性关系.一、选择题.下列语句是命题的是()①三角形内角和等于°;②>;③一个数不是正数就是负数;④>;⑤这座山真险啊!.①②③.①③④.①②⑤.②③⑤.下列命题中,是真命题的是().{∈+=}不是空集.若=,则=.空集是任何集合的真子集.-=的根是自然数.命题“的倍数既能被整除,也能被整除”的结论是().这个数能被整除.这个数能被整除.这个数既能被整除,也能被整除.这个数是的倍数.有下列四个命题:①“若=,则、互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若≤-,则方程-++=有实根”的逆否命题;④若“∪=,则⊇”的逆否命题.其中的真命题是().①②.②③.①③.③④.命题“当=时,△为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是().....命题“若函数()=(>,≠)在其定义域内是减函数,则<”的逆否命题是().若≥,则函数()=(>,≠)在其定义域内不是减函数.若<,则函数()=(>,≠)在其定义域内不是减函数.若≥,则函数()=(>,≠)在其定义域内是减函数.若<,则函数()=(>,≠)在其定义域内是减函数题号答案。
模块复习课MOKUAIFUXIKE第1课时 常用逻辑用语课后训练案巩固提升A 组1.命题“存在x 0∈R ,-2x 0+1<0”的否定是( )x 20A .存在x 0∈R ,-2x 0+1≥0x 20B .存在x 0∈R ,-2x 0+1>0x 20C .对任意x ∈R ,x 2-2x+1≥0D .对任意x ∈R ,x 2-2x+1<0解析:特称命题的否定是全称命题,“-2x 0+1<0”的否定是“x 2-2x+1≥0”.x 20答案:C2.“0<a<3”是“双曲线=1(a>0)的离心率大于2”的( )x 2a ‒y 29 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:双曲线=1(a>0)的离心率大于2,a>0,可得e=>2,解得0<a<3.x 2a ‒y 291+9a ∴“0<a<3”是“双曲线=1(a>0)的离心率大于2”的充要条件.x 2a ‒y 29答案:C3.“若x2=1,则x=1或x=-1”的否命题是( )A.若x2≠1,则x=1或x=-1B.若x2=1,则x≠1且x≠-1C.若x2≠1,则x≠1或x≠-1D.若x2≠1,则x≠1且x≠-1解析:否命题是命题的条件与结论分别是原命题条件的否定和结论的否定.“或”的否定是“且”.答案:D4.已知命题p:若x>y,则-x<-y;命题q:若x>y.则x2>y2.在命题①p且q;②p或q;③p且(非q);④(非p)或q中,真命题是( )A.①③B.①④C.②③D.②④解析:根据不等式的性质可知,若x>y,则-x<-y成立,即p为真命题;当x=1,y=-1时,满足x>y,但x2>y2不成立,即命题q为假命题.所以①p且q为假命题;②p或q为真命题;③p且(非q)为真命题;④(非p)或q为假命题.故选C.答案:C5.导学号90074092设α,β,γ为平面,m,n为直线,则m⊥β的一个充分条件是( )A.α⊥β,α∩β=n,m⊥nB.α∩γ=m,α⊥γ,β⊥γC.α⊥β,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α解析:对于选项A:α⊥β,α∩β=n,m⊥n,根据面面垂直的判定定理可知,缺少条件m⊂α,故不正确;对于选项B:α∩γ=m,α⊥γ,β⊥γ,而α与β可能平等,也可能相交,则m与β不一定垂直,故不正确;对于选项C:α⊥β,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于选项D:因为n ⊥α,n ⊥β,所以α∥β,又因为m ⊥α,所以m ⊥β,正确.故选D .答案:D6.“相似三角形的面积相等”的否命题是 ,它的否定是 .解析:首先分清原命题的条件和结论,否命题是对条件和结论同时进行否定,而命题的否定是只对命题的结论进行否定.答案:若两个三角形不相似,则它们的面积不相等 有些相似三角形的面积不相等7.已知f (x )=x 2+2x-m ,如果f (1)>0是假命题,f (2)>0是真命题,那么实数m 的取值范围是 .解析:依题意,∴3≤m<8.{f (1)=3-m ≤0,f (2)=8-m >0,答案:[3,8)8.已知不等式|x-m|<1成立的一个充分不必要条件是<x<,则实数m 的取值范围是 .1312解析:不等式|x-m|<1⇔m-1<x<m+1的一个充分不必要条件是<x<,则⫋{x|m-1312{x |13<x <12}1<x<m+1},则{m +1≥12,m -1<13,或{m +1>12,m -1≤13,∴-≤m ≤.1243答案:[-12,43]9.写出命题“若a ≥-,则方程x 2+x-a=0有实根”的逆命题、否命题和逆否命题,并判断它们的真假.14解逆命题:若方程x 2+x-a=0有实根,则a ≥-.否命题:若a<-,则方程x 2+x-a=0无实根.逆否命题:若方1414程x 2+x-a=0无实根,则a<-.由Δ=1+4a ≥0,可得a ≥-,所以可判断其原命题、逆命题、否命题和逆1414否命题都是真命题.10.已知命题p :对任意的m ∈[-1,1],不等式a 2-5a-3≥m+2恒成立;命题q :x 2+ax+2<0有解,若p 且(非q )为真,求实数a 的取值范围.解∵p 且(非q )为真,∴p 为真命题,q 为假命题.由题设知,对于命题p :∵m ∈[-1,1],∴m+2∈[1,3].∵不等式a 2-5a-3≥3恒成立,∴a 2-5a-6≥0,解得a ≥6或a ≤-1.对于命题q :∵x 2+ax+2<0有解,∴Δ=a 2-8>0,解得a<-2或a>2.22由q 为假命题知-2≤a ≤2.22∴a 的取值范围是{a|-2≤a ≤-1}.2B 组1.下列命题的否定是真命题的是( )A .有理数是实数B .末位是零的实数能被2整除C .存在x 0∈R ,2x 0+3=0D .任意x ∈R ,x 2-2x>0解析:只有原命题为假命题时,它的否定才是真命题,A,B,C 为真命题,D 为假命题.2.“m=-1”是“直线mx+(2m-1)y+2=0与直线3x+my+3=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:直线mx+(2m-1)y+2=0与直线3x+my+3=0垂直的充要条件是3m+m (2m-1)=0,解得m=0或m=-1.故选A .答案:A3.已知命题p 1:存在x 0∈R ,使得+x 0+1<0成立;命题p 2:对任意的x ∈[1,2],x 2-1≥0.以下命题为真命题x 20的是( )A .(非p 1)且(非p 2)B .p 1或(非p 2)C .(非p 1)且p 2D .p 1且p 2解析:∵对任意的x ∈R ,x 2+x+1=>0成立,∴命题p 1为假命题.∵函数f (x )=x 2-1在[1,2]上单(x +12)2+34调递增,∴任意x ∈[1,2],f (x )≥f (1)=0,∴命题p 2为真命题.∴(非p 1)且p 2为真命题.故选C .答案:C4.命题“对任意的x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥5B .a ≤4C .a ≥4D .a ≤5解析:由任意x ∈[1,2],x 2-a ≤0可得M={a|a ≥4},根据充分不必要条件可知需要寻找的是集合M 的真子集.5.下列命题正确的是( )A .在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,则a>b 是cos A<cos B 的充要条件B .命题p :对任意的x ∈R ,x 2+x+1>0,则非p :对任意的x ∈R ,x 2+x+1≤0C .已知p :>0,则非p :≤01x +11x +1D .存在实数x ∈R ,使sin x+cos x=成立π2解析:对于选项A,在△ABC 中大边对大角,由a>b ,得A>B ,又余弦函数在(0,π)内单调递减,所以cos A<cos B ;又由A ,B ∈(0,π),cos A<cos B 时得A>B ,故a>b ,所以选项A 正确.对于选项B,命题p 的否定非p 应为:存在x 0∈R ,使+x 0+1≤0,故选项B 不正确.x 20对于选项C,p :>0⇔p :x>-1,故非p 为x ≤-1,而不是≤0,故C 不正确.1x +11x +1对于选项D,sin x+cos x 的最大值为,小于,因而选项D 也不正确.2π2答案:A6.在命题“若m>-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是 .解析:原命题为假命题,则逆否命题也为假命题,逆命题也是假命题,则否命题也是假命题.故假命题的个数为3.答案:37.已知p :-4<x-a<4,q :(x-2)(3-x )>0,若非p 是非q 的充分条件,则实数a 的取值范围是 . 解析:p :a-4<x<a+4,q :2<x<3,∵由非p 是非q 的充分条件(即非p ⇒非q ),∴q ⇒p ,∴{a -4≤2,a +4≥3,∴-1≤a ≤6.答案:[-1,6]8.导学号90074093已知命题p :不等式<0的解集为{x|0<x<1};命题q :在△ABC x x -1中,“A>B ”是“sin A>sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p 且q ”为真;③“p 或q ”为真;④p 假q 真,其中正确结论的序号是 .解析:解不等式知,命题p 是真命题;在△ABC 中,“A>B ”是“sin A>sin B ”的充要条件,∴命题q 是假命题.∴①正确,②错误,③正确,④错误.答案:①③9.已知p :方程=1表示焦点在y 轴上的椭圆;q :实数m 满足m 2-(2a+1)m+a 2+a<0,且非q 是x 2m -1+y 22-m 非p 的充分不必要条件,求实数a 的取值范围.解p :方程=1表示焦点在y 轴上的椭圆,得2-m>m-1>0,解得1<m<.x 2m -1+y 22-m 32q :实数m 满足m 2-(2a+1)m+a 2+a<0化为(m-a )[m-(a+1)]<0,解得a<m<a+1.又非q 是非p 的充分不必要条件,∴p ⇒q.∴{a ≤1,32≤a +1,解得≤a ≤1.12经过检验a=或1时均适合题意.12故a 的取值范围是≤a ≤1.1210.给出两个命题:命题p :关于x 的不等式x 2+(a-1)x+a 2≤0的解集为⌀,命题q :函数y=(2a 2-a )x 为增函数.分别求出符合下列条件的实数a 的范围.(1)“p 或q ”为真命题;(2)“p 且q ”为假命题,“p 或q ”为真命题.解命题p 为真时,Δ=(a-1)2-4a 2<0,即a>或a<-1.13命题q 为真时,2a 2-a>1,即a>1或a<-.12(1)“p 或q ”为真命题时,即命题p ,q 至少有一个是真命题,即上面两个范围取并集,∴a 的取值范围是.{a |a <-12或a >13}(2)“p 且q ”为假,“p 或q ”为真,即命题p ,q 中有且只有一个是真命题,有两种情况:p 真q 假时,<a ≤1;13p 假q 真时,-1≤a<-.12∴a 的取值范围为.{a |13<a ≤1或-1≤a <-12}。
2020北师大版高中数学选修2-1《第一章常用逻辑用语》章末复习学案(含答案)
章末复习章末复习学习目标
1.理解命题及四种命题间的相互关系.
2.掌握充分条件.必要条件的判定方法.
3.理解逻辑联结词的含义,会判断含有逻辑联结词的命题的真假.
4.理解全称量词.存在量词的含义,会判断全称命题.特称命题的真假,会求全称命题和特称命题的否定.
1.命题及其关系1判断一个语句是否为命题,关键是为陈述句;能判断真假.2互为逆否命题的两个命题的真假性相同.3四种命题之间的关系如图所示.
2.充分条件与必要条件1如果pq,那么称p是q的充分条件,q是p的必要条件.2分类充要条件pq且qp,记作pq;充分不必要条件pq,qp;必要不充分条件qp,pq;既不充分又不必要条件pq,且qp.
3.简单的逻辑联结词与量词1常见的逻辑联结词有
“且”“或”“非”.2短语“所有”“任意”“每一个”等表示全体的量词在逻辑中通常称为全称量词.3短语“有一个”“有些”“存在一个”“至少一个”等表示部分的量词在逻辑中通常称为存在量词.
4.含有全称量词的命题叫作全称命题,含有存在量词的命题叫作特称命题.
1.命题“若x0且y0,则xy0”的否命题是假命题.
2.“所有奇数都是质数”的否定“至少有一个奇数不是质数”是真命题.
3.命题“若p,则q”与命题“若綈p,则綈q”的真假性一致.
4.已知命题p存在xR,x20,命题q任意xR,x2x,则命题p 或綈q是假命题.题型一命题及其关系例11有下列命题“若xy0,则x0且y0”的否命题;“矩形的对角线相等”的否命题;“若
q1,则x22xq0有实根”的逆否命题;“非等边三角形的三个内角相等”.其中是真命题的是
A.
B.
C.
D.考点四种命题的概念题点判断四种命题的真假答案D2设a,b,c是非零向量,已知命题p若ab0,bc0,则ac0;命题q若ab,bc,则ac.则下列命题中真命题是
A.p或q
B.p且q
C.綈p且綈q
D.p或綈q考点四种命题的概念题点四种命题定义的应用答案A解析由向量数量积的几何意义可知,命题p为假命题;命题q 中,当b0时,a,c一定共线,故命题q是真命题.故p或q为真命题.反思感悟1互为逆否命题的两命题真假性相同.2“p与綈p”一真一假,“p或q”一真即真,“p且q”一假就假.跟踪训练11命题“若x21,则x1”的逆否命题是
A.若x21,则1x1
B.若1x1,则x21
C.若11考点四种命题的概念题点四种命题定义的应用答案B2设命题p函数ysin2x的最小正周期为2;命题q函数ycosx的图像关于直线x2对称.则下列判断正确的是
A.p为真
B.q为真
C.p且q为假
D.p或q为真考点“或”“且”“非”的综合问题题点判断复合命题的真假答案C解析由题意知p是假命题,q是假命题,因此只有C正确.题型二题型二
充要条件充要条件例21设xR,则“x23x0”是“x4”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件考点对充分条件与必要条件的理解及判断题点充分条件与必要条件答案B解析解x23x0,得x3,所以x3x4,而x4x3,故x23x0是x4的必要不充分条件.2已知直线a,b分别在两个不同的平面,内,则“直线a和直线b相交”是“平面和平面相交”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件考点对充分条件与必要条件的理解及判断题点充分条件与必要条件答案A解析当两个平面内的直线相交时,这两个平面有公共点,即两个平面相交;但当两个平面相交时,两个平面内的直线不一定有交点.反思感悟分清条件与结论,准确判断pq,还是qp.跟踪训练2已知p1x132,
qx22x1m20m0,若綈p是綈q的必要不充分条件,求实数m的取值范围.考点逻辑中的等价转化思想题点等价命题的转化解由
x22x1m20m0,得1mx1m.由1x132,得2x
10.由綈p是綈q的必要不充分条件知,p是q的充分不必要条件,m0,1m2,1m10,且不等式组中的等号不能同时成立,得m
9.题型三
逻辑联结词与量词的综合应用例3已知p存在xR,mx2
20.q任意xR,x22mx10,若p或q为假命题,则实数m的取值范围是
A.1,
B.,1
C.,2
D.1,1考点简单逻辑联结词的综合应用题点由含量词的复合命题的真假求参数的范围答案A解析因为p或q为假命题,所以p 和q都是假命题.由p存在xR,mx220为假,得任意xR,mx220,所以m0.由q任意xR,x22mx10为假,得存在xR,x22mx10,所以2m240m21m1或m
1.由和得m
1.反思感悟解决此类问题首先理解逻辑联结词的含义,掌握简单命题与含有逻辑联结词的命题的真假关系.其次要善于利用等价关系,如p真与綈p假等价,p假与綈p真等价,将问题转化,从而谋得最佳解决途径.跟踪训练3已知命题p关于x的不等式ax1a0,且a1的解集是x|x1a0,且a1的解集是x|x0,14a21
2.因为p或q为真命题,p且q为假命题,所以p和q一真一假,即“p假q真”或“p真q假”,故a1,a12或01”的否命题为“若x21,则x1”
B.命题“存在xR,x21”的否定是“任意xR,x21”
C.命题“若xy,则cosxcosy”的逆否命题为假命题
D.命题“若xy,则cosxcosy”的逆命题为假命题考点四种命题的概念题点判断四种命题的真假答案D解析A中,命题“若
x21,则x1”的否命题为“若x21,则x1”,A错误.B中,命题
“存在xR,x21”的否定是“任意xR,x21”,B错误.C中,“若xy,则cosxcosy”为真命题,则其逆否命题也为真命题,C错误.D中,命题“若xy,则cosxcosy”的逆命题“若cosxcosy,则xy”为假命题,D正确.
2.命题“若a3,则a6”以及它的逆命题.否命题.逆否命题中假命题的个数为
A.1
B.2
C.3
D.4考点四种命题的概念题点判断四种命题的真假答案B解析原命题正确,从而其逆否命题也正确;其逆命题为“若a6,则
a3”是假命题,从而其否命题也是假命题.因此4个命题中有2个假命题.
3.已知条件pxy2,条件qx,y不都是1,则p是q的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件考点充分.必要条件的判断题点充分不必要条件的判断答案A解析因为pxy2,qx,y不都是1,则pq,但qp,如x32,y12不都为1,可是xy
2.
4.已知命题p任意mR,x2mx10有解,命题q存在xN,
x2x10,则下列选项中是假命题的为
A.p且q
B.p且綈q
C.p或q
D.p或綈q考点“或”“且”“非”的综合问题题点判断复合命题的真假答案B解析pm240,故为真命题,q当x1时,满足
x2x10,所以q也为真命题,则p且綈q为假命题.
5.已知命题p|xa|0,若p是q的必要不充分条件,则实数a 的取值范围是________.考点充分.必要条件的综合应用题点由充分.必要条件求参数的范围答案2,5解析pa4xa4,q1x2,因为p 是q的必要不充分条件,所以1,2a4,a4,即a41,a42且等号不能同时取得,所以a的取值范围是2,
5.
1.判断含有逻辑联结词的命题的真假的关键是正确理解“或”“且”“非”的含义,应根据命题中所出现的逻辑联结词进行命题结构的分析与真假的判断.
2.条件的充要关系的常用判断方法1定义法直接判断若p则q,若q则p的真假.2等价法利用pq与綈q綈p,qp与綈p綈q,pq与綈q綈p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3利用集合间的包含关系判断Ax|px,Bx|qx,若
AB,则p是q的充分条件或q是p的必要条件;若AB,则p是q 的充要条件.。