2018届人教版数学九年级上册习题:21.3实际问题与一元二次方程第1课时当堂达标题
- 格式:doc
- 大小:51.50 KB
- 文档页数:3
21.3实际问题与一元二次方程(1)1.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A.10只B.11只C.12只D.13只2.某种植物的主干长出a个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为_____.3.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌. (1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?4.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?参考答案1.C2.1+a+a23.解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,根据题意,得60(1+x)2=24 000.解得x1=19,x2=-21(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)经过三轮培植后,得60(1+19)3=60×203=480 000(个).答:经过三轮培植后共有480 000个有益菌.4.解:设有x家公司出席了这次交易会,根据题意,得x(x-1)=78.解这个方程,得x1=13,x2=-12(舍去).答:有13家公司出席了这次交易会.5.解:设原来的两位数的个位数字为x,则十位数字为(x+2).根据题意,得(10x+x+2)2=10(x+2)+x+138.解得x1=-(舍去),x2=1.答:原来的两位数为31.6.解:设要向x个人发送短信.根据题意,得 x(x+1)=90,解得x1=9,x2=-10(舍去).答:一个人要向9个人发送短信. 2 111 14。
21.3 实际问题与一元二次方程第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.。
人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计一. 教材分析人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时,主要介绍了如何将实际问题转化为一元二次方程,并通过求解方程得到实际问题的解答。
本节课的内容是学生对一元二次方程知识的进一步拓展和应用,有助于提高学生的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念、解法和应用。
但实际问题与一元二次方程的结合,对学生而言是一个新的挑战。
因此,在教学过程中,教师需要关注学生对实际问题转化为数学问题的能力的培养,引导学生学会用数学的眼光看待实际问题。
三. 教学目标1.理解实际问题与一元二次方程之间的关系,学会将实际问题转化为一元二次方程。
2.掌握一元二次方程的解法,并能应用于实际问题的解答。
3.培养学生的数学思维能力,提高学生的数学应用能力。
四. 教学重难点1.教学重点:实际问题转化为一元二次方程的方法。
2.教学难点:如何引导学生发现实际问题与一元二次方程之间的联系。
五. 教学方法1.案例分析法:通过分析具体案例,引导学生发现实际问题与一元二次方程之间的关系。
2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。
3.合作交流法:鼓励学生之间相互讨论、分享心得,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示实际问题与一元二次方程之间的关系。
2.案例素材:准备一些实际问题,作为教学案例。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考实际问题与数学问题之间的关系,激发学生的学习兴趣。
2.呈现(10分钟)教师展示几个实际问题,让学生尝试将其转化为一元二次方程。
学生在课堂上进行讨论,分享自己的思路。
教师引导学生总结实际问题转化为一元二次方程的方法。
3.操练(10分钟)教师给出一些实际问题,学生独立将其转化为一元二次方程,并求解。
21.3实际问题与一元二次方程基础闯关全练拓展训练1.(2017江苏无锡滨湖期中)商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台.为了促销,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使消费者得到更多实惠,每台冰箱应降价()A.100元B.200元C.300元D.400元2.如图是一张月历表,在此月历表上可以用一个矩形任意圈出2×2个位置相邻的数(如2,3,9,10).如果圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是.3.(2016山西一模)如图,某工厂的师傅要在一个面积为15m2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m,则裁剪后剩下的阴影部分的面积为.能力提升全练拓展训练1.我们都知道从n边形的一个顶点出发可以引(n-3)条对角线.现有一个多边形所有对角线的总条数为90,则这个多边形的边的条数是()A.14B.15C.16D.172.(2017陕西宝鸡渭滨期中)如图,在边长为6cm的正方形ABCD中,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC和CD边向D点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,其中一点到终点,另一点也随之停止.过了秒钟后,△PBQ的面积等于8cm2.3.(2016江苏徐州撷秀中学月考)如图,每个正方形由边长为1的正方形组成,正方形中黑色、白色小正方形的排列规律如图所示,在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,当偶数n=时,P2=5P1.三年模拟全练拓展训练1.(2017四川自贡期中,8,★★☆)如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2∶1,如果要使彩条所占面积是图案面积的,则竖彩条的宽度为()A.1cmB.2cmC.19cmD.1cm或19cm2.(2016黑龙江齐齐哈尔一模,17,★★☆)某电脑批发店的一款鼠标垫现在的售价为每个30元,每星期可卖出1000个.市场调查反映,每涨价1元,每星期要少卖出100个;每降价1元,则多卖出100个.已知进价为每个20元,当鼠标垫售价为元/个时,这星期利润为9600元.3.(2016江苏淮安相城期末,16,★★☆)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米(如图).现已知购买这种铁皮每平方米需20元,算一算张大叔购回这张矩形铁皮共花了元.五年中考全练拓展训练1.(2017甘肃兰州中考,10,★★☆)王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长为x cm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方体工具箱.根据题意可列方程为()A.(80-x)(70-x)=3000B.80×70-4x2=3000C.(80-2x)(70-2x)=3000D.80×70-4x2-(70+80)x=30002.(2016台湾中考,15,★★☆)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成的,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A. B. C.2- D.4-23.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.核心素养全练拓展训练1.如图,在长为33米、宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为()A.1米B.2米C.3米D.4米2.(2016安徽安庆桐城期中)如图,在Rt△ABC中,∠C=90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向C点匀速运动,其速度为2m/s,s后△PCQ的面积是△ABC面积的一半.()A.1.5B.9C.1.5或9D.1021.3实际问题与一元二次方程基础闯关全练1.答案B设每台冰箱应降价x元,每台冰箱的利润是(2400-2000-x)元,每天卖台,列方程得(2400-2000-x)=4800,整理得x2-300x+20000=0,解得x1=200,x2=100.因为要使消费者得到更多实惠,所以x=200.故选B.2.答案8解析设这4个数中最小的数是x,则最大的数为x+8,根据题意可得x(x+8)=128,整理得x2+8x-128=0,(x-8)·(x+16)=0,解得x1=8,x2=-16(舍去),则这4个数中最小的数是8.3.答案2m2解析设大正方形的边长为x m,则小正方形的边长为(x-1)m,根据题意得x(2x-1)=15,解得x1=3,x2=-(不合题意,舍去),∴小正方形的边长为x-1=3-1=2(m),裁剪后剩下的阴影部分的面积为15-22-32=2(m2),即裁剪后剩下的阴影部分的面积为2m2.能力提升全练拓展训练1.答案B由题意可得n(n-3)=90,解得n1=-12(不合题意,舍去),n2=15.故选B.2.答案2或解析设经过x秒,△PBQ的面积等于8cm2,当0<x≤3秒时,Q点在BC上运动,P在AB上运动,PB=6-x,BQ=2x,所以S△PBQ=PB·BQ=×(6-x)×2x=8,解得x=2或4.又x≤3,故x=2;当3<x<6秒时,Q点在CD上运动,P在AB上运动,S△PBQ=(6-x)×6=8,解得x=.3.答案12解析观察图形可知:当n为奇数时,黑色小正方形的个数分别为1,5,9,13,…,2n-1;当n为偶数时,黑色小正方形的个数分别为4,8,12,16,…,2n.由上可知n为偶数时,P1=2n,白色与黑色的总数为n2,∴P2=n2-2n.根据题意假设存在P2=5P1,则n2-2n=5×2n,n2-12n=0,解得n1=12,n2=0(不合题意,舍去).故存在偶数n=12,使得P2=5P1.三年模拟全练1.答案A设竖彩条的宽度为x cm,则横彩条的宽度为2x cm,则(30-2x)(20-4x)=30×20×-,整理得x2-20x+19=0,解得x1=1,x2=19(不合题意,舍去).故竖彩条的宽度为1cm.故选A.2.答案32或28解析涨价时,设涨价x元,根据题意得:涨价时,有9600=(30-20+x)(1000-100x),整理得x2=4,解得x1=2,x2=-2(不合题意,舍去),故售价为32元;降价时,设降价y元,有9600=(30-20-y)·(1000+100y),整理得y2=4,解得y1=2,y2=-2(不合题意,舍去),故售价为28元.综上,当鼠标垫售价为32元/个或28元/个时,这星期利润为9600元.3.答案700解析设箱子的底面的宽为x米,则长为(x+2)米,由题意,得x(x+2)×1=15,解得x1=-5(舍去),x2=3.∴x+2=5.箱子的底面长为5米,宽为3米.由长方体表面展开图知,矩形铁皮的面积为(5+2)×(3+2)=35(平方米),∴购回这张矩形铁皮要花35×20=700(元).五年中考全练拓展训练1.答案C长方体工具箱的底面是一个长为(80-2x)cm,宽为(70-2x)cm的矩形,由题意可得方程(80-2x)(70-2x)=3000.2.答案D设丁的一股长为a,且a<2,∵甲面积+乙面积=丙面积+丁面积,∴2a+2a=×22+×a2,∴4a=2+a2,∴a2-8a+4=0,∴a=--==4±2,∵4+2>2,不合题意,4-2<2,合题意,∴a=4-2.故选D.3.解析设垂直于墙的一边长为x m,则其邻边长为(58-2x)m,得x(58-2x)=200.解得x1=25,x2=4.∴其邻边长为8m或50m.答:矩形长为25m,宽为8m或矩形长为50m,宽为4m.核心素养全练拓展训练1.答案C设道路的宽为x米,根据题意得20x+33x-x2=20×33-510,整理得x2-53x+150=0,解得x=50(舍去)或x=3,所以道路宽为3米.故选C.2.答案A设t s后△PCQ的面积是△ABC面积的一半,此时PC=AC-AP=(12-2t)m,CQ=BC-BQ=(9-2t)m,∴△PCQ的面积为×PC·CQ=(12-2t)(9-2t)=(6-t)(9-2t)m2,∵△PCQ的面积是△ABC面积的一半,又△ABC面积为×AC·BC=×12×9=54(m2),∴(6-t)·(9-2t)=×54,解得t1=1.5,t2=9(不合题意,舍去),即1.5 s后△PCQ的面积是△ABC面积的一半.故选A.。
22.3实际问题与一元二次方程(第一课时)◆随堂检测1、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( )A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元2、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A .2002(1%)a +=148B .2002(1%)a -=148C .200(12%)a -=148D .2002(1%)a -=1483、某商场的标价比成本高p %,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d %,则d 可用p 表示为( )A .100p p +B .pC .1001000p p -D .100100p p+ 4、某农户的粮食产量,平均每年的增长率为x ,第一年的产量为m 千克,•第二年的产量为_______千克,第三年的产量为_______千克,三年总产量为_______千克.5、据报道,我国农作物秸杆的资源巨大,但合理利用量十分有限,某地区2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定该地区每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(≈1.41)◆典例分析某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.分析:列一元二次方程解一元二次方程的一般步骤(1)审题,(2)设设出未知数,(3)找等量关系列出方程,(4)用适当方法解方程,(5)检验方程的解是否符合题意,将不符合题意的解舍去,(6)答题.要注意各个环节的准确性.解:(1)∵年获利率=年利润年初投入资金×100%,∴第一年年终的总资金是(5050)p +万元,即50(1)p +万元.(2)则依题意得:50(1)(110%)66p p +++=把(1+p )看成一个整体,整理得:2(1)0.1(1) 1.320p p +++-=,解得:1 1.2p +=或1 1.1p +=-,∴120.2, 2.1p p ==-(不合题意舍去).∴p =0.2=20%.∴第一年的年获利率是20%.◆课下作业●拓展提高1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人.A .12B .10C .9D .82、县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产%x ,则第三季度化肥增产的吨数为( )A .2)1(x a +B .2%)1(x a +C .2%)1(x + D .2%)(x a a + 3、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x ,则可列出方程为________________________.4、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.5、某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额平均增长率是多少?(分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是10(1)x +,三月份的营业额应是102(1)x +.)6、上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元,那么哪个商场利润的月平均上升率较大? ●体验中考1、(2009年,太原)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是________________________. (注意:要理解增长率或降低率问题中的数量关系.)2、(2009年,广东)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?参考答案1、B .2、B.3、A . 由题意得:(1%)(1%)1p d +-≥,解得100p d p≤+.故选A. 4、第二年的产量为(1)m x +千克,第三年的产量为2(1)m x +千克,三年总产量为2(1)(1)m m x m x ⎡⎤++++⎣⎦千克.5、解:设该地区每年产出的农作物秸杆总量为a ,合理利用量的增长率是x .由题意得:30%a 2(1)x +=60%a ,即2(1)x +=2,∴1x ≈0.41,2x ≈-2.41(不合题意舍去).∴x ≈0.41.答:该地区每年秸秆合理利用量的增长率约为41%.◆课下作业●拓展提高1、C 设这个小组共有x 个人.由题意得:(1)72x x -=,解得129,8x x ==-(不合题意,舍去).故选C.2、B.3、215(1)60x +=.4、199 甲第一次将这手股票转卖给乙,获利10%为100元;乙而后又将这手股票返卖给甲时乙损失了10%,返卖的价格为1100(1-10%)=990;最后甲按990⨯0.9的价格将这手股票卖出,甲又盈了990⨯0.1=99(元).故在上述股票交易中,甲共盈了199元.5、解:设该公司二、三月份营业额平均增长率为x .则依题意得:21010(1)10(1)x x ++++=33.1把(1+x )看成一个整体,配方得: 21(1)2x ++=2.56,即23()2x +=2.56,∴x +32=±1.6,即x +32=1.6或x +32=-1.6. ∴1x =0.1=10%,2x =-3.1∵因为增长率为正数,∴取x =10%.答:该公司二、三月份营业额平均增长率为10%.6、解:设甲商场的月平均上升率为x .乙商场的月平均上升率为y .则依题意得:2100(1)121x +=解得:120.1, 2.1x x ==-(不合题意舍去).∴x =0.1=10%.设乙商场的月平均上升率为y .则依题意得:2200(1)288y +=解得:120.2, 2.2y y ==-(不合题意舍去).∴y =0.2=20%.∵0.1<0.2,∴乙商场的月平均上升率较大.答:乙商场的月平均上升率较大.●体验中考1、23200(1)2500x -=.2、解:设每轮感染中平均一台电脑会感染x 台电脑.则依题意得:(1)(1)81x x x +++=整理,得:2(1)81x +=解得:128,10x x ==-(不合题意舍去).∴x =8.3轮感染后,被感染的电脑有81818729700+⨯=>.答:每轮感染中平均一台电脑会感染8台电脑;若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.。
21. 3实际问题与一元二次方程(2课时)第1课时解决代数问题教学目标知识技能1.经历用一元二次方程解决实际问题的过程,总结列出一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.数学思考与问题解决1.通过列一元二次方程解决实际问题,培养学生的“模型思想”和对数学的“应用意识”.2.在病毒的传播问题中要弄清每一轮的传播源(即每一轮的感染者也是下一轮的传播者),同时要注意与细胞分裂、电脑病毒的传播等问题的区别与联系:在百分率问题中,注意弄清数量与百分率的关系,会归纳总结出增长率(降低率)问题的等量关系.情感态度通过列方程解决实际问题,让学生体会方程是刻画现实世界的一个有效的数学模型,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,感知数学与生活的密切联系,体会数学知识应用的价值,不断提高学生学习数学的兴趣.重点难点重点:利用一元二次方程解决传播问题、百分率问题.难点:如何理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.教学设计一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如果一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动一:自学教材第19页探究1,思考教师所提问题有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?导学:(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?设计意图:传播问题解决的关键是传播源的理解和等量关系的建立,这样有梯度的对每轮传播源的分析提问,从而降低了学生理解的难度.解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1个人患了流感,第二轮传染后有x(1+x)个人患了流感.于是可列方程:1+x+x(1+x)=121,解方程得x1=10,x2=-12(不合题意,舍去).因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动二:自学教材第19~20页探究2,思考老师所提问题两年前生产1吨甲种药品的成本是5 000元,生产1吨乙种药品的成本是6 000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3 000元,生产1吨乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?导学:(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);两月(或两年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:__________________.设计意图:主要是帮助学生区分年平均下降额与年平均下降率,能根据公式用未知数表示数量关系和等量关系.解答:若设甲种药品平均下降率为x,则一年后,甲种药品的成本为5 000(1-x)元,两年后成本为5 000(1-x)2元,依题意列方程得:5 000(1-x)2=3 000,解之得x1≈0.225,x2≈1.775.因为下降率要小于1,所以x2≈1.775舍去,即甲种药品年平均下降率约为22.5%.变式练习:(1)用同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大.(2)经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?设计意图:鼓励学生去完成求甲种药品年平均下降率,并比较大小,就是让学生学以致用,同时也是对所学知识的一个检测.三、课堂小结与作业布置课堂小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置:教材第21~22页习题21.3第2~7题.板书设计解决代数问题1.探究1:用一元二次方程解答传播问题.2.探究2:用一元二次方程解答平均增长率问题3.课堂小结4.作业布置升高(降低)率问题,即a(1±x)n=b(常见n=2).。
21.3实际问题与一元二次方程(第1课时)一、内容和内容解析1.内容列一元二次方程解决实际问题.2.内容解析本节课学习如何用一元二次方程解决实际问题.分析两轮传播中每个周期内相应的数量关系,从而将实际问题转化为数学问题,再次体现数学建模思想.在此过程中培养分析问题和运用一元二次方程解决实际问题的能力.本课时中解方程属于已学内容,因此教学重点是分析实际问题中的数量关系,正确列出一元二次方程.二、目标和目标解析1.目标(1)能根据实际问题中的数量关系,正确列出一元二次方程;(2)通过列方程解应用题体会一元二次方程在实际生活中的应用,经历将实际问题转化为数学问题的过程,提高数学应用意识.2.目标解析达成目标(1)的标志是:通过审题,分析出“传播问题”中每个周期的传播源和传播后的总数各是什么,从而选择合适的未知数,列出相应的代数式;分析等量关系,正确列出方程,解决实际问题.达成目标(2)的标志是:对用方程解决实际问题的步骤(审、设、列、解、验、答)及需注意的事项进行回顾、总结和深化.体会一元二次方程是解决实际问题的一种数学模型.三、教学问题诊断分析九年级学生已具备一定的建模思想,也接触了一些实际问题,了解将实际问题转化为数学问题的一般步骤,积累了一定的解题经验和方法.本课时的实际问题中的数量关系比之前遇到过的更复杂一些,学生理解题意的困难是:“第一轮”,“第二轮”中的传染源及被传染总人数是多少.在弄清问题背景,明确数量关系后,还要解决第二轮被传染总人数的代数式如何表示的问题.练习第2题,学生可能将此题与前面所学细菌繁殖类型混淆,从而列出1+x+x(1+x)=91.可采用图示分析植物主干与分支再长出分支的意义.四、教学过程设计1.分析“传播问题”的特征问题1列方程解应用题的一般步骤是什么?师生活动:教师提问,学生回答.设计意图:回顾列方程解应用题的一般步骤.问题2观察生活中的细胞分裂以及疾病传播这类问题,“传播”这类问题具有什么特征?展示以“细胞分裂”为背景的图片,学生观察图片,说明细胞分裂过程,教师进行适当补充:细胞在分裂过程中,由1个分裂为2个,再分裂成4个,如此分裂下去…展示以“疾病传染”为背景的图片,学生观察图片,教师介绍问题背景:甲流肆虐期间,有确诊病例后要对密切接触者进行筛查,以防止扩大传染范围.设计意图:从实际问题中归纳“传播”类问题的特征.2.解决“传播问题”问题3有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?师生活动:学生独立思考,回答.教师在学生活动过程中可提出如下提示性问题.追问1:(1)本题要解决什么问题?(传播问题)(2)已知条件中描述数量关系的语句有哪些?(有一人患了流感;经过两轮传染后共有121人患了流感;每轮传染中平均一个人传染了几个人.)(3)“第一轮”,“第二轮”中传染源人数和被传染人数各是多少?如何表示?(第一轮传染源人数为1人,被传染人数为x人;第二轮传染源人数为(x+1)人,被传染人数为x(x+1)人.)设计意图:本问题是在问题2的基础上,针对具体情景分析其中的数量关系.学生理解的难点就是“第一轮”、“第二轮”的含义,以及如何表示每一轮传染源人数和被传染人数.因此在此处设问,以帮助学生理解.追问2:你能发现本题中的等量关系吗?你能解决这个问题吗?师生活动:学生独立思考完成,再分组交流.等量关系:1+第一轮新被传染的人数+第二轮新被传染人数=121.解:设每轮传染中平均一个人传染了x个人.根据题意得1+x+x(1+x)=121.解得:x1=10,x2=-12(舍去).答:平均一个人传染了10个人.设计意图:让学生经历完整的解题过程,提高分析和解决问题的能力.追问3:按照这样的传染速度,三轮传染后有多少人患流感?师生活动:学生独立思考、回答,得出121+121×10=1331人.设计意图:让学生进一步熟悉“传播问题”的特征.3.练习、巩固教科书第22页练习4.师生活动:由学生独立完成,再进行全班交流.要整理出解题的基本思路:审、设、列、解、验、答,从而提高学生分析和解决此类问题的能力.4.小结问题4你能所说本节课所研究的“传播问题”的基本特征吗?解决此类问题的关键步骤是什么?师生活动:学生先思考再作答,教师帮助整理.得出:“传播问题”的基本特征是:以相同速度逐轮传播.解决此类问题的关键步骤是:明确每轮传播中的传染源个数,以及这一轮被传染的总数.设计意图:通过归纳,明确“传播问题”的基本特征,以及解决此类问题的一般过程和方法.5.布置作业教科书第25页复习题21第7题.6.目标检测设计某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?设计意图:检测“传播问题”的掌握情况.。
21.3实际问题与一元二次方程(1)一、教学目标1.会利用一元二次方程解决传播问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决传播问题.2.难点:根据传播问题列方程.三、教学过程(一)基本训练,巩固旧知1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.【(1)题答案为11,121,(2)题答案为1+x,1+x+x(x+1),先让生自己做,然后师进行讲解】(二)创设情境,导入新课师:和一元一次方程一样,利用一元二次方程可以解决实际问题,上节课我们做了一个例题,本节课我们再来看一个例题.(三)尝试指导,讲授新课(师出示下面的例题)例有一人得了流感,经过两轮传染后,共有121人得了流感,每轮传染中平均每一个人传染了几个人?师:大家把这个题目好好默读几遍.(生默读)师:谁能不看黑板说出题目的意思?生:……(让几名同学说)师:这个题目怎么设?生:设每轮传染中平均一个人传染了x个人.(师板书:解:设每轮传染中平均一个人传染了x个人)师:(在黑板的其它地方板书:第一轮后)设平均一个人传染了x个人,那么第一轮后,共有多少人得了流感?生:1+x.(多让几名同学回答,然后师板书:1+x)师:(在黑板的其它地方板书:第二轮后)那么第二轮后,共有多少人得了流感?(让生思考一会儿再叫学生)生:1+x+x(1+x).(多让几名同学回答,然后师板书:1+x+x(1+x))师:下面大家根据题目的意思列一列方程.(生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:1+x+x(1+x)=121(生答师板书:1+x+x(1+x)=121).师:(指方程)这是一个一元二次方程,怎么解这个方程?大家试着解一解.(生解方程)师:解出来的结果是什么?生:x1=10,x2=-12(生答师板书:x1=10,x2=-12).师:(指方程)解这个方程是有讲究的,很多同学用公式法解,发现数字比较大,解起来比较麻烦.实际上我们可以用直接开平方法来解.怎么用直接平方法来解?(稍停)师:(指准1+x+x(1+x)=121)1+x+x(1+x)有公因式1+x,我们把1+x提取出来,得到(1+x)(1+x)(边讲边在其它地方板书:(1+x)(1+x)),可见方程可以化成(1+x)2=121(边讲边在其它地方板书:(1+x)2=121),用直接开平方法解这个方程,容易求出x1=10,x2=-12.师:方程中的x表示每个人传染的人数,所以x2=-12不符合题目的意思,要舍去(板书:(不合题意,舍去)).师:最后还要答.(板书:答:每轮传染中平均每个人传染了10个人)师:下面请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程:。
21.3实际问题与一元二次方程(1)一、教学目标1.会利用一元二次方程解决传播问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决传播问题.2.难点:根据传播问题列方程.三、教学过程(一)基本训练,巩固旧知1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.【(1)题答案为11,121,(2)题答案为1+x,1+x+x(x+1),先让生自己做,然后师进行讲解】(二)创设情境,导入新课师:和一元一次方程一样,利用一元二次方程可以解决实际问题,上节课我们做了一个例题,本节课我们再来看一个例题.(三)尝试指导,讲授新课(师出示下面的例题)例有一人得了流感,经过两轮传染后,共有121人得了流感,每轮传染中平均每一个人传染了几个人?师:大家把这个题目好好默读几遍.(生默读)师:谁能不看黑板说出题目的意思?生:……(让几名同学说)师:这个题目怎么设?生:设每轮传染中平均一个人传染了x个人.(师板书:解:设每轮传染中平均一个人传染了x个人)师:(在黑板的其它地方板书:第一轮后)设平均一个人传染了x个人,那么第一轮后,共有多少人得了流感?生:1+x.(多让几名同学回答,然后师板书:1+x)师:(在黑板的其它地方板书:第二轮后)那么第二轮后,共有多少人得了流感?(让生思考一会儿再叫学生)生:1+x+x(1+x).(多让几名同学回答,然后师板书:1+x+x(1+x))师:下面大家根据题目的意思列一列方程.(生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:1+x+x(1+x)=121(生答师板书:1+x+x(1+x)=121).师:(指方程)这是一个一元二次方程,怎么解这个方程?大家试着解一解.(生解方程)师:解出来的结果是什么?生:x1=10,x2=-12(生答师板书:x1=10,x2=-12).师:(指方程)解这个方程是有讲究的,很多同学用公式法解,发现数字比较大,解起来比较麻烦.实际上我们可以用直接开平方法来解.怎么用直接平方法来解?(稍停)师:(指准1+x+x(1+x)=121)1+x+x(1+x)有公因式1+x,我们把1+x提取出来,得到(1+x)(1+x)(边讲边在其它地方板书:(1+x)(1+x)),可见方程可以化成(1+x)2=121(边讲边在其它地方板书:(1+x)2=121),用直接开平方法解这个方程,容易求出x1=10,x2=-12.师:方程中的x表示每个人传染的人数,所以x2=-12不符合题目的意思,要舍去(板书:(不合题意,舍去)).师:最后还要答.(板书:答:每轮传染中平均每个人传染了10个人)师:下面请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.(五)归纳小结,布置作业师:本节课我们学习了利用一元二次方程解决传播问题.俗话说:一传十,十传百.这一传十,十传百是怎么么传的?(指准方程)用方程来表示就是(1+x)2=121.如果传了三轮,就成了(1+x)3;如果传了十轮,就成了(1+x)10.(作业:P21习题1(3)(4)、4,4题中91改为81)四、板书设计(略)。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第21章一元二次方程21.3实际问题与一元二次方程一、选择题1.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x 满足()A.16(1+2x)=25B.25(1-2x)=16C.16(1+x)2=25D.25(1-x)2=162.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x相同,那么()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1963.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%4.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区第1年年底有贫困人口9万人,通过社会各界的努力,第3年年底贫困人口减少至1万人.设第1年年底至第3年年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=15.我国南宋数学家杨辉曾提出这样一个问题:"直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步."如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是()A.x(x+12)=864B.x(x-12)=864C.x2+12x=864D.x2+12x-864=06.在一幅长60dm宽40dm的庆祝建国70周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为2800dm2,设纸边的宽为xdm,则可列出方程为()A.x2+100x﹣400=0B.x2﹣100x﹣400=0C.x2+50x﹣100=0D.x2﹣50x﹣100=07.某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=158.一个矩形的长比宽多3cm,面积是25cm2,求这个矩形的长和宽.设矩形的宽为x cm,则下面所列方程正确的是()A.x2-3x+25=0B.x2-3x-25=0C.x2+3x-25=0D.x2+3x-50=09.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.710.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长为x cm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方体工具箱,根据题意列方程为()A.(80-x)(70-x)=3000B.80×70-4x2=3000C.(80-2x)(70-2x)=3000D.80×70-4x2-(70+80)x=300011.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为x m,则下面所列方程正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57012.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格售出,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低元.()A.0.2或0.3B.0.4C.0.3D.0.2二、填空题13.今年9月10日,退休老师老黄去与老同事们聚会,共庆教师节.晚上,读初三的孙子小明问老黄:“爷爷,今天有几个同事参加聚会啦?”爷爷:“我来考考你,我们每个人都与其他人握了一次手,一共握了120次,你知道我们一共有多少人参加聚会吗?”若小明设参加聚会的人有x个,则可列方程为.14.小明用30cm的铁丝围成一斜边长等于13cm的直角三角形,设该直角三角形的一直角边长为x cm,则另一直角边长为cm,列方程得.15.有一根20m长的绳子,怎样用它围成一个面积为24m2的矩形?设矩形的长为x m,依题意可得方程为.16.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个矩形挂图的面积是1800cm2,设金色纸边的宽为x cm,那么x满足的方程为.17.一个两位数,十位上的数字比个位上的数字大7,且十位上的数字与个位上的数字和的平方等于这个两位数,这个两位数是.18.新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为.三、解答题19.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?20.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?21.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支?22.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?23.某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.若两次下调的百分率相同,求平均每次下调的百分率.24.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?参考答案1.D2.C3.A.4.B.5.B6.C7.A8.C.9.C.10.C.11.A12.C.13.21x(x-1)=120.14.(17-x),x 2+(17-x)2=132.15.x(10-x)=24.16.x 2+40x-75=0.17.8118.(40-x)(20+2x)=1200.19.解:设有x 家公司出席了这次交易会,根据题意,得12x(x-1)=78.解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.20.解:设这个两位数的个位数字为x,则十位数字为(x-3),由题意,得x 2=10(x-3)+x.解得x 1=6,x 2=5.当x=6时,x-3=3;当x=5时,x-3=2.答:这个两位数是36或25.21.解:设每个支干长出x 个小分支,根据题意,得1+x+x 2=111.解得x 1=10,x 2=-11(舍去).答:每个支干长出10个小分支.22.解:(1)设每轮传染中平均一个人传染了x 人,则1+x+x(x+1)=64.解得x 1=7,x 2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染.23.解:设平均每次下调的百分率为x,根据题意,得5000(1-x)2=4050.解得x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均每次下调的百分率为10%.24.解:设矩形温室的宽为x m,则长为2x m.根据题意,得(x-2)(2x-4)=288.解得x 1=-10(不合题意,舍去),x 2=14.所以2x=2×14=28.答:当矩形温室的长为28m,宽为14m 时,蔬菜种植区域的面积是288m 2.。
21.3 实际问题与一元二次方程(第1课时)当堂达标题
一、选择题
1.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人.
A .12
B .10
C .9
D .8
2.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A .2002(1%)a +=148 B .2002(1%)a -=148
C .200(12%)a -=148
D .2002(1%)a -=148
3.县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产%x ,则第三季度化肥增产的吨数为( )
A. 2)1(x a + B .2%)1(x a + C .2%)1(x + D .2
%)(x a a +
二、填空题
4.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为m 千克,•第二年的产量为_______千克,第三年的产量为_______千克,三年总产量为_______千克.
5.某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季 度 共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x ,则可列出方程为________________________.
6. 参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有_______个队参加比赛?
三、解答题:
7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
8.东方超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?
21.3 实际问题与一元二次方程(第1课时)当堂达标题答案
一、选择题
1.C
2.B
3.B
二、填空题
4. m (x +1) 2)1(+x m m +m (x +1)+2)1(+x m
5. 152)1(x +=60
6. 10
三、解答题:
7..解:设每轮感染中平均一台电脑会感染x 台电脑.
则依题意得:81)1()1(=+++x x x
整理,得:2(1)81x +=
解得:128,10x x ==-(不合题意舍去).
∴x =8.
3轮感染后,被感染的电脑有81818729700+⨯=>.
答:每轮感染中平均一台电脑会感染8台电脑;若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.
8.解:平均每年增长的百分率为x,根据题意得
2802)1(x +=403.2
解这个方程的得:2.21-=x (不合题意) 2.02=x
答:平均每年增长20%。