液位自动控制系统19页PPT
- 格式:ppt
- 大小:2.38 MB
- 文档页数:19
控制类系统设计——液位自动控制系统摘要随着电子技术、计算机技术和信息技术的发展,工业生产中传统的检测和控制技术发生了根本性的变化。
液位作为化工等许多工业生产中的一个重要参数,其测量和控制效果直接影响到产品的质量,因此液位控制成为过程控制领域中的一个重要的研究方向。
液位控制是工业中常见的过程控制,它对生产的影响不容忽视。
该系统利用了常见的芯片,设计并实现了液位控制系统的智能性及显示功能。
电路组成简单,调试方便,性价比高,抗干扰性好等优点,能较好的实现水位监测与控制的功能。
能够广泛的应用于工业场所。
液位控制有很多方法,如,非接触传感。
只需要将传感器紧贴在非金属容器的外壁,就可以侦测到容器里面液位高度变化,从而及时准确地发出报警信号,有效防止液体外溢或防止机器干烧。
由于不需要与液体接触且安装简便,避免了水垢的腐蚀,可取代传统的浮球传感和金属探针传感,延长寿命。
而本设计是基于纯电路的设计,低成本且抗干扰性好。
在本设计中较好的实现了水位监测与控制的功能。
液位控制系统是以液位为被控参数的系统,液位控制一般是指对某控制对象的液位进行控制调节,以达到所要求的液位进行调节,以达到所要求的控制精度。
1 概述液位控制系统是以液位为被控参数的系统,是现代工业生产中的一类常见的、重要的控制过程。
而传统的液位控制多采用单回路控制,并采用传统的指针式仪表来显示液位值,使液位控制的精度和显示的直观性受到限制,而随着生产线的更新及生产过程控制要求的提高,要求液位系统有高的控制性能。
基于此,本系统就设计了一种电路简单,调试方便且性价比高的系统,来完成液位的自动调控。
本系统主要由四部分组成:显示模块、振荡模块、传感器模块和声光报警模块,系统简单易行。
系统框图如下:2 硬结构与功能2.1 该设计的总体结构该设计是一块集多种电子芯片于一体的多功能实验板,实现了液位系统的控制及显示。
主要功能器件包括:电源部分的7808,定时部分的555定时器,数字分段的LM3914等。
二.系统分析2.1系统工作原理浮球杠杆式液位自动控制系统原理示意图工作原理:当电位器电刷位于中点位置时,电动机不动,控制阀门有一定的开度,使水箱中流入水量与流出水量相等,从而液面保持在希望高度上。
一旦流入水量或流出水量发生变化,水箱液面高度便相应变化。
例如,当液面升高时,浮子位置亦相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。
此时,水箱液面下降,浮子位置相应下降,知道电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度,反之,若水箱液面下降,则系统会自动增大阀门开度,加大流入的水量,使液面升到给定的高度。
2.2系统分解水位自动控制系统由浮子,杠杆,直流电动机,阀门及水箱控制部分构成。
根据不同的需要可以对各部分进行不同的设计。
该系统结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
液位控制系统原理方框图如下所示:图22.3.数学模型2.3.1浮子、杠杆、电位计(比例环节)浮球杠杆测量液位高度的原理式U o=U总b∆ℎal式中Uo为电位计的输出电压,U总为电位计两端的总电势,b a⁄为杠杆的长度比,∆ℎ为高度的变化,l为电位计电阻丝的中点位置到电阻丝边缘的长度。
则:G1(s)=K12.3.2微分调理电路(微分环节)由于水面震荡,导致浮子不稳定,在电位计的输出电压与电动机的输入端之间接一个微分调理电路,对输入的电压进行调理传递函数为G2(s)=K2s2.3.3电动机(惯性环节)查资料知电动机的传递函数:G3(s)=K3 Ts+12.3.4减速器(比例环节)这是一个比例环节,增益为减速器的减速比。
故,传递函数为G4(s)=K42.3.5控制阀(积分环节)这是一个积分环节,故,传递函数为G5(s)=K5 s2.3.6水箱(积分环节)这是一个积分环节,实际液位Y是流入量Q in与流出量Q out的差值∆Q对时间t的积分。
第一课自动控制系统的组成陶运道一液位控制系统的组成1 系统的组成如图是一液位控制系统,从图上可以看出控制系统由四个部分组成。
(1)对象:水箱(2)液位测量元件:变送器,将液位大小测量出来。
(3)控制器:将测量值和设定值相减得到偏差,根据偏差大小,输出一个值至执行元件。
(4)调节阀:执行元件,根据控制器输出信号大小,产生一开度,使液位回到给定值。
2 液位是被调节的量出口流量是调节的量,出口流量大小可以调节液位,使液位稳定。
二、控制系统的框图三、自动控制系统的过渡过程和品质指标1 在自动化领域中,把被控变量不随时间而变化的平衡状态称为系统的静态,而把被控变量随时间变化的不平衡状态称为系统的动态。
2 静态的特点:系统输入x、f不变,系统输出y不变,其他量如z、e、p、q均不变,但生产照常进行。
静态是相对而暂时的。
动态的特点:输入变化引起输出变化,其他量也跟着变化,以求系统建立新平衡。
动态是经常和绝对的。
自动控制系统的过渡过程:自动控制系统在动态过程中,被控变量是不断变化的,它随时间而变化的过程称为自动控制系统的过渡过程,也就是说,系统从一个平衡状态(静态)经过动态过渡到另一个新的平衡状态的过程。
3 干拢的形式系统在过渡过程中,被控变量随时间的变化规律首先取决于作用于系统的干扰形式。
在生产中,出现的干扰是没有固定形式的,且多半属于随机性质。
在分析和设计控制系统时,为了安全和方便,常选择一些定型的干扰形式,其中常用的是阶跃干扰。
阶跃干扰(阶跃输入)的特点:比较突然、比较危险、对被控变量的影响最大,如果一个系统,能有效地克服这类干扰,对其他干扰就能很好地克服,同时数学处理和分析简单。
4 过渡过程的基本形式以上过渡过程的四种形式可以归纳为三类。
(1)过渡过程(d)是发散的,称为不稳定过渡过程,应竭力避免。
(2)过渡过程(a)和(b)都是衰减的,稳为稳定过程。
被控变量经过一段时间后,逐渐趋向原来的或新的平衡状态,这是所希望的。