对流层大气的受热过程
- 格式:ppt
- 大小:1.23 MB
- 文档页数:8
对流层大气的受热过程解析流层大气的受热过程是指大气中的空气受到太阳辐射能量的吸收和释放的过程。
它是地球气候系统的重要组成部分,对地球的能量平衡和气候变化起着关键作用。
下面对流层大气的受热过程进行详细分析。
其次,大气层中的气体分子对太阳辐射有选择性的吸收,这是受热过程的关键步骤之一、大气层中的主要气体是氮气、氧气和水蒸气,它们对不同波长的光有不同的吸收能力。
其中,氧气主要吸收较短波长的紫外线,而氮气主要吸收较短波长的紫外线和较长波长的红外线。
水蒸气则主要吸收红外线。
这些吸收过程会导致局部的温度升高。
第三,大气层中的吸收过程会使大气层变得热起来。
当空气分子吸收辐射能量后,会增加其内能,分子间的相互作用增强,从而提高其温度。
这使得大气层中的温度随着海拔的升高而逐渐降低,达到温度递减层。
因此,大气层中的温度分布是非常不均匀的。
第四,大气层中的吸收过程还会导致热辐射的释放。
被激发的气体分子会通过碰撞和辐射的方式将能量传递给周围的空气分子,从而扩散热量。
当空气分子被激发到一个更高的能级时,它会以辐射的形式释放能量。
释放的能量可以是光子(光能)或热能(红外线)。
这些热辐射在大气层内部传递,一部分向上辐射到太空,一部分向下辐射到地表,形成地球的长波辐射。
最后,地表接收到大气层中传递下来的热辐射,会导致地表温度的升高。
地表吸收的热辐射随着太阳辐射能量的增加而增加,因此,白天地表的温度会比夜间高。
地表受热后,再通过传导、对流和辐射的方式将热量传递给大气层中,这些过程共同构成了大气层的能量平衡。
总结起来,流层大气的受热过程是一个复杂的过程,包括太阳辐射的传递、大气层中气体分子的吸收和释放、热辐射的传递等。
这些过程是地球气候系统中能量平衡和气候变化的重要机制。
深入理解流层大气的受热过程,对于更好地掌握气候变化规律以及预测和应对气候变化具有重要意义。
对流层大气的受热过程流层大气是指地球大气圈中的最底层,从地球表面到大约15千米高度。
这一层的温度分布和受热过程是影响地球气候和天气变化的重要因素之一、在这篇文章中,我将详细介绍流层大气的受热过程。
流层大气主要是通过辐射和传导两种方式来受热。
辐射是指太阳辐射热能以电磁波的形式传播到地球大气层,它以可见光和红外线的形式到达地球。
太阳辐射主要包括可见光和紫外线,其中大部分是可见光,占据太阳辐射总能量的50%左右。
其中,紫外线被地球大气的臭氧层吸收,而可见光则主要是被地球大气层中的空气分子和云层吸收和散射。
辐射进一步分为太阳辐射的短波辐射和地球辐射的长波辐射。
太阳辐射以短波辐射的形式穿过大气层直接到达地面,而地球辐射则以长波辐射的形式从地面向大气层传播。
对流层大气来说,地面的辐射是一个重要的热源,它主要由太阳辐射的短波辐射作为能量输入。
传导是指由于温度差异引起的能量传递方式,它通过空气分子之间的碰撞来传导热量。
由于流层大气是由空气分子组成的,空气分子之间的碰撞会导致温度的传导。
当地面受到太阳辐射的加热时,地表会升温,而空气分子也会受到热量的传导而升温。
此时,由于密度的差异,热空气会上升,而冷空气则下沉,形成对流循环。
这种对流循环不仅影响地球大气的温度分布,还对天气现象和气候变化起着重要的作用。
此外,也存在一些其他因素影响流层大气的受热过程。
例如,水蒸气是地球大气中的重要成分,它可以吸收和释放大量的热量。
当水蒸气凝结形成云层时,释放的潜热会增加大气的温度。
而当云层通过降水或蒸发释放潜热时,则会对大气的温度产生影响。
总结起来,流层大气的受热过程是一个复杂的过程,既受到太阳辐射和地球辐射的影响,又受到传导和水蒸气等因素的影响。
另外,地球自转和周围大陆和海洋的热导也对流层大气的受热过程产生了影响。
了解这些受热过程对于理解地球气候和天气变化是至关重要的,也对于预测未来气候变化和做出应对措施具有重要的意义。
大气的垂直分层和对流层大气的受热过程对流层是大气中最接近地面的一层,它的厚度大约为10∼15km。
在这一层大气中,空气的温度通常随着海拔的增加而递减,这种现象被称为温度递减。
平均温度递减率为6.5℃/km。
这种温度递减的分布形式也被称为标准大气。
对流层中的空气主要靠地面受热而产生对流运动,也就是因为地面受热,将热量传递给空气,使得空气变热,密度减小,从而形成气块上升的气流。
这样,就形成了大气中被称为对流的运动。
对流层的对流运动是大气环流系统的主要形式之一,它使得大气中的热量和水分能够有效地垂直输送。
对流层大气的受热过程主要有辐射、传导和对流三种方式。
第一,辐射是指地面受到太阳辐射的热量,然后将热量辐射向大气。
太阳辐射热量经过大气层的透过、反射和散射后,最终达到地面。
地面吸收到的太阳辐射热量一部分会直接转化为感热,使地表温度升高;另一部分会转化为潜热,使水蒸气从地表蒸发转化为水蒸气。
地面升热后会向空气传递热量,使空气受到加热,从而形成对流运动。
第二,传导是指地面受到太阳辐射热量后,热量从地表向大气传导。
地面与大气之间通过热传导传递热量的主要方式是热对流。
即地面升热后会向空气传递热量,使空气受到加热,从而形成对流运动。
第三,对流是指地面受热后,空气受到加热而产生上升运动。
地面受热后,空气受到加热,温度升高,密度减小,形成气块上升的气流。
空气上升到一定高度后,受到气温递减的影响,空气冷却,水蒸气凝结成云,随着云的不断增加,空气开始下沉,从而形成对流运动。
对流层大气的受热过程影响着大气的动力过程和气候变化。
通过对大气的垂直分层和对流层大气的受热过程的了解,可以更好地理解大气环流的形成机制,预测天气变化以及研究全球气候的变化趋势。
第7讲对流层大气的受热过程及大气运动1.大气的垂直分层大气垂直分层气温变化与人类活动的关系对流层随高度升高而降低大气下热上冷,空气上升,对流现象显著;与人类活动最密切平流层随高度升高而上升大气平稳,天气晴朗,适合飞机飞行高层大气随高度增加先降低后升高存在若干电离层,对无线电通信有重要影响(1)两大过程①地面的增温:大部分太阳辐射透过大气射到地面,使地面增温。
②大气的增温:地面以长波辐射的形式向大气传递热量。
(2)两大作用①削弱作用:大气层中的水汽、云层、尘埃等对太阳辐射的选择性吸收、反射和散射作用。
②保温作用:C大气逆辐射对近地面大气热量的补偿作用。
(3)影响地面辐射的主要因素①纬度因素:纬度不同,年平均正午太阳高度不同。
②下垫面因素:下垫面状况不同,吸收和反射的太阳辐射比例也不同。
③气象因素:大气状况不同,地面获得的太阳辐射也不同。
3.热力环流的成因(1)大气运动的根本原因:太阳辐射能的纬度分布不均,造成高低纬度间的热量差异。
(2)热力环流的概念:由于地面冷热不均而形成的空气环流。
(3)形成:要抓住“一个过程、两种方向、两个关系”。
①一个过程近地面冷热不均→空气的垂直运动(上升或下沉)→同一水平面上出现气压差异→空气的水平运动→热力环流。
②两种气流运动方向a.垂直运动——受热上升,冷却下沉。
b.水平运动——从高压指向低压。
③两个关系a.温压关系:下垫面热低压、冷高压。
b.风压关系:水平方向上,风总是从高压吹向低压。
4.大气的水平运动——风(1)判断图中A、B、C分别代表的力及其对风的影响A是水平气压梯度力,影响风向和风速。
B是摩擦力,影响风向和风速。
C是地转偏向力,影响风向。
(2)甲、乙、丙三条等压线气压大小关系是甲>乙>丙,判断理由是水平气压梯度力由甲指向乙、丙。
(3)图示地区位于北(填“南”或“北”)半球,判断理由是风向向右偏转。
图中的风是近地面(填“高空”或“近地面”)风,判断理由是风向与等压线成一夹角。
对流层大气的受热过程流层大气是地球上最底层的大气层,它的位置从地球表面到约10-15公里的高度。
流层大气的受热过程涉及到太阳辐射的吸收、传导和辐射、地表和大气之间的能量交换等方面。
本文将对流层大气的受热过程进行详细介绍。
太阳辐射进入流层大气后,一部分被云、气溶胶等遮蔽物反射回太空,一部分被大气层吸收。
其中,不同大气组分对太阳辐射的吸收程度也不同。
水蒸气、二氧化碳和一氧化二氮等温室气体对太阳辐射有较强的吸收能力,而氧气、氮气等主要组成大气的气体对太阳辐射则有较低的吸收能力。
这些吸收后的能量将转化为大气分子的热运动,使流层大气不断地受热。
流层大气的受热还涉及到地表和大气之间的能量交换。
地表与大气之间通过辐射、传导和对流等方式进行能量交换。
地表吸收的短波辐射和长波辐射将转化为地表热量,这部分热量会通过传导向上传输到流层大气。
同时,地表也会通过对流的形式将热量传输到大气中。
大气中的热量会向周围空气传导,并通过空气的对流传输到不同高度的区域。
在流层大气中,温度随着高度的升高而逐渐下降,这主要是因为大气密度随着高度的升高而减小,分子间的碰撞频率降低,从而减少了热传导的程度。
此外,不同高度的区域受到的太阳辐射能量也不同。
在赤道地区,由于太阳直射的强烈,流层大气的温度较高;而在极地地区,由于太阳斜射的较弱,流层大气的温度较低。
流层大气的受热过程对地球上的气候和天气现象具有重要影响。
通过研究流层大气的受热过程,可以更好地理解和预测复杂的气候系统。
此外,流层大气的受热过程也与全球气候变化密切相关。
由于人类活动产生的温室气体的增加,会导致太阳辐射的净吸收增加,进一步加剧了流层大气的受热过程。
总结起来,流层大气的受热过程包括太阳辐射的吸收、传导和辐射、地表和大气之间的能量交换等方面。
这一过程对地球的气候和天气现象起到重要的作用,也对全球气候变化产生重要影响。
为了更好地理解和预测地球的大气系统,我们需要进一步深入研究流层大气的受热过程,并采取相应的措施应对气候变化带来的挑战。
大气的垂直分层和对流层大气的受热过程对流层:对流层位于地球表面至对流层顶,大约高度为12-15公里。
它是大气中最靠近地球表面的一层,也是人类活动的主要区域。
大气在对流层中通过热对流和湿对流等方式进行混合,形成云雾、降水、暖湿气流等现象。
对流层的温度随高度的增加而逐渐降低。
平流层:平流层位于对流层顶部至平流层顶,大约高度为50公里。
它是对流层和臭氧层之间的过渡区域。
平流层中,温度随高度的增加而稳定或略有增加,基本上没有热对流和湿对流现象。
平流层中的风主要是水平风,风速随高度的增加而增大。
臭氧层:臭氧层位于平流层顶部,大约高度为50-80公里。
臭氧层是由臭氧分子构成的特殊区域,它的存在主要是因为紫外线辐射与臭氧之间的发生相互作用。
臭氧层具有过滤紫外线、保护地球生物系统的重要作用。
间歇层和热层:间歇层位于臭氧层上方,大约高度为80-400公里。
间歇层是大气中光学和电学现象最重要的区域,其中包括电离层、中性层和介质层等。
而热层是大气的最外层,其上层是外大气中的热层,包括热层I和热层II。
热层是电离层的一部分,主要受到太阳辐射和地球磁场的影响。
对流层大气的受热过程:对流层大气的受热过程主要包括辐射传输、热传导和对流传输三种方式。
辐射传输:辐射传输是指太阳辐射和地球辐射通过空气传播传递热量的过程。
太阳辐射主要是紫外线、可见光和红外线,而地球辐射主要是远红外线。
太阳辐射和地球辐射被大气中的气体、云雾和气溶胶等物质吸收、散射和反射,一部分热量被大气吸收,一部分直接进入地球的大气中。
热传导:热传导是指热量通过物质的分子或自由电子之间的互相碰撞传递的过程。
在对流层大气中,热传导主要通过固体和液体上层物质之间的接触传递热量。
热传导的速率与物质的热导率和温度梯度有关,当温度梯度较大时,热传导速率较快。
对流传输:对流传输是指大气中的热量通过对流运动传递的过程。
对流层大气中,热量主要通过热对流和湿对流进行传输。
热对流是指由于暖气体的浮力作用,使得气体上升,冷气体下沉的现象。