不等式选讲中的数学美
- 格式:doc
- 大小:27.62 KB
- 文档页数:2
第十八章不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===∙nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络18.1 绝对值型不等式典例精析题型一 解绝对值不等式 【例1】设函数f (x )=|x -1|+|x -2|. (1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3,所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|.由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0, ①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.18.2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得 lg a +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c 2≥lg ac .而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立,即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0). (1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.18.3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明:设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22.【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2, (k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明.【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54+1]b =(54)n a -4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立. 由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时)(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.18.4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有 a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++∙+2b a a c a c b a ++++∙+2c b ac a c c b ++++∙=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4 (当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x +x 3+…+x 2n -1+x n ≥(n +1)x n ,②将①和②相加得1+x +x 2+…+x 2n ≥(2n +1)x n .③ (2)当0<x <1时,1>x >x 2>…>x n . 由①②仍然成立,于是③也成立. 综合(1)(2),原不等式成立.【点拨】 分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm 的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a 、b 、c ,则a +b +c =3,且这三个正三角形面积和S 满足:3S =34(a 2+b 2+c 2)(12+12+12)≥34(a +b +c )2=934⇒S ≥334.当且仅当a =b =c =1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a 2+b 2≥2ab .有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.。
一、a 恒等关系是义务教育数学学习中的一种基本的关系..在义务教育的学习过程中;有哪些恒等关系是重要的是需要学生掌握的决定这些恒等关系的基本数学思想是什么这些数学思想是怎么发挥作用的b 在义务教育阶段也引入了事物之间的不等关系;同时也引出了一些重要的不等关系;例如;实数中的不等关系..我们还引出了一些不等关系的性质;例如;a>b>0;b>c>0就可以得出;a>c..建议同学们梳理一下在义务教育阶段所学的不等关系;体会不等关系与恒等关系的区别..c 在高中的必修5;我们设置了不等式的内容..它大体上由四部分内容组成..我们同学们梳理复习这四部分内容..第一部分是;一些基本不等式的性质;例如;a>b;c>0得出;ac>bc等..第二部分是;在学会解一元一次不等式的基础上;引入了一元二次不等式..第三部分是;介绍了我们一个经常使用的不等式;这个重要的不等式有许多不同的呈现形式;值得一提的是;它还有很多重要的几何形式..第四部分是;简单的线性规划问题..解决线性规划问题是按照以下基本步骤实现的:1确定目标函数2确定目标函数的约束条件;即讨论这个目标函数的可行区域..利用不等式刻画目标函数的约束条件..3观察目标函数在可行区域内的变化趋势..4确定使得目标函数达到最大或最小值的解..同学们应该思考的是;在讨论这些不等式的过程中什么思想发挥了作用..d 在我们上面分析的这些内容的学习中;我们可以体会到由运算思想所体现的恒等变换的能力..这种能力在研究不等式中发挥了重要的作用..建议同学们在教师的帮助下更好的发挥这种能力..e 由运算思想所体现的恒等变换的能力;是一种重要的逻辑推理的能力..在本专题中;提高这种能力是本专题的基本定位..建议教师思考在本专题中;如何体现这样一个基本定位..f 我们知道基本不等式;a2+b2≥2ab;它有着重要的几何背景..如图所示:令AF=a;BF=b;则AB 2=a 2+b 2;而S 正方形ABCD ≥4S ⊿ABF即;所以;a 2+b 2≥2ab;当AF=BF 时;正方形EFGH 缩为一点;S 正方形ABCD =44S ⊿ABF实际上每一个好的不等式都有重要的数学背景;特别是重要的几何背景..教师应思考这样的问题;如何引导学生体会和认识不等式的几何背景;以及这些几何背景在证明不等式的过程中发挥的几何意义g 本专题我们主要介绍以下内容1不等式的基本性质和基本不等式;2绝对值不等式及其几何意义;并能利用绝对值不等式的几何意义证明和求解一些绝对值不等式;3认识柯西不等式的几种不同形式及其几何意义;用参数配方法讨论柯西不等式的一般情况;4用向量递归方法讨论排序不等式;5了解数学归纳法的原理及其使用范围;会用数学归纳法证明一些简单问题;6会用数学归纳法证明贝努利不等式;7会用上述不等式证明一些简单问题..能够利用平均值不等式、柯西不等式求一些特定函数的极值;8通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法..教师应该思考;如何让学生构架起本专题的知识结构..教师还应该思考;如何帮助学生总结、概括高中阶段有关不等关系的内容;并能写出一个好的读书报告与学生进行交流;总结在不等关系学习中的重要的数学思想..h 教师应了解学生学习不等式选讲的基础;并思考如何根据学生的起点设计本专题的教学方案..。
高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
关于数学之美的描述数学之美是一种独特的、深入人类心灵的艺术形式。
它以精确、逻辑和秩序为基础,通过数学公式、结构和理论,创造出令人惊叹的美感。
以下是关于数学之美的几个主要描述:对称性:数学中的对称性是一种常见的美学元素。
无论是几何形状(如圆形、正方形、矩形等),还是复杂的数学函数和公式,对称性都是一种引人注目的美感。
比例与和谐:许多重要的数学结构和理论都与比例和和谐有关。
比如黄金分割(Golden Ratio)就是一种特殊的比例,它在自然和人造物体中频繁出现,给人带来视觉上的美感。
简洁与明了:数学以其简洁明了的方式揭示了世界的本质。
一个简单的数学公式或定理,往往能揭示复杂现象背后的规律,这种简洁性本身就是一种美。
逻辑与推理:数学的基础是逻辑和推理,这也是其独特的美学价值。
通过严谨的逻辑和推理,数学能够解答那些看似复杂的问题,并得出精确的答案。
无限与未知:数学中充满了无限的可能性和未知的领域。
这种无限和未知的美感,激发了人类的探索精神,驱使我们去解开数学中的谜团。
抽象与具体:数学的抽象性允许它描述和探索各种复杂的概念,而具体的应用则使这些概念变得生动和有意义。
这种抽象与具体的结合,展示了数学的深度和广度。
应用广泛性:数学在科学、工程、经济、艺术等许多领域都有广泛的应用。
这种跨学科的通用性,使得数学成为一种强大的工具,也展现了它的美学价值。
激发探索精神:数学之美还在于它激发了人类的探索精神。
从古至今,无数数学家和科学家在追求数学真理的过程中,展现出无比的毅力和智慧。
这种探索精神本身就是一种美。
超越语言:数学是一种超越语言的文化,它可以被全人类理解,不受地域和文化的限制。
这种超越性的美学价值在于它促进了不同文化和国家之间的交流和理解。
解构与重构:通过解构复杂的数学问题,将其分解为更小的部分,然后通过逻辑和推理重构答案,这种过程本身就是一种美。
它展示了数学的严谨性和创造性。
总的来说,数学之美是一种深邃、精确和无与伦比的美。
数学中美的欣赏摘要:数学美,是一种科学美,它有着丰富多采的美的因素,许多数学图形、数学表达式给人以美的享受。
数学方法美如同数学图形、公式一样,之所以给人以美的享受,是因为数学方法美中存在着其固有的美因。
而黄金分割无论是在理论上,,还是实际生活中都有着极其广泛而又非常简单的应用,对后来形式美学与实验美学产生了巨大影响,从而在历史上产生了巨大的影响。
本文结合实例,论述数学方法美的美因有简洁性、对称性、抽象性、谐调性、新颖性等,欣赏数学的美, 提高人们的数学素质,从而创造更美的数学解题方法。
关键词:数学方法数学方法美黄金分割1、简洁美简洁美是指各种数学事实都具有简单明了的表述,它是数学事实统一的简化形式的外在表现。
与数学概念、数学定理等相比, 数学方法的简洁美更多地表现在运用数学方法的过程和结果的简洁形式等方面,同时用以表述这种方法的语言也是简洁的、精炼的。
例 1 试证素数有无穷多个。
证:假设P1、P2、…Pn是仅有的有限个素数,n∈N,作自然数g=1+ P1P2…Pn则g也是素数,(否则,必有Pi Ⅰ1即Pi=1矛盾)从而素数个数多于n个与假设矛盾,故,素数有无穷多个。
对于论证与“无穷多”有关的这样一个复杂的命题, 能用如此简洁的方法证明, 不能不令人赞叹不已!这种思想方法如同维纳期塑像一样具有丰富的内在美。
例2某六位数首位是2,乘以3得到的新数恰是把2移至末位,其余数码不变的六位数,求这个六位数。
解设这个六位数是200000+x,则3﹙200000+x﹚=10x+2则x=85714,所求的六位数是285714。
例1证法体现了局部构造及思路的简洁美,例2体现了整体结构的简洁美。
公理法则体现其构建知识系统的简洁美。
如近代数学家皮亚诺仅用“自然数”、“后继”、“1”三个基本概念和五个基本命题,便刻划出整个算术统,体现出自然数结构的有序和完美,更体现出公理化方法的简洁美。
2、对称美“美和对称紧密相连”, 许多重要的数学方法总是成对偶状出现, 表现出数学方法整体结构的对称美。
高中数学不等式选讲解析在高中数学中,不等式是一个重要的概念和解题方法。
掌握不等式的性质和解法,对提高数学思维能力和解题能力具有重要意义。
本文将对高中数学不等式的选讲进行解析,介绍一些基本的不等式性质和解题方法。
一、基本不等式性质1. 加减性质:若a>b,则a+c>b+c,a-c>b-c(c为任意实数)。
加减性质是不等式的基本性质,可用于不等式的推导和变形,利用这个性质可以方便地进行计算和证明。
2. 倍数性质:若a>b且c>0,则ac>bc;若a>b且c<0,则ac<bc。
倍数性质是不等式中的重要性质,它表示当不等式两边同时乘以一个正数或负数时,不等号的方向不变。
在解不等式问题时,常常运用倍数性质来简化计算和推导。
3. 倒数性质:若a>b且ab>0,则1/a<1/b;若a>b且ab<0,则1/a>1/b。
倒数性质是不等式的重要性质之一,它表示当不等式两边同时取倒数时,不等号的方向改变。
倒数性质在解不等式问题时具有广泛应用,可以帮助我们求解复杂的不等式关系。
二、不等式的解题方法1. 同向相加法同向相加法是一种常见的解不等式方法,适用于形如a + x > b的不等式。
其基本思想是将不等式两边同时减去一个常数,使得待求变量x 与常数b之间的关系显现出来。
例如,对于不等式3x + 5 < 10,我们可以将不等式两边都减去5,得到3x < 5,再除以3,得到x < 5/3。
因此,不等式的解集为x < 5/3。
2. 取倒数法取倒数法是一种常用的解不等式方法,特别适用于求解倒数不等式。
其基本思想是将不等式两边同时取倒数,然后改变不等号的方向,从而得到新的不等式。
例如,对于不等式1/(x-2) > 3,我们可以将不等式两边同时取倒数,得到x-2 < 1/3,再将不等式两边同时加上2,得到x < 7/3。
数学数学之美数学,是一门研究数量、结构、空间以及变化的学科,被誉为“科学之王”。
它的美不仅体现在它的创新性和深度上,更体现在它对现实世界的解释和应用中。
本文将讨论数学之美的几个方面,包括数学的逻辑美、形式美以及实用美。
1. 数学的逻辑美数学是一门严谨的学科,它追求准确性和逻辑性。
数学中的每个定理和推理都经过严格的证明和推导,不容忽视任何细节。
这种严谨性使得数学具有独特的美感,让人感受到逻辑的严密和真理的美妙。
数学的逻辑美可以通过各种公式、定理和证明来展示。
例如,费马定理的证明以及勾股定理的几何证明都展现出了数学中的逻辑美。
2. 数学的形式美数学具有独特的形式美,其美感来自于数学中的符号、图形和模式。
数学中的符号和公式可以简洁地表达复杂的概念和关系,让人们可以通过简单的方式处理复杂的问题。
数学中的图形可以展示出数学中的对称性和几何结构,例如,圆的完美形状以及分形图形的奇特之美。
数学中的模式则是一种重复出现的规律,让人们感受到宇宙中数学的普遍性。
所有这些形式美共同构成了数学的美妙之处。
3. 数学的实用美数学不仅有理论上的美,还有实际应用上的美。
数学通过建立模型和推导规律,为解决现实问题提供了有力的工具。
无论是物理学中的数学模型,经济学中的数学预测,还是工程学中的数值计算,数学都发挥着不可替代的作用。
数学的实用美体现在它能够解决实际问题、优化决策,并推动科技的发展。
没有数学的支持,现代社会的许多成就将无法实现。
综上所述,数学之美体现在它的逻辑美、形式美和实用美上。
数学追求严谨的逻辑性,让人们感受到真理的美妙;数学的符号、图形和模式展示了独特的形式美;数学的应用使得它在实际问题的解决中发挥出实用美。
正是数学的美妙之处,让人们对这门学科充满了无尽的探索与热爱。
第三节 不等式选讲(选修4-5)考纲解读1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值.2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位.3.了解基本不等式,会用它来证明不等式和求最值.4.会用综合法、分析法、反证法及数学归纳法证明不等式.命题趋势探究本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 知识点精讲一、不等式的性质1.同向合成(1),a b b c a c >>⇒>;(2),c a b d a c b d >>⇒+>+;(3)0,c 0a b d ac bd >>>>⇒>.(合成后为必要条件)2.同解变形(1)a b a c b c >⇔+>+;(2)0,0,a b c ac bc c ac bc >⇔>>⇔<<;(3)11000a b b a>>⇔>>⇔>>. (变形后为充要条件)3.作差比较法0,0a b a b a b a b >⇔>-><⇔-<二、含绝对值的不等式(1)0,||a x a a x a ><⇔>-<<;0,||,a x a x a x a >>⇔>><-或(2)22||||a b a b >⇔>(3)||||x a x b c +++<零点分段讨论 三、基本不等式(1)222a b ab +>(当且仅当等号成立条件为a b =)(2)0,0,2a b a b +>>≥a b =);0,0,0,3a b c a b c ++>>>≥(当且仅当a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号)①几何意义:||ad bc ⋅⇔+≤a b a b ||||||≤②推广:222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++.当且仅当向量12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.四、不等式的证明(1)作差比较法、作商比较法.(2)综合法——由因到果.(3)分析法——执果索因.(4)数学归纳法.(5)构造辅助函数利用单调性证明不等式.(6)反证法.(7)放缩法.题型归纳即思路提示题型201 含绝对值的不等式一、解含绝对值的不等式思路提示对于含绝对值的不等式问题,首先要考虑的是根据绝对值的意义去掉绝对值.常用的去绝对值方法是零点分段法.特别用于多个绝对值的和或差不等式问题.若单个绝对值的不等式常用以下结论:|()|()()()()f x g x g x f x g x <⇔-<<;|()|()()()()()f x g x f x g x f x g x >⇔><-或;22|()||()|()()(()())(()())0f x g x f x g x f x g x f x g x >⇔>⇔+->.有时去绝对值也可根据22||x x =来去绝对值.例16.14 (2015·山东)解不等式|x -1|-|x -5|<2的解集.变式1 不等式|5||3|10x x -++≥的解集是( )A. [5,7]-B. [4,6]-C. (,5][7,)-∞-+∞D. (,4][6,)-∞-+∞变式2 已知函数()|2||5|f x x x =---.(1)证明:3()3f x -≤≤;(2)求不等式2()815f x x x ≥-+的解集二、含绝对值不等式恒成立,求参数问题例16.15 若不等式|2x -1|+|x +2|≥a2+12a +2对任意实数x 恒成立,则实数a 的取值范围为________.变式1 不等式⎪⎪⎪⎪⎪⎪x +1x ≥|a -2|+sin y 对一切非零实数x ,y 均成立,求实数a 的取值范围.变式2 若不等式|kx -4|≤2的解集为{x|1≤x ≤3},则实数k =________.变式3 (2017·石家庄调研)设函数f(x)=|x-3|-|x+1|,x∈R.(1)解不等式f(x)<-1;(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.三、含绝对值(方程)不等式有解,求参数问题例16.16 (2016·深圳模拟)若关于x的不等式|2 014-x|+|2 015-x|≤d有解,求d的取值范围.变式2 已知a∈R,关于x的方程21||||04x x a a++-+=有实根,求a的取值范围.四、已知含绝对值不等式的解集,求参数的值或范围例16.17 (全国卷 I卷(理))已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.变式1 设函数()||3f x x a x =-+,其中0a >.(1) 当1a =时,求不等式()32f x x ≥+的解集;(2)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.变式2 (2017·开封模拟)设函数f(x)=|x -a|,a<0.(1)证明:f(x)+f ⎝ ⎛⎭⎪⎫-1x ≥2; (2)若不等式f(x)+f(2x)<12的解集非空,求a 的取值范围.变式3 (2012山东理13) 若不等式|4|2kx -≤的解集为{}|13x x ≤≤,则实数k = .题型202 不等式的证明一、比较法(差值法和比值法)思路提示将待比较的两个代数式通过作差或作商,与0与1进行比较,得到大小关系. 例16.18 (2014·常州期末)已知x ≥1,y ≥1,求证:x 2y+xy 2+1≤x 2y 2+x+y.变式1 (2015·徐州、连云港、宿迁三检)已知a ,b ,c 都是正数,求证:222222a b b c c a a b c ++++≥abc.二、利用函数的单调性证明思路提示使用对象:在某区间成立的函数不等式、数值不等式的证明通常是通过辅助函数完成的.解题程序:(1)移项(有时需要作简单的恒等变形),使不等式一端为0,另一端为所作辅助函数()f x .(2)求()f x 并验证()f x 在指定区间上的单调性.(3)求出区间端点的函数值(或极限值),其中至少有一个为0或已知符号,作比较即得所证.例16.19 已知01x <<,求证:31sin 6x x x -<.变式1 证明:当02x π<<时,2sin xx x π<<.三、综合法与分析法思路提示字母12,,,,,n A A A A B 分别表示一组不等式,其中B 为已知不等式,A 为待证不等式.若有12n A A A A B ⇐⇐⇐⇐⇐,综合法是由B 前进式地推导A ,分析法是由A 倒退式地分析到B .用分析法时,必须步步可逆.例16.20 已知a,b,c>0且互不相等,abc=1.试证明:a+b+c<1a+1b+1c.变式1 已知a,b,c,d均为正数,且ad=bc.(1)证明:若a+d>b+c,则|a-d|>|b-c|;(2)t·a2+b2c2+d2=a4+c4+b4+d4,求实数t的取值范围..16.21(2017·沈阳模拟)设a,b,c>0,且ab+bc+ca=1.求证:(1)a+b+c≥3;(2)abc+bac+cab≥3(a+b+c).c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2)abc+bac+cab=a+b+cabc.变式1 已知a>b>c,且a+b+c=0,求证:b2-ac<3a.四、反证法 思路提示从否定结论出发,经过逻辑推理导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的.它的依据是原命题与逆否命题同真假.例16.22 设二次函数f (x )=x 2+px+q ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.变式1 已知,,a b ∈R ,332a b +=,求证:2a b +≤.五、放缩法 思路提示预证A B ≥,可通过适当放大或缩小,借助一个或多个中间量,使得112,,,K B B B B B A ≤≤≤或112,,,K A A A A A B ≥≥≥,再利用传递性,达到证明目的,常见的放缩途径有“添舍”放缩、“分母”放缩和“单调”放缩.例16.23 (2015·安徽卷)设n ∈N *,x n 是曲线y=x 2n+2+1在点(1,2)处的切线与x 轴交点的横坐标.(1) 求数列{x n }的通项公式; (2) 记T n =2213x x ·…·22-1n x ,求证:T n ≥14n .变式1 证明:1(1)(2,)n n n n n n -*>+≥∈N .变式2 若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.例16.24 求证:12(,,,)b c d aa b c d a b c b c d c d a d a b+<+++<∈++++++++R .例16.25 设,,,a b c m +∈R ,且满足m m ma b c =+,问m 取何值时,以,,a b c 为边可构成三角形,并判断该三角形的形状.六、三角换元法 思路提示若221x y +=,2212y x +=等为已知条件,求证不等式时,利用三角换元法较容易,但是务必注意换元前后参数的范围变化.例16.26 (2017江苏卷) 已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明ac +bd ≤8.变式1 设,x y ∈R ,221x y +=,求证:5||3412x y +≤. 七、构造法 思路提示一般说来,用构造法证明不等式,常见的构造方法如下: (1)构造辅助函数. (2)构造辅助数列. (3)构造几何图形.例16.27 设,x y ∈R ,0b ≠,若10a b <<,求证:211b b a -<+..例16.28 已知,,a b c 为三角形的三边长,求证:111a b ca b c<++++.变式1 证明:||||||1||1||1||a b a b a b a b +<+++++.变式2 已知0x >且1x ≠,0m n >>,求证:11mnm nx x x x +>+.例16.29 证明:当1x >-且0x ≠时,有(1)1(N )nx nx n *+≥+∈.例16.30 设,,a b c +∈R)a b c ≥++.变式1 设,x y +∈R≥八、利用柯西不等式证明不等式 思路提示柯西不等式不仅具有优美的代数表现形式及向量表现形式,而且有明显的几何意义,它与基本不等式具有密切的关系,其作用类似于基本不等式可用来求最大(小)值或证明不等式,不过它的特点更明显应用更直接. 1.二维形式的柯西不等式设1212,,,x x y y ∈R ,2222211221212()()()x y x y x x y y ++≥+.等号成立1221x y x y ⇔=.2.一般形式的柯西不等式 设12,,,n a a a 及12,,,n b b b 为任意实数,则21122()n n a b a b a b +++≤2222221212()()n n a a a b b b ++++++,当且仅当1212nna a ab b b ===(规定0i a =时0i b =,1,2,,i n =)时等号成立.证法一:当i a 全为0时,命题显然成立. 否则210nii a=>∑,考查关于x 的二次函数21()()ni i i f x a x b ==-∑,显然()0f x ≥恒成立.注意到222111()()2()nn n ii i ii i i f x ax a b x b ====-+∑∑∑,而()0f x ≥恒成立,且210ni i a =>∑,故()f x 的判别式不大于零,即2221114()40nn ni i i i i i i a b a b ===∆=-⋅≤∑∑∑,整理后得222111()nnniii i i i i a b a b ===⋅≥∑∑∑.证法二:向量的内积证法. 令12(,,,)n a a a =a ,12(,,,)n b b b =b ,θ为a 与b 的夹角.因为|cos ⋅=a b a ||b |a,b ,且|cos |1≤a,b ,所以|cos ||⋅=≤|a b |a ||b ||a,b a ||b |222|⇒⋅≤|a b |a ||b |,即21122()n n a b a b a b +++≤2222221212()()n n a a a b b b ++++++,等号成立0θ⇔=︒或180︒⇔a,b 平行1212nna a ab b b ⇔===. 柯西不等式提示了任意两组实数积之和的平方与平方和之间的关系,应用它可以简单地证明许多复杂的不等式,下面举例说明. 例16.31 已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x2+y2+z2的最小值.变式1 已知大于1的正数x ,y ,z 满足x +y +z =3 3.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.变式2 已知0,0,0a b c >>>,22cos sin a b c θθ+<.22θθ<例16.32 设实数,,a b c 满足2223232a b c ++=,求证:39271a b c---++≥.变式1 已知n *∈N ,且2n ≥,求证:11111117234212n n <-+-++-<-.变式2 已知正实数,,a b c 满足1abc =,求证:3331113()()()2a b c b c a c a b ++≥+++.最有效训练题61(限时45分钟)1.不等式|21|23x x -<-的解集是( )A. 1|2x x ⎧⎫<⎨⎬⎩⎭ B. 13|25x x ⎧⎫≤<⎨⎬⎩⎭ C. 3|5x x ⎧⎫<⎨⎬⎩⎭ D. 3|5x x ⎧⎫>⎨⎬⎩⎭ 2.设,,(,0)a b c ∈-∞,则111,,a b c b c a+++( ) A. 都不大于2- B. 都不小于2- C. 至少有一个不大于2- D. 至少有一个不小于2-3.若P =0)Q a =+≥,则,P Q 的大小关系是( )A. P Q >B. P Q =C. P Q <D. 由a 的取值决定 4.用数学归纳法证明某不等式,左边111111234212n n=-+-++--,“从n k =到1n k =+”应将左边加上( )A. 11k +B. 112124k k -++C. 122k -+D. 112122k k -++5. ()f x = )A. 5 6.若正数,a b 满足3ab a b =++,则①ab 的取值范围是 ;②a b +的取值范围是 .7.在实数范围内,不等式|21||21|6x x -++≤的解集为 .8.若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .9.已知0,0,0a b c >>>,a b c +>.求证:111a b c a b c +>+++. 10.已知函数()|||2|f x x a x =++-.(1) 当3a =-时,求不等式()3f x ≥的解集;(2)若()|x 4|f x ≤-的解集包含[]1,2,求a 的取值范围.11. 已知函数()|2|,f x m x m =--∈R ,且(2)0f x +≥的解集为[1,1]-. ①求m 的值;②若,,a b c +∈R ,且11123m a b c ++=,求证:239a b c ++≥.12.已知函数3()(1)1x f x x x +=≠-+.设数列{}n a 满足11a =,1()n n a f a +=,数列{}n b 满足|n n b a =,12n n S b b b =+++ ()n *∈N .(1)用数学归纳法证明:n b ≤(2)证明:3n S <.。
不等式选讲——基本不等式的推广(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除不等式选讲——基本不等式的推广学习目标1.在掌握二维基本不等式的基础上推广到三维基本不等式,并会应用三维基本不等式;2.了解n 维基本不等式。
学习重点和难点1.重点:三维基本不等式的理解和应用。
2.难点:三维基本不等式的理解和应用。
学习过程一.自学、思考、练习(一)问题导引1.对于二维基本不等式,0,a ba b >+≥a b =时等号成立,你能把它推广到三维的情景吗?并证明三维基本不等式。
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.写出n 维基本不等式。
________________________________________________________________________________________________________________________________________________________________________ (二)知识的应用例1.设,,a b c 是不全相等的正数,求证:(1)222()()9a b c ab c abc ++++≥; (2)()()9a b c b c a b c a a b c++++≥; 例2.求下列函数的最小值:(1)241y x x=+()0x >; (2)23y x x =+()0x >; (3)()21y x x =-()01x <<;(4) ()21y x x =-()01x << 例3.若0a b >>, 求216()a b a b +-的最小值 例4.体积为V 的圆柱体,它的高h 和底半径r 应当采用怎样的比,才能使表面积S 最小?三.自我测试1.若,x y R +∈,且4x y +≤,下列各式成立的是( )A .1x y ≤+41 B .111x y +≥ C 2≥ D .1xy ≥21 2.若,x y R ∈且满足32x y+=,则3271x y ++的最小值是( )A .339B .1+22C .6D .73.设a b c >> n ∈N ,且ca n cb b a -≥-+-11恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .64.若3()3x f x x=+且(0,1]x ∈,则()f x 的最小值是( )5.(06重庆)若,,0a b c>且()4a a b c bc +++=-则2a b c ++的最小值为( )A 1B 1C .2D . 26.若103x <<,则()213x x -的最大值是 .此时,x = .7.若a 是正实数,222310a b +=,则的最大值是 .8.若正数a , b 满足3ab a b =++,则ab 的取值范围是 .9.若实数,x y 满足0xy>,且22x y =,则2xy x +的最小值是 . 10.函数23(0)x y x =<的值域是 .11≤对所有正数,x y 都成立,试问k 的最小值是 12.将一长、宽分别为15、10的长方形铁皮截去四角(每角为边长为x 的正方形如图)后折成一个长方体的无盖容器,问切去的正方形边长是多小时?才能使容器的容积最大?。
不等式题型选讲1、 有关不等式的解法:解不等式是通过变形转化为简单不等式从而得到解集,如分式不等式转化为整式不等式但要注意是同解变形,每一步变形既充分又必要,例如解分式不等式不要随便去分母,而是先移项,等价转化为f (x )>0或f (x )<0的形式,再分析讨论。
一些含绝对值符号的不等式,含有参数的不等式必须进行讨论。
例1、(1)设集合A ={x ∣x 2-1>0},B ={x ∣log 2x >0},则A ∩B 等于( )A 、{x ∣x >1}B 、{x ∣x >0}C 、{x ∣x <-1}D 、{x ∣x <-1或x>1}(2)不等式(1+x )(1-∣x ∣)>0的解集为( )A 、{x ∣0≤x <1}B 、{x ∣x <0且x ≠-1}C 、{x ∣-1<x <1}D 、{x ∣x <1或x ≠-1}(3)设f (x )是奇函数且在(-∞,0)内是减函数,f (-2)=0,则x f (x )<0的解集为( )A 、(-1,0)∪(2,+∞)B 、(-∞,-2)∪(0,2)C 、(-∞,-2)∪(2,+∞)D 、(-2,0)∪(0,2)(4)(2003新教材高考试题)设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,若f (x )>1,则x 0的取值范围是( )A 、(-1,1)B 、(-1,+∞)C 、(-∞,-2)∪(0,+∞)D 、(-∞,-1)∪(1,+∞)选择题具有自身独特的特点,从而决定了它的解法具有灵活机动的优势。
解题者选择不同的解法,从一个侧面反映出他们数学水平的不同“层次”。
例2、(1)不等式1)20(lg cos 2>x (x ∈(0,π)的解集为(2)不等式x x x <-24的解集是-----------------。
不等式选讲中的数学美
哲学家、逻辑学家罗素说:“数学,如果正确的看它,不但拥有真理,而且也具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美没有绘画或音乐的那种华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。
”数学美充满了数学学习的各个角落,我从高中数学选修4-5不等式选讲中具体说明数学美的具体体现。
在证明不等的问题中,我们有多种方法可以解决问题,不同的方法体现了不同的数学思维和数学美,下面从三个方面说明数学美的体现:
一、代数证明
例如:
问题
已知)1,0(,,∈z y x ,求证:1)1()1()1(<-+-+-x z z y y x .
解答
)
1()1()1()
1()1()1()]1)(1)(1([)]
1()[1()]
1()[1()]
1()[1()]
1)(1)(1([)]
1()][1()][1([1x z z y y x x z z y y x z y x xyz y y x z x x z y z z y x z y x xyz z z y y x x -+-+->-+-+-+---+=-+-+-+-+-+-+---+=-+-+-+=
首先,题目的式子本身看起来就有对称的美感,因此本题的解答也从对称的方面考虑。
正面的式子精巧而美妙,巧妙的使用了“1”的变换,又充分体现了数学的简洁美,给人清新、简洁、明了的感觉。
因此,本题中所体现的对称美和简洁美让学生眼前一亮,在解题时注意到不等式的形式与解答之间微妙的关系,并充分引起学生的求知欲望。
让学生自己在解答此题的过程中去慢慢感受,增长经验。
二、几何证明
构造几何模型证明不等式是一种非常独特的思维,是数学图形美的完美展现。
讲抽象的不等式证明直观化、生动化,而且往往可以化繁为简,有助于学生
把握不等式的本质。
首先观察该不等式,最高次为二次,并且式子呈对称形式因此联想到正方形。
y
z
x
该正方形的边长为“1”,x,y,z分别如图所示,显然由面积法可得题目所求不等式,一目了然。
因此,改正方形生动形象的体现了不等式中的图形美,化抽象为具体。
在教学中可利用此种美,扩展学生的发散思维,多元化思考问题。
三、推广
除了大致分为代数和几何证明以外,还有很多其他的证明方法,同样体现了不等式证明中的数学美,例如,解题思维上的数学美。
逆向思维,分离变量,单调性,求导,函数法,顺推法,换元法等等,这些都体现了不等式解题中的数学美,美在简洁,清晰,有方法,对称等等,利用这些方法,传授学生一些基本解题思路,诱发学生的发散思维,创新能力。
这些不等式中数学美的挖掘和利用,能够让学生耳目一新,减少数学的枯燥性,增强学生的学习兴趣。
不等式关系如同仙缘奇葩,完美展现数学奇异美,等与不等血肉相连,互相渗透,也体现了一种关联美。