无源性的变速恒频双馈风力发电机控制仿真研究控制框图
- 格式:pdf
- 大小:81.69 KB
- 文档页数:1
1 引言根据国家能源局的统计数据,2022年我国用电量继续保持上升势头,全年用电量达到8.4万亿千瓦时,同比增长2.2%。
2030年,我国一次能源消费预计将达到60亿吨标准煤左右,若希望其中传统能源占比不超过80%,则意味着二十年内非化石能源需增加一倍之多[1],任务依旧十分艰巨。
随着风电技术和风力发电机组技术水平的提高,风电机组单机容量不断增加,风电行业向着大功率、高功率密度方向发展。
目前双馈风电机组的主流控制方式为电流源型矢量控制方式,但其缺乏自主的频率与电压支撑能力,而电压源型虚拟同步机控制方式能解决上述缺点,通过一种双馈风电机组电压源电流源双模式运行平滑切换控制策略,分析以上两种控制方式,使控制模式切换问题转变为保证电流内环输入与相位平滑切换问题[2]。
薛利晨等[3]在DSPACE环境中实时实现基于双馈感应发电机(DFIG)的风能转换系统(WECS)的自适应非线性控制策略,而且DSPACE-DS1104板与风力发电系统的实验台直接相关[4]。
目前,非线性反步控制器已经实现,用于控制通过两个转换器(电网侧和机器侧)直接连接到电网的双馈风电机组的转子动能和减载功率。
针对双馈异步风力发电机组的特点,孙浩宁等[5]从转子动能入手,通过控制减载运行方式,协调风机的转子动能与减载功率之间的关系,控制转子能量的释放过程,充分利用转子的旋转动能,可以提升风机电网调频能力;从另一个方面来说,随着风电渗透率的不断提高,双馈风电机组能够快速响应电网频率的变化,具有重要的惯性响应特性。
有学者从双馈感应发电机的励磁控制原理入手,对比了同步发电机在故障下的瞬态频率特性,提出双馈感应发电机可以通过励磁来控制发电机的转速或有功功率[6]。
为了减少风电场节点电压偏差和网络损耗,王耀翔等[7]基于双馈风电机组有功功率数据,估算出机组的无功功率极限,并分析了风电场的无功容量构成及计算方法以减小风电场节点电压偏差、降低网络损耗和利用风电机组无功潜力为目标,构建多目标问题,最后利用优化算法求解。
变速恒频双馈风力发电系统控制技术的探讨变速恒频双馈风力发电系统是当前风力发电的核心技术,在这一系统运行过程中对其进行针对控制具有重要意义。
专业的控制是保证变速恒频双馈风力发电系统正常运行的重要前提。
针对该发电系统的控制主要是集中在电网低压故障时的双变流器控制以及网侧变流器的控制。
本文将结合发电系统原理来探讨如何实现科学高效的专业控制。
变速恒频风力发电技术,是当前运行效率较高,电能质量较优的的发电技术。
这项技术在风力发电领域中有着广泛应用。
随着我国能源形势的日益紧张,变速恒频双馈风力发电系统在风能发电中的作用越来越重要。
在这样的背景下加强对变速恒频发电控制技术的研究具有重要意义。
双馈风力发电是专业系统的的发电技术,这一系统的发电涉及到变流器控制、电网低压故障控制以及电机控制等多个领域。
这些方面的控制是保证变速恒频风力发电技术正常运行的重要措施。
当前针对变流器的控制主要是通过矢量控制技术来实现,这一技术相较于其他技术而言比较方便。
非线性矢量控制变速恒频双馈风力发电系统是一个多变量、非线性、强耦合的系统,实现对这一系统的及时有效地控制,有必要采用非线性矢量控制的方法来实现。
针对该系统的控制设计人员先是要推算出系统的状态方程,而后根据状态方程推导出逆系统,最后根据逆系统来实现系统内模控制。
1.1.状态方程。
状态方程是表述系统特性的一种典型手法,工作人员可以通过既定的数学模型来推导双馈风力发电系统的状态方程。
双馈风力发电系统的最大控制目标是能够充分利用风能,也就是指在风速一定条件下,能够发挥发电系统的最大有功功率。
因而我们要把风力发电系统的有功功率作为被控制量。
输出量则应该是无功功率。
此时我们设输入变量是u,输出变量是y,那么我们就可以得到以下状态方程和输出方程.1.2.对双馈风力发电系统专业分析。
一个系统能否能利用非线性矢量控制技术来进行有效应用,一个重要前提就在于该系统能否可逆。
因而在控制之前还需要通过逆系统法来判断双馈风力发电系统是否可逆。
2020.05科学技术创新双馈风电机的控制仿真耿秀明(内蒙古电子信息职业技术学院,内蒙古呼和浩特010011)1概述经济的飞速发展带动了各行各业的发展,电能需求的日益增长与发电容量不足的矛盾显得越来越明显。
在目前能源紧缺与环境日益恶化的全球背景下,节能环保的可再生能源的的发展受到了各国的高度重视。
从风能资源的形成来看,其具有典型的可再生性和无污染性,而且风能资源总量大,分布广,是清洁能源战略的重要选择路径之一[1]。
目前,我们所使用的电能中,火电,水电和核电占据了主要的部分[2]。
由于制造、控制技术的发展应用比较成熟,这类发电厂生产的电能能够稳定的供给运行,并变送供给公共电网进行输电配送。
在中国,火力发电的份额占有主导地位,火电厂排放的灰尘、C02等,是造成大气污染的主要来源,并且随着煤炭资源的过度开采,现有储备量也大幅度缩减。
在国家大力的新能源政策扶植下,我国的风电产业迅猛发展,并相继投产了很多大容量风电场[3]。
因风能资源的随机性和波动性,使发出的电能不稳定,造成大部分风电场不能并网运行。
目前双馈发电机是风电场的主要机型,研究双馈风电机对研究风电并网,解决并网电压不稳定问题具有较高的应用价值和研究基础。
2双馈风电机双馈风电机(DFIG )是风电场的主要机型[3],风力机通过连接机构带动双馈风电机转子转动,转子绕组通过变换器组与电网连接,通过调节控制转子转速获得最大风能捕获。
定子绕组与电网连接,发电系统根据转速的变化调节励磁电流的频率,实现电机的变速恒频运行[4]。
连接机构主要是齿轮箱,双馈风电机结构如图1所示。
图1双馈风电机结构图当风速较高时,双馈电机转子转速大于同步转速时,转子绕组产生的旋转磁场方向与转速方向相反,电机在超同步状态运行,电能通过变换器从转子侧反馈到电网;当风速较低时,双馈电机转速小于同步转速时,转子绕组产生的旋转磁场方向与转速方向相同,发电机运行在次同步转速状态,转子将通过变流器从电网吸收功率[5]。
变速恒频双馈风力发电机组交流励磁控制系统研究鲍薇,尹忠东,任智慧(华北电力大学电力系统保护与动态安全监控教育部重点实验室,北京102206) 摘要:介绍了变速恒频双馈风力发电系统的工作原理,分析了双馈型风机的运行性能,重点对采用双PWM 换流器结构的交流励磁系统进行了介绍,提出了一种矢量控制策略,对网侧和转子侧变换器采用不同的矢量控制,从而实现不同的控制目标。
并通过EM TDC/PSCAD 软件进行了建模仿真,仿真表明,采用介绍的控制策略,能实现风力发电系统的最大风能追踪及有功无功解耦控制,保证输出功率稳定,实现高功率因数并网运行。
关键词:变速恒频;风力发电系统;交流励磁;PWM 换流器;矢量控制;最大风能追踪中图分类号:TM614 文献标识码:AStudy on AC -excited Control System of VSCF Doubly -fedWind Pow er G eneration SystemBAO Wei ,YIN Zhong -dong ,REN Zhi -hui(Key L aboratory of Power S ystem Protection and Dynamic Security Monitoring and Control under Ministry of Education N orth China Electric Power University ,Bei jing 102206,China )Abstract :The operation principle of doubly -fed VSCF wind power generation system was analyzed ,it es 2pecially introduced the doubly -fed generator ′s AC -excited system based on a structure of dual PWM con 2verter ,presented a vector control strategy ,which adopted different vector control between the grid -side con 2verter and the rotor side converter ,in order to achieve various control goals.The simulation on EM TDC/PSCAD software shows that adopting this control strategy this article presented ,it is able to track the largest wind energy ,achieves the decoupling control of wind power system ′s active and reactive power ,ensures the stability of output power and operate on high power factor.K ey w ords :variable -speed constant -frequency ;wind power generation system ;AC excitation ;PWM con 2verter ;vector control ;tracking largest wind power 基金项目:“十一五”国家科技支撑项目(2008BAA14B05) 作者简介:鲍薇(1985-),女,研究生,Email :baowei_19850627@1 引言目前我国的风电场装机绝大多数是恒速恒频机组。
2010年 7月电工技术学报 Vol.25 No. 7 第 25卷第 7期 TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Jul. 2010基于无源性的变速恒频双馈风力发电机控制系统高勇张文娟杨媛安涛(西安理工大学自动化与信息工程学院西安 710048摘要无源性理论应用于变速恒频双馈风力发电机的控制是一种全新的方法。
本文从能量的观点考虑双馈电机作为非线性控制对象,将风电系统定子侧单位功率因数运行、最大风能捕获及系统稳定性三者相结合,研究了双馈电机无源性控制的设计步骤。
所设计的电流内环与转速外环的相互协调,保证了定转子电流及转速的渐进跟踪。
与传统的矢量控制相比,无源控制策略在高速、有效实现最大风能捕获的同时,对电机参数摄动及负载转矩变化具有很强的鲁棒性。
基于Matlab 的仿真结果证明了该设计的有效性。
关键词:双馈电机无源性控制最大风能捕获鲁棒性中图分类号:TM614; TM315Passivity-Based Control System for VSCFDoubly Fed Wind Power GeneratorGao Yong Zhang Wenjuan Yang Yuan An Tao(Xi’an University of Technology Xi’an 710048 ChinaAbstract The application of the passivity-based control (PBC theory to the VSCF wind power generator control is a novel method. In this paper, the doubly fed generator isconsidered as a non-linear system using energy concept and the main purpose is to design a passivity-based control algorithm that combines the three aspects of unity power factor in the stator side, the maximum wind energy capture and system stability. The asymptotic tracking of currents and rotor speed are obtained by the harmonious operation between current inner-loop and rotor outer-loop. The designed controller achieves maximum wind energy capture in such a way that the fast dynamic response and good accuracy, meanwhile, it has strong robustness under generator parameters and load disturbance compared to conventional vector control. The reasonability and validity is testified by the simulation results based on Matlab.Keywords :Doubly fed induction generator, passivity-based control, maximum wind energy capture, robustness1引言近年来变速恒频双馈风力发电得到了世界各国的广泛重视 [1],其相关研究主要集中在基于矢量控制的定子磁链定向双馈电机有功、无功解耦控制上 [2]。
第三章双馈型变速恒频风力发电系统运行控制机组主结构及控制系统运行区域及控制目标总体控制方案励磁变换器结构及原理DFIG控制(机侧变换器控制)网侧变换器控制变桨机构及其控制偏航机构及其控制其他机构及控制、保护一. 机组主结构及控制系统机组主结构:主要的机电设备控制系统:微机控制软、硬件(一)机组主结构风轮系统传动链系统发电机系统偏航/解缆系统刹车系统辅助系统机组主结构示意图1. 风轮系统桨叶轮毂变距(桨距)机构2. 传动链系统低速轴齿轮箱多级变速,变比较大(接近100)采用行星齿轮和正(斜)齿轮实现多级变速润滑油冷却或加温机构高速轴联轴器通用标准型膜片联轴器连接齿轮箱和发电机补偿轴向、径向和角度偏差易于装拆维护实现电绝缘力矩限定传动链系统布局3. 发电机系统DFIG发电机本体冷却系统保护系统励磁变流器四象限运行能力、输入、输出特性优良设计容量为机组容量30%IGBT器件,PWM调制技术动作频率为数kHz-十几kHz并网机构4.偏航/解缆系统偏航机构风向标偏航伺服电机(或液压马达)减速装置偏航液压制动器偏航行星齿轮对风/解缆操作根据风向标控制对风计算机控制的自动解缆纽缆开关控制的安全链动作报警及人工解缆偏航的作用对风,获取最大发电量减少斜风给机组带来的不平衡载荷5.刹车系统机械抱闸刹车液压驱动和电气驱动通过制定卡钳和连轴器上制动盘配对实现,一般在气动刹车后转速降低后采用安装位置:高速轴,低速轴气动刹车变桨控制变桨控制系统控制桨距角为90度偏航控制电磁刹车通过控制发电机电磁阻转矩实现6.辅助系统塔架机舱罩机舱底盘变压器防雷系统及电气保护装置冷却系统发热部件液压系统齿轮箱发电机变频器冷却方式:空气冷却,液体冷却,混合冷却其他部分(二)控制系统1. 概述与一般工业控制过程不同,风力发电机组的控制系统是综合性控制系统。
它不仅要监视电网风况和机组运行参数,而且还要根据风速与风向的变化,对机组进行优化控制,以提高机组的运行效率和发电量。
变速恒频双馈风力发电机组控制技术研究xx年xx月xx日•引言•变速恒频双馈风力发电机组系统构成•变速恒频双馈风力发电机组控制策略•变速恒频双馈风力发电机组控制技术实现目•实验与分析•结论与展望录01引言课题背景及意义风能是一种清洁、可再生的能源,具有大规模开发利用价值。
能源危机和环境污染问题日益严重,可再生能源成为能源发展的方向。
变速恒频双馈风力发电机组是风力发电系统的重要部分,提高其控制技术对提高风能利用率和稳定性具有重要意义。
国内外研究现状及发展趋势变速恒频双馈风力发电机组控制技术成为风能领域的研究热点。
国内外的学者和工程师对变速恒频双馈风力发电机组控制技术进行了广泛研究。
目前的研究主要集中在矢量控制、直接功率控制和最优控制等方面。
主要研究变速恒频双馈风力发电机组的控制策略和算法。
研究直接功率控制策略,实现双馈风力发电机组的高效、稳定运行。
研究最优控制策略,优化双馈风力发电机组的运行效率和稳定性。
研究变速恒频双馈风力发电机组矢量控制策略,提高其运行性能和效率。
主要研究内容和方法02变速恒频双馈风力发电机组系统构成风力发电机组是将风能转化为电能的系统,包括风轮、传动系统、发电机、控制系统等部分。
风轮将风能转化为机械能,传动系统将风轮的机械能传递给发电机,发电机将机械能转化为电能。
风力发电机组系统概述双馈风力发电机组是一种变速恒频风力发电机组,包括定速发电机、变速器和控制系统等部分。
定速发电机是主要的发电设备,变速器可以调节发电机转速,控制系统可以控制整个机组的工作状态和运行参数。
变速恒频双馈风力发电机组构成VS双馈风力发电机组需要满足变速恒频的控制要求,即保持发电机转速恒定,同时能够调节风轮的转速和功率。
控制系统需要实现机组的并网控制、最大风能追踪、载荷优化等功能,保证机组稳定运行并提高运行效率。
系统控制需求分析03变速恒频双馈风力发电机组控制策略矢量控制也称为磁场定向控制,它通过控制直交变换的旋转磁场,实现对转子电流的控制。
变速恒频双馈风力发电系统仿真研究变速恒频风力发电双馈异步发电机双PWM型变换器1引言风力发电是利用风能的一种有效形式,受到了广泛的关注。
和常规风力发电系统相比,变速恒频双馈风力发电系统具有功率因数可调、效率高等优点,同时变换器连接在转子回路,仅处理双向流动的转差功率,不仅具有变换器体积小、重量轻、成本低的特点,更可实现机电系统的柔性连接。
本文采用DFIG功率控制来实现最大风能追踪的实施方案。
基于最大风能追踪的需要,将磁场定向矢量控制技术应用到DFIG运行控制上,形成了基于定子磁链定向的DFIG有功、无功功率解耦控制策略;采用双PWM型变换器作为转子的励磁电源,基于电网电压定向矢量控制技术,实现了网侧变换器交流侧单位功率因数控制和直流环节电压控制。
在建立双馈风力发电系统仿真模型基础上,对整个系统进行了仿真分析,验证了该方案的正确性和可行性。
2 变速恒频双馈风力发电机的运行原理双馈型异步发电机(DFIG)采用绕线转子感应发电机,定子直接接电网,在转子侧施加交流励磁来控制发电机的转矩。
由DFIG实现的交流励磁,可以通过调节励磁电流的幅值、频率和相位实现灵活的控制;改变转子励磁电流的频率,DFIG可以实现变速恒频控制;改变转子励磁电流的相位,可以调节有功功率和无功功率[1][2]。
本文采用双PWM变换器作为DFIG转子励磁电源系统,如图1所示。
两个三相电压源型PWM 全桥变换器采用直流链连接,靠中间的滤波电容稳定直流母线电压。
转子侧变换器向DFIG的转子绕组馈入所需的励磁电流,实现DFIG的矢量控制及输出解耦的有功功率和无功功率进而实现可逆运行。
网侧变换器在实现能量双向流的同时,控制着直流母线电压的稳定,以及对网侧的功率因数进行调节。
图1 变速恒频双馈风力发电系统框图3双馈异步发电机的数学模型为了实现双馈电机的高性能控制,采用磁链定向的矢量变换技术,通过坐标变换和磁链定向,将DFIG定子电流分解成相互解耦的有功分量和无功分量分别控制,从而实现有功功率和无功功率的解耦控制。
摘要以计算机入手,采用先进的S7-300型PLC为心核控制器硬件设计,利用MCGS 组态软件进行控制器设计,通过完善的软件与硬件相结合,设计了一种变速恒频双馈风力发电机组变桨控制系统。
在风力发电系统中,变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命,通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡,不但优化了输出功率,而且有效的降低的噪音,稳定发电机的输出功率,改善桨叶和整机的受力状况。
变桨距风力发电机比定桨距风力发电机具有更好的风能捕捉特性,现代的大型风力发电机大多采用变桨距控制。
本文针对国外某知名风电公司液压变桨距风力机,采用可编程控制器(PLC)作为风力发电机的变桨距控制器。
这种变桨控制器具有控制方式灵活,编程简单,抗干扰能力强等特点。
关键词:变速恒频,变桨控制,PLC,风力发电ABSTRACTTo start the computer, using advanced PLC S7-300 type nuclear controller hardware design for the heart, using the configuration software MCGS controller design, by improving the software and hardware to design a variable speed constant frequency wind power unit pitch control system. In the wind power system, variable pitch control technology related to wind turbines safe and reliable operation, affected the life of wind turbine by controlling the pitch angle so that the output power stable, reducing the torque oscillation, reduce cabin vibration, not only optimize the output power, and effectively reduce the noise, stable output power generators to improve the blade and the stress state of the whole machine. Pitch than the fixed pitch wind turbine wind turbines to capture wind energy with better features, most modern large-scale wind turbines with pitch control. In this paper, a well-known foreign companies wind power hydraulic variable pitch wind turbine, using programmable logic controller (PLC) as a wind turbine pitch controller. This pitch control mode controller with a flexible, programming is simple, and strong anti-interference characteristics.Key words:VSCF,Pitch control,PLC,Wind power目录1绪论 (1)1.1文献综述 (1)1.2风力发电机的历史与现状 (3)1.3选题背景及其意义 (5)2变桨控制系统工作原理 (7)2.1变桨控制 (7)2.2角距控制系统 (9)2.3变浆控制功能模块设计 (9)3 FC-2A风速传感器的介绍 (12)3.1 FC-2A风速传感器 (12)3.2 FC-2A风速传感器结构 (13)3.3现场安装调试及使用 (13)4 PLC控制系统的介绍 (15)4.1 PLC的概述 (15)4.2西门子S7-300的选择原因及主要模块介绍 (18)4.3模拟值的表示 (21)4.4 PLCS7-300的模块选择及其介绍 (22)5系统设计 (24)5.1 I/O对照表 (24)5.2系统流程图 (24)5.3硬件接线图 (24)5.4序实现说明 (24)5.5 PLC程序 (25)6.结论 (26)参考文献 (27)致谢 (28)1绪论基于PLC的变速恒频双馈风力发电机组变桨控制系统研究与实现,变速恒频双馈风力发电机组变桨控制系统是风力发电机组电控系统的重要组成部分,变桨控制可以使得风力发电机组在较大的风速范围内获得较高的风能利用系数。
变速恒频双馈风电机组频率控制策略曹军 , 王虹富 , 邱家驹(浙江大学电气工程学院 , 浙江省杭州市 310027摘要 :传统的变速双馈风电机组解耦控制策略对于系统频率支撑作用微乎其微。
文中在分析变速双馈风电机组参与系统频率控制特性的基础上 , 在传统变速双馈风电机组解耦控制中附加风电机组频率控制单元。
控制系统包含频率控制、转速延时恢复、转速保护系统和与常规机组配合等 4个功能模块。
仿真结果表明 , 该控制策略不仅对暂态频率偏差具有快速的响应能力 , 而且能够使转子转速以更快的速度恢复到最佳运行状态 , 与系统的频率控制。
关键词 :风电机组 ; 变速双馈电机 ; 频率控制中图分类号 :TM614; TM761收稿日期 :2009203213; 修回日期 :2009204204。
0引言发展。
、最具规模开发 , 在电网中所占的比例不断增加。
因此 , 为减少风电并网给电力系统带来的冲击 , 电网公司提出了严格的风电场并网技术导则 , 而有功、频率控制能力是其中重要的技术要求之一 [123]。
目前实际运行的风电场主要采用以下 2种风电机型 :基于异步机的固定转速风电机组和基于双馈感应电机 (DFIG 的变速恒频风电机组 (以下简称 DFIG 机组。
由于 DFIG 优良的有功、无功解耦控制性能 [425], 使其逐步成为风电市场主流机型。
但是 , 传统的 DFIG 机组并没有参与系统频率控制 , 由于 DFIG 机组控制系统实现了机械和电磁系统的解耦 , 随着频率的变化其转子机械部分不能自动做出快速响应 , 因此可以说传统的 DFIG 机组对系统转动惯量的贡献微乎其微 [627]。
随着大量 DFIG 机组替代一些常规机组 , 势必会减少整个系统的转动惯量 , 恶化系统的动态频率特性。
因此 , 有必要深入研究 DFIG 机组的频率控制特性 , 开发实用、有效的 DFIG 机组频率控制器。
国内外学者已经对 DFIG 机组参与频率控制进行了一些研究。
基于PSCAD的变速恒频双馈风力发电系统建模与控制研究一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风力发电作为清洁、可再生的能源形式,已在全球范围内得到了广泛应用。
变速恒频双馈风力发电系统作为风力发电技术的一种重要形式,其运行效率、稳定性及经济性对于风力发电的可持续发展具有重要意义。
因此,本文旨在基于PSCAD仿真平台,对变速恒频双馈风力发电系统进行建模与控制研究,以期为提高风力发电系统的运行性能提供理论支持和实践指导。
本文首先介绍了风力发电技术的发展背景及变速恒频双馈风力发电系统的基本原理,为后续研究提供了理论基础。
随后,详细阐述了基于PSCAD的变速恒频双馈风力发电系统建模过程,包括风力机模型、双馈发电机模型、控制系统模型等的建立与参数设置。
在此基础上,本文重点研究了变速恒频双馈风力发电系统的控制策略,包括最大功率点追踪控制、转子侧变换器控制、电网侧变换器控制等,并通过仿真实验验证了控制策略的有效性。
本文对变速恒频双馈风力发电系统的运行性能进行了评估,包括系统稳定性、动态响应、电能质量等方面的分析。
通过对比分析不同控制策略下的仿真结果,本文得出了最优控制策略的选择依据,为实际工程应用提供了参考。
本文的研究成果对于推动变速恒频双馈风力发电技术的发展和应用具有重要意义。
二、变速恒频双馈风力发电系统原理及特点变速恒频双馈风力发电系统是一种先进的风力发电技术,其核心原理是利用双馈感应发电机(DFIG)实现变速恒频运行。
在风力发电中,风速的随机性和不稳定性使得发电机转速不断变化,而电网的频率则要求稳定。
因此,如何实现变速恒频运行是风力发电技术的关键之一。
双馈感应发电机是一种特殊的感应电机,其定子直接与电网相连,而转子则通过变频器与电网相连。
当风速变化时,发电机的转速会相应变化,但通过调整变频器的输出电压和频率,可以保持定子侧输出的电压和频率恒定,从而实现变速恒频运行。
高效率:双馈感应发电机能够在宽风速范围内保持高效率运行,从而充分利用风能资源。