风电机组整机基础知识
- 格式:ppt
- 大小:11.25 MB
- 文档页数:49
风⼒发电基础知识第⼀章风⼒发电机组结构1.8 控制系统控制系统利⽤微处理器、逻辑程序控制器或单⽚机通过对运⾏过程中输⼊信号的采集传输、分析,来控制风电机组的转速和功率;如发⽣故障或其他异常情况能⾃动地检测平分析确定原因,⾃动调整排除故障或进⼊保护状态。
控控制系统的主要任务就是⾃动控制风机组运⾏,依照其特性⾃动检测故障并根据情况采取相应的措施。
控制系统包括控制和检测两部分。
控制部分⼜设置了⼿动和⾃动两种模式,运⾏维护⼈员可在现场根据需要进⾏⼿动控制,⽽⾃动控制应在⽆⼈值班的条件下预先设置控制策略,保证机组正常安全运⾏。
检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显⽰屏上可以查询。
现场数据可通过⽹络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。
安全系统要保证机组在发⽣⾮常情况时⽴即停机,预防或减轻故障损失。
例如定桨距风电机组的叶尖制动⽚在运⾏时利⽤液压系统的⾼压油保持与叶⽚外形组合成⼀个整体,同时保持机械制动器的制动钳处于松开状态,⼀旦发⽣液压系统失灵或电⽹停电,叶尖制动⽚和制动钳将在弹簧作⽤下⽴即使叶尖制动⽚旋转约90°,制动钳变为夹紧状态,风轮被制动停⽌旋转。
根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运⾏情况主要分为以下⼏类:待机状态、发电状态、⼤风停机⽅式、故障停机⽅式、⼈⼯停机⽅式和紧急停机⽅式。
(1)待机状态风轮⾃由转动,机组不发电(风速为0~3m/s),刹车释放。
(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。
发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。
(3)故障停机⽅式:故障停机⽅式分为:可⾃启动故障和不可⾃启动故障。
停机⽅式为正常刹车程序:即先叶⽚顺桨,党当发动机转速降⾄设定值后,启动机械刹车。
(4)⼈⼯停机⽅式:这⼀⽅式下的刹车为正常刹车,即先叶⽚顺桨,当发电机转速降⾄设定值后启动机械刹车。
风机设备基础知识一、风电场的组成及基本原理 (1)二、风电集电线路 (8)三、风电场选址 (12)四、风速仪 (14)五、风能资源参数的计算 (16)一、风电场的组成及基本原理风电场是指将风能捕获、转换成电能并通过输电线路送入电网的场所,由四部分构成:1、风力发电机组风力发电机是风电场的发电装置,其工作原理是风轮把风作用在桨叶上的力转化为自身的转速和扭矩,通过主轴一一增速箱一一联轴器一一高速轴把扭矩和转速传递到发电机,实现风能一机械能一电能的转换。
风力发电机由传动系统、偏航系统、刹车系统、支承系统、冷却润滑系统、电控系统等六个系统组成。
1.1传动系统传动系统由桨叶、轮毂、主轴、轴承、轴承座、胀套、齿轮箱、联轴器、发电机组成。
传动系统主要作用有三个:1、把风能转化成旋转机械能;2、传递扭矩,并增速达到发电机的同步转速;3、将旋转机械能转化成电能。
1.2偏航系统偏航系统的作用是与控制系统相互配合,使机组风轮始终处于迎风状态,充分利用风能,提高机组的发电效率。
提供必要的锁紧力矩, 以保障风机的安全运行。
回转支承内圈刹车系统能使风力发电机组在发生故障或紧急情况下,能快速、平稳的制动停机。
在运行情况下使机组保持稳定,不被侧风或绕流影响。
刹车机构由三部分组成:叶片刹车(小叶片或变桨)、风轮刹车(低速、高速制动装置)、偏航刹车(盘式制动器)1.4支承系统支承系统包括塔架和基础两部分。
塔架作用是支承风力发电机组的机械部件,承受各部件作用在塔架上的荷载。
基础作用是安装、支承风力发电机组,平衡运行过程中产生的各种载荷。
1.5冷却润滑系统冷却润滑系统主要是对齿轮箱各轴承、各齿面提供足够的润滑及对齿轮箱进行冷却散热。
1.6电控系统电控系统是现代风力发电机的神经中枢。
它承担着风机监控、自动调节、实现最大风能捕获以及保证良好的电网兼容性等重要任务,它主要由监控系统、主控系统、变桨控制系统以及变频系统(变频器)几部分组成。
2、道路包括风力发电机旁的检修通道、变电站站内站外道路、风场内道路及风场进出通道。
风电基本知识包括以下几个方面:
•风力发电机:风力发电机是风电行业的核心设备,它将风的动能转化为电能,通常由叶片、机舱、传动系统、发电机等组成。
•风速和空气密度:风力发电的效率取决于风速和空气密度,在风速较低的情况下,风力发电的效率会降低。
•太阳辐射:风力发电主要依赖于太阳辐射,太阳能辐射量越大,风力发电的效率也会相应提高。
•系统效率:风电场的系统效率是指风力发电机输出的有效功率与输入的有效功率之比,系统效率取决于系统中各个组件的匹
配情况。
•并网问题:风力发电机需要与电网连接才能产生电能,并网问题包括电网接纳能力、电压稳定性等。
•储能技术:为了满足日益增长的电力需求,风力发电需要与储能技术相结合,如储能电池、储能器等。
•环境影响:风力发电对环境产生的影响包括减少温室气体排放、对气候变化的缓解等。
课程收益培训对象培训课时※版权申明※本课件版权与相关知识产权为金风科技所有,未经授权,不得以任何形式对本课件内容进行转载、链接、转贴或以其他方式复制发布\发表。
通过此次培训,对华创风机整体有一定了解。
•新员工(含生态员工)•1小时课程目标培训课时培训对象1 2华创系列机型整机基础知识部件辨识及结构解析3华创系列机型维护注意事项1、华创系列机型整机基础知识主轴方向:水平轴叶轮位置:上风向叶片数量:3发电原理:双馈传动类型:变速输出电压:恒频1.1 双馈机型技术参数1.2双馈机型命名规则CCWE1500-87DF机型分类:双馈-DF直驱-D半直驱-HD叶轮直径:70、77、82、87、93、103、116、122额定功率:1500、2000、3000整机厂商品牌机组型号CCWE-1500/70.DFCCWE-1500/77.DFCCWE-1500/82.DFCCWE-1500/87.DFCCWE-1500/93.DF设计等级IECⅠA IECⅡA IECⅢA+IECⅢB IECⅢB功率调节方式变速变桨距变速变桨距变速变桨距变速变桨距变速变桨距额定功率kW15001500150015001500风轮直径m7077828793轮毂中心高度m65、7065、7070、8070、8070、80切入风速m/s33333切出风速m/s2525252525额定风速m/s11.511111010 50年一遇极大风速(3s)m/s7059.559.552.552.5设计寿命年2020202020运行温度℃—30~+40—30~+40—30~+40—30~+40—30~+40生存温度℃—40~+45—40~+45—40~+45—40~+45—40~+45 1.3CCWE1500系列主要机型参数比较1 2华创系列机型整机基础知识部件辨识及结构解析3华创系列机型维护注意事项2.1 整机构造油冷风扇2.2轮毂●风轮是获取风中能量的关键部件,由叶片、变距系统、轮毂等部件组成;叶片在气流作用下产生扭距驱动风轮转动,通过轮毂将扭矩输入到传动系统;●轮毂为球墨铸铁材料,保护在轮毂罩内,轮毂罩为玻璃纤维增强聚酯树脂材料,具备抗C4环境腐蚀功能;2.3叶片风电叶片主体为玻璃钢复合材料,主要壳体、大梁、叶根法兰、防雷系统、表面保护涂层及叶片防雨环等部件构成。
风力发电机组的结构及组成在当今追求清洁能源的时代,风力发电作为一种可再生、无污染的能源获取方式,正发挥着越来越重要的作用。
要了解风力发电的原理和运作,首先得清楚风力发电机组的结构及组成。
风力发电机组主要由以下几个部分构成:叶片、轮毂、机舱、塔筒和基础。
叶片是风力发电机组中最为关键的部件之一。
它们的形状和设计直接影响着风能的捕获效率。
通常,叶片采用复合材料制造,如玻璃纤维增强塑料或碳纤维增强塑料。
叶片的外形就像飞机的机翼,具有特定的翼型和扭转角度。
这样的设计能够使风在叶片表面产生升力和阻力,从而推动叶片旋转。
而且,叶片的长度和数量会根据风力发电机组的功率大小而有所不同。
一般来说,功率越大的机组,叶片越长,数量也可能更多。
轮毂则是连接叶片和机舱的重要部件。
它负责将叶片所捕获的风能传递到机舱内部的传动系统。
轮毂的结构强度要求很高,以承受叶片旋转时产生的巨大力量和扭矩。
机舱内部包含了众多核心部件。
首先是主轴,它将轮毂传递过来的旋转动力传递给增速箱。
增速箱的作用是将主轴的低速旋转提高到适合发电机工作的高速旋转。
发电机是将机械能转化为电能的关键设备。
目前,常见的风力发电机有异步发电机和同步发电机两种类型。
除了这些,机舱内还有刹车系统、偏航系统和控制系统等。
刹车系统用于在紧急情况下停止风机的转动,保障设备和人员的安全。
偏航系统则可以使机舱根据风向的变化自动调整方向,以最大程度地捕获风能。
控制系统就像是风机的大脑,负责监测和控制整个机组的运行状态,确保其稳定、高效地工作。
塔筒是支撑机舱和叶片的结构。
它通常由钢材制成,高度可达数十米甚至上百米。
塔筒的高度越高,所接触到的风速通常也越大,从而能够捕获更多的风能。
但同时,塔筒的高度也受到制造工艺、运输条件和成本等因素的限制。
基础是风力发电机组的根基,它要能够承受整个机组的重量以及风荷载等外力的作用。
常见的基础形式有混凝土基础和桩基础等。
基础的设计和施工质量直接关系到整个风力发电机组的稳定性和安全性。
风电基础知识培训风机发电机组成风电是一种清洁、可再生的能源形式,其基础知识对于了解和推广风能利用至关重要。
本文将介绍风电基础知识,特别是风机发电机组成,以帮助读者更好地理解和利用该技术。
一、风能利用的基础知识1.1 风能的来源与特点风能是地球上大气运动转化为机械能的产物。
风的形成与太阳照射地球表面不均匀有关,气温、地形等因素也会影响风能的分布和强度。
风能具有免费、可再生、广泛分布等特点。
1.2 风能的利用方式风能的主要利用方式是风力发电。
通过将风能转化为机械能驱动发电机,进而产生电能。
此外,风能还可以用于提供动力、水泵和空调等领域。
二、风机发电机组成2.1 风机的基本结构风电系统主要由风机、塔架和输电系统组成。
风机是核心部件,通常由叶片、轮毂、发电机、控制系统等组成。
2.2 风机的叶片风机叶片是将风能转化为机械能的关键部件。
叶片通常采用轻质、强度高的材料制造,具有空气动力学设计和结构加强等特点。
2.3 风机的轮毂轮毂是连接叶片和发电机的部件,负责传递叶片的旋转运动。
轮毂通常由高强度合金材料制造,以确保叶片的稳定性和安全性。
2.4 风机的发电机风机发电机是将机械能转化为电能的装置。
它通常由转子、定子和控制系统组成。
转子由风机转动产生的机械能驱动,定子则产生电能。
2.5 风机的控制系统风机的控制系统负责监测和控制风机的运行状态。
它可以根据风速、风向等参数调节叶片角度,以优化风机的发电效率。
2.6 风机与塔架风机通过塔架固定在地面或海上,以获得最佳的风能利用效果。
塔架的高度、材料和结构设计等均会影响风机的稳定性和性能。
三、预防和解决风机故障3.1 风机故障的类型风机故障主要包括叶片断裂、轮毂断裂、发电机故障等。
这些故障可能导致风机停机、性能下降甚至损毁。
3.2 预防风机故障的措施预防风机故障的关键在于定期检查和维护风机设备。
定期检查叶片、轮毂和发电机等部件的状况,及时排查和修复隐患。
3.3 解决风机故障的方法一旦发生风机故障,应立即停机,并寻找原因。
风力发电机组整机基础知识风力发电机组是一种利用风能转化为电能的装置。
它由风力发电机、传动装置、发电机、控制系统和塔架等组成。
风力发电机是风力发电机组的核心部件,它通过叶轮捕获风能并将其转化为机械能。
一般来说,风力发电机的叶轮由三个叶片组成,叶片的形状和材质会直接影响发电机的效率。
同时,叶轮的直径和转速也会影响发电机的性能。
传动装置用于将风力发电机转动的低速轴传递给发电机。
传动装置通常由齿轮、轴和轴承等部件组成。
它的作用是将低速高扭矩的风轮转速转换为高速低扭矩的发电机转速,以提高发电机的效率。
发电机是将机械能转化为电能的装置。
在风力发电机组中,常用的发电机是异步发电机和永磁同步发电机。
异步发电机结构简单、可靠性高,适用于大型风力发电机组;而永磁同步发电机具有高效率和较小的体积,适用于小型风力发电机组。
控制系统是风力发电机组的大脑,它能监测和控制整个发电过程。
控制系统通常包括风向传感器、风速传感器、转速传感器和电气控制器等部件。
通过收集和分析这些传感器的数据,控制系统可以自动调整发电机的转速和输出功率,以适应不同的风速和风向条件。
塔架是将风力发电机组安装在地面或海上的支撑结构。
塔架的高度和材质会直接影响风力发电机组的发电能力。
一般来说,塔架越高,风力发电机组能够捕获到的风能就越多,从而提高发电效率。
风力发电机组的基础知识还包括风能的计算和风场选择。
风能的计算是评估风力发电机组发电潜力和风机选型的重要依据。
而风场选择则是确定风力发电机组安装位置的关键因素,需要考虑到地形、气象条件和电网接入等因素。
风力发电机组的整机基础知识包括风力发电机、传动装置、发电机、控制系统和塔架等组成部分,以及风能的计算和风场选择。
了解这些知识对于设计、安装和运维风力发电机组都具有重要的意义。
通过不断的研究和创新,风力发电技术将会进一步提高,为可持续能源的发展做出更大的贡献。