第8章 时间序列分析
- 格式:doc
- 大小:42.00 KB
- 文档页数:1
第八章 时间数列分析一、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 C2.时间序列中,数值大小与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 B3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 C4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平 B5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人 C6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A 150万人B 150.2万人C 150.1万人D 无法确定 C7.由一个9项的时间序列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 A9.某企业的科技投入,2010年比2005年增长了58.6%,则该企业2006—2010年间科技投入的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.158B10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 D11.在测定长期趋势的方法中,可以形成数学模型的是( )A 时距扩大法B 移动平均法C 最小平方法D 季节指数法12.动态数列中,每个指标数值相加有意义的是()。
A.时期数列B.时点数列C.相对数数列D.平均数数列A13.按几何平均法计算的平均发展速度侧重于考察现象的()A.期末发展水平B.期初发展水平C.中间各项发展水平D.整个时期各发展水平的总和A14.累计增长量与其相应的各逐期增长量的关系表现为()A.累计增长量等于相应各逐期增长量之和B.累计增长量等于相应各逐期增长量之差C.累计增长量等于相应各逐期增长量之积D.累计增长量等于相应各逐期增长量之商A15.已知某地区2010年的粮食产量比2000年增长了1倍,比2005年增长了0.5倍,那么2005年粮食产量比2000年增长了()。
第⼋章时间序列分析第⼋章时间序列分析与预测【课时】6学时【本章内容】§ 时间序列的描述性分析时间序列的含义、时间序列的图形描述、时间序列的速度分析§ 时间序列及其构成分析时间序列的构成因素、时间序列构成因素的组合模型§ 时间序列趋势变动分析移动平均法、指数平滑法、模型法§ 时间序列季节变动分析[原始资料平均法、趋势-循环剔除法、季节变动的调整§ 时间序列循环变动分析循环变动及其测定⽬的、测定⽅法本章⼩结【教学⽬标与要求】1.掌握时间序列的四种速度分析2.掌握时间序列的四种构成因素3.掌握时间序列构成因素的两种常⽤模型4.掌握测定长期趋势的移动平均法5.了解测定长期趋势的指数平滑法6.;7.掌握测定长期趋势的线性趋势模型法8.了解测定长期趋势的⾮线性趋势模型法9.掌握分析季节变动的原始资料平均法10.掌握分析季节变动的循环剔出法11.掌握测定循环变动的直接法和剩余法【教学重点与难点】1.对统计数据进⾏趋势变动分析,利⽤移动平均法、指数平滑法、线性模型法求得数据的长期趋势;2.对统计数据进⾏季节变动分析,利⽤原始资料平均法、趋势-循环剔除法求得数据的季节变动;3.对统计数据进⾏循环变动分析,利⽤直接法、剩余法求得循环变动。
【导⼊】;很多社会经济现象总是随着时间的推移不断发展变化,为了探索现象随时间⽽发展变化的规律,不仅要从静态上分析现象的特征、内部结构以及相互关联的数量关系,⽽且应着眼于现象随时间演变的过程,从动态上去研究其发展变动的过程和规律。
这时需要⼀些专门研究按照时间顺序观测的序列数据的统计分析⽅法,这就是统计学中的时间序列分析。
通过介绍⼀些时间序列分析的例⼦,让同学们了解时间序列的应⽤,并激发学⽣学习本章知识的兴趣。
1.为了表现中国经济的发展状况,把中国经济发展的数据按年度顺序排列起来,据此来研究。
2.公司对未来的销售量作出预测。
这种预测对公司的⽣产进度安排、原材料采购、存货策略、资⾦计划等都⾄关重要。
第八章时间序列分析一、填空题:1. 由于决定时间数列变化的因数是多方面的,因此通常把时间数列上各期发展水平按其影响因素的不同分解成几个不同的组成部分,即长期趋势、、循环波动和不规则变动。
2.时间序列按照数列中排列指标的性质不同,可分为、和。
3. “增长1%绝对值”指标其实质是水平的1%。
4. 是把原动态数列的时距扩大,再采用逐项移动的方法计算扩大了时距的序时平均数。
5.就是研究某种现象在一个相当长的时期内持续向上或向下发展变动的趋势。
6. 就是指某些社会现象由于受生产条件或自然条件因素的影响,在一年内随着季节的更换而呈现出比较有规律的变动。
二、单项选择题:1. 时间序列在一年内重复出现的周期性波动称为()A、趋势B、季节性C、周期性D、随机性2. 增长一个百分点而增加的绝对数量称为()A、环比增长率B、平均增长率C、年度化增长率D、增长1%绝对值3. 某银行投资额2004年比2003年增长了10%,2005年比2003年增长了15%,2005年比2004年增长了()A、15%÷10%B、115%÷110%C、(110%×115%)+1D、(115%÷110%)-14.某种股票的价格周二上涨了10%,周三上涨了5%,两天累计张幅达()A、15%B、15.5%C、4.8%D、5%5.如果某月份的商品销售额为84万元,该月的季节指数为1.2,在消除季节因素后该月的销售额为()A、60万元B、70万元C、90.8万元D、100.8万元6. 时间数列的构成要素是()。
A、变量和次数B、时间和指标数值C、时间和次数D、主词和宾词7. 定基增长速度与环比增长速度的关系为()。
A、定基增长速度等于相应的环比增长速度各个的算术和B、定基增长速度等于相应的环比增长速度各个的连乘积C、定基增长速度等于相应的环比增长速度加1后的连乘积再减1D、定基增长速度等于相应的环比增长速度各个的连乘积加18. 以1950年a0为最初水平,1997年a n为最末水平,计算钢产量的年平均发展速度时,须开()。
81❝§8.1 季节性时间序列的重要特征82❝§8.2 季节性时间序列模型❝§8.3 季节性检验❝§8.4 季节性时间序列模型的建立所谓是指具有某种周期性变化季节性时间序列,是指具有某种周期性变化规律的随机序列,并且这种周期性的变化规律往往是由于季节变化引起由于季节变化引起。
如果一个随机序列经过个时间间隔后观测数据呈现相似性比如同处于波峰或波谷则我们称该序S 呈现相似性,比如同处于波峰或波谷,则我们称该序列具有以为周期的周期特征,并称其为季节性时S 间序列,为季节长度。
S季节性时间序列存在着规则的周期如果我们把季节性时间序列存在着规则的周期,如果我们把原序列按周期重新排列,即可得到一个所谓的二维表。
对于季节性时间序列按周期进行重新排列是极其有益的不仅有助于考察同周期点的变化情况加有益的,不仅有助于考察同一周期点的变化情况、加深对序列周期性的理解,而且对于形成建模思想和理解季节模型的结构也都是很有帮助的。
影响一个季节性时间序列的因素除了季节因素外❝影响一个季节性时间序列的因素除了季节因素外,往往还存在趋势变动和随机变动等。
t t t tX S T I =++❝研究季节性时间序列的目的,就是分解影响经济指标变动的季节因素、趋势因素和随机因素,从而了解它们对经济的影响。
❝1. 简单季节模型❝2. 乘积季节模型季节性时间序列表现出也就是说时间 同期相关性,也就是说时间相隔为的两个时间点上的随机变量有较强的相关性。
比如对于月度数据S 12比如,对于月度数据则与相关性较强。
我们可以利用这种同期相关性在与之12,S =t X 12t X -t X 12t X -间进行拟合。
简单季节模型通过简单的趋势差分季节差分之通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常表示如下:()(1)(),(*)S S D St tB B X B aΦ-=ΘSAR算子其中为白噪声序列,{}ta2()1,S S S pSB B B BΦ=-Φ-Φ--Φ12212()1.pS S S qSqB B B BΘ=-Θ-Θ--ΘSMA算子称(*)为简单季节模型,或季节性自回归求和移动SARIMA p D q平均模型,简记为模型。
第8章时间序列趋势分析时间序列趋势分析是一种用于分析时间序列数据中趋势变化的方法。
它可以帮助我们理解时间序列数据中的长期趋势,并预测未来的发展趋势。
本章将介绍时间序列趋势分析的基本概念和常用方法。
1.时间序列的趋势:时间序列是按照时间先后顺序排列的一系列数据观测值的集合。
时间序列的趋势是指其长期平均水平的变化趋势,包括上升、下降或平稳变化。
趋势可以是线性的,也可以是非线性的。
2.趋势分析的目的:趋势分析的目的是识别和描述时间序列数据中的趋势变化,以便预测未来的发展趋势。
趋势分析可以帮助我们了解时间序列数据的长期变化趋势,从而做出有效的决策。
3.常用的趋势分析方法:(1)平均移动方法:平均移动方法是一种简单的趋势分析方法,它利用移动平均值来平滑原始数据,从而识别出数据的长期趋势。
平均移动方法有简单移动平均法、加权移动平均法和指数移动平均法等。
(2)线性趋势分析:线性趋势分析是一种通过拟合线性模型来描述时间序列数据的趋势变化的方法。
它可以用来估计趋势的斜率和截距,从而判断趋势的上升或下降趋势。
(3)非线性趋势分析:非线性趋势分析是一种通过拟合非线性模型来描述时间序列数据的趋势变化的方法。
它可以用来捕捉数据中的曲线、周期性和季节性等非线性特征。
(4)季节性调整:季节性调整是一种用来消除时间序列数据季节性变化影响的方法。
它可以使得数据更加稳定,更容易分析长期趋势。
4.趋势分析的应用领域:时间序列趋势分析在许多领域都有广泛的应用,包括经济学、金融学、市场研究、气象学、环境科学、交通规划等。
它可以用来预测市场走势、分析经济周期、预测天气变化等。
5.趋势分析的局限性:趋势分析的结果受到许多因素的影响,如数据质量、样本大小和选择的分析方法等。
此外,趋势分析只能应用于具有明显趋势的时间序列数据,对于无趋势或具有周期性的数据效果不佳。
总结起来,时间序列趋势分析是一种用于分析时间序列数据中趋势变化的方法。
它可以帮助我们理解时间序列数据的长期趋势,并预测未来的发展趋势。