第5章 解析延拓 多值函数与黎曼面
- 格式:pdf
- 大小:1.46 MB
- 文档页数:30
黎曼曲面解析延拓问题证明逻辑解析黎曼曲面解析延拓问题是复变函数理论中的一个重要研究方向。
本文将对黎曼曲面解析延拓问题进行证明逻辑解析。
首先,我们将介绍黎曼曲面和解析延拓的基本概念,然后介绍相关的定理和推论,最后给出证明过程与逻辑推理。
一、黎曼曲面与解析延拓的基本概念黎曼曲面是一种复流形,具有局部欧几里德结构,是复变函数理论的重要基础。
解析延拓是指将函数定义域从一个开集扩展到一个更大的开集上,使函数在定义域的边界上仍然解析。
二、相关定理与推论1. 必要定理在进行黎曼曲面解析延拓的证明前,我们需要先介绍一个必要定理。
根据Cauchy-Riemann方程的性质,如果一个函数在某个点解析,那么它在该点处的偏导数存在且满足Cauchy-Riemann方程。
2. 解析延拓定理解析延拓定理是黎曼曲面解析延拓问题的中心定理之一。
该定理表明,如果函数在某个开集上解析,并且可以延拓到该开集的一个更大的开集上,那么函数在整个扩展开集上也解析。
3. 唯一性推论解析延拓定理的一个重要推论是唯一性推论。
这一推论指出,如果一个函数可以延拓到两个不相交的开集上,那么在这两个开集的交集上,这个函数的值必须相等。
三、证明过程与逻辑推理为了证明黎曼曲面解析延拓问题,我们将使用反证法。
假设存在一个函数f(z)在某个开集U上解析,但无法延拓到U的一个更大开集上。
首先,我们根据必要定理可知,如果f(z)在U上解析,那么它在U的每个点处的偏导数存在且满足Cauchy-Riemann方程。
然后,我们假设存在一个点z0,使得f(z0)无法延拓到U的一个更大的开集上。
根据解析延拓定理,我们可以得出矛盾,因为f(z)在U上是解析的。
因此,我们可以得出结论,对于任意一个解析函数f(z),它都可以延拓到它定义域的一个更大开集上。
最后,根据唯一性推论,我们可以断定,在解析延拓的过程中,函数的值不会发生变化。
综上所述,我们证明了黎曼曲面解析延拓问题。
根据所给的证明过程和逻辑推理,我们可以得出结论:任意解析函数f(z)都可以进行解析延拓,且延拓后的函数值与原函数值相等。
解析延拓定理
解析延拓定理是数学分析领域中的一个重要定理,其核心概念为复变函数。
复变函数是指将复平面上的点映射到复平面上的函数,其定义域和值域均为复数集合。
根据解析延拓定理,所有的解析函数都可以在其定义域外的某些点上进行无限次的解析延拓,从而得到一个唯一的全纯函数。
全纯函数是指在复平面上处处可微的复变函数。
解析延拓定理对于研究复变函数的性质和行为具有重要的作用。
它可以用于解决一些在某些特定条件下无法解决的问题。
例如,对于某些解析函数,其定义域可能出现断点或奇点,这就导致了函数在该点处失去了解析性质。
解析延拓定理就可以帮助我们在该点处重新定义函数,从而使其在该点处具有复变函数的解析性质。
解析延拓定理还可以用于研究复变函数的奇点和极点。
奇点是指函数在该点处失去解析性质的点,而极点则是指该点处函数值趋向于无穷大或无穷小的点。
通过解析延拓定理,我们可以在这些点处重新定义和计算函数值,并且可以更加清晰地理解函数在这些点附近的行为和性质。
总之,解析延拓定理是一条重要的数学定理,它对于研究复变函数的性质和行为有着重要的意义。
通过解析延拓定理,我们可以更加全面和深入地理解这一领域的重要概念和基本原理。
黎曼函数解析延拓
根据黎曼猜想,黎曼函数定义为ζ(s)=∑(n=1->∞)(1/n^s),其中s
是复数。
该函数在s的实部大于1时是收敛的,但无法扩展到实数或负实数,因为这些位置上的函数会发散。
为了解决这个问题,数学家尝试将黎曼函数解析延拓到实数轴的左侧。
最著名的方法是使用函数方程ζ(s)=2^(s)π^(s-1)sin(πs/2)Γ(1-
s)ζ(1-s),其中Γ(s)是伽玛函数。
通过这个方程,可以将黎曼函数延
拓到所有的复数平面。
使用黎曼函数的解析延拓,我们可以得到一些有趣的结果。
首先,黎
曼函数在s=1的解析延拓之后,可以得到黎曼上假设的结论,即ζ(s)在
s=1的解析延拓值为0。
这是因为方程ζ(s)=2^(s)π^(s-
1)sin(πs/2)Γ(1-s)ζ(1-s)中的sin(πs/2)因子使得ζ(s)的值在s=1
处为0。
其次,通过黎曼函数的解析延拓,我们可以发现ζ(-2n)=0,其中n
是正整数。
这意味着黎曼函数在负偶数的位置上有无穷多个零点。
这个结
果是黎曼猜想的一个重要推论。
总之,黎曼函数解析延拓是将黎曼函数的定义从实数轴扩展到复数平
面的过程。
通过这个延拓,我们可以得到一些关于黎曼猜想的结论,并与
素数分布的规律相关联。
黎曼函数解析延拓对于数论和复变函数理论的发
展有着重要的意义。
《复变函数》课程教学纲要一、课程概述(一)课程学时与学分课程代码:1302,开课专业:数学与应用数学(师范)专业,第5学期开课;课程总学时68学时,4学分。
(二)课程性质复变函数论是数学专业的一门重要的专业基础课。
它是数学分析、高等代数等课程的进一步延伸,又是近代分析学的基础。
它的思想方法是许多后续课程得以展开的保证。
属于院专业必修课。
(三)教学目的开设本课程的基本目的是使学生掌握复变函数的基本理论和方法,进一步培养学生的逻辑思维能力,扩展学生视野,为掌握复变函数在自然科学中的广泛应用奠定良好的数学基础。
(四)本课程与其他课程的联系与分工本课程是在学生学习了数学分析、高等代数及其概率论与数理统计的基础上开设的,并在之后开设离散数学,数值分析等进一步的数学课程的本科学习中起到基础和工具的作用,是学习数学和应用数学专业的必备课程。
二、课程教学的基本内容与要求(一)教学要求复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。
复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。
(二)课程总学时数与课程学时分配1、总学时: 174=68(学时)2、学时分配表章次内容学时引言复变函数论的基本思想 1第一章复数与复变函数8第二章解析函数9第三章复变函数的积分9第四章解析函数的幂级数表示法9第五章解析函数的洛朗展开与孤立奇点9第六章留数理论及其应用7第七章共形映射9第八章解析延拓7合计68(三)教学内容绪论复变函数论的基本思想第一章复数与复变函数(一)教学目的及要求1、理解复数、区域、单连通区域、复连通区域、逐段光滑曲线、无穷远点、扩充复平面等概念。
2、理解复数的性质、会应用模和辐角的性质,会作点集的图形。
3、进一步认识复数域的结构,并联系中学的复数教学。
§5.8 应力强度因子与断裂韧性5.8.1 应力强度因子的基本概念在上节中,我们将各类裂纹端部各个应力分量归纳为一个统一的表达式:)()(22/1)()(-+=r o f r K J ij JJ ij θπσ (5.61) 它说明对每一种类型的裂纹端部应力场的分布规律(即ij σ随r 及θ的变化规律)是相同的。
其大小则完全取决于参数K J 。
所以K J 是表征裂纹端部应力场的唯一物理量,因而称为应力场强度因子或应力强度因子。
如式(5.61)所示,应力在裂纹端部具有奇异性。
而K J 也正是用以描述这种奇异性的参数。
由式(5.25)可知:rK yy πσθ2|I0== (5.62) 即[]r K yy πσθ2)0(I ⋅==。
此公式仅在r/a << 1时才适用,因而[][][]⎪⎪⎭⎪⎪⎬⎫====→=→=→r K r K r K yz r xy r yy r πσπσπσθθθ2lim 2lim 2lim )0(0III)0(0II )0(0I (5.63)上式即应力强度因子K J 的定义。
应该指出应力强度因子的量纲[应力]×[长度]1/2或[力] ×[长度]-3/2。
在SI 单位制中其单位为2/1mMPa ⋅,在公制中的单位为kg/mm 3/2。
在英制中为lb/in 3/2(磅/英寸3/2),它们之间的换算关系为: 1kg=2.2046lb1in=2.54000cm1kg/mm 3/2=0.31012/1mMPa ⋅ 1lb/in 3/2=1.099×10-32/1mMPa ⋅5.8.2断裂韧性由上面的分析可知,应力强度因子K J 是表征裂纹端应力场的唯一参量。
不同样品中的裂纹,几何参数及受载情况可以完全不同。
但只要其K J 相同,则裂纹端部的应力场是完全相同的。
进一步由式(5.57)可知,其位移场,进而其应变能场也是相同的。
因此K J 完全表征了裂纹端部的物理状态(即端部各种物理场的情况)。
复变函数总结在数学领域中,复变函数是一种特殊的函数,其定义域和值域都是复数集。
它有许多独特的性质和应用,深受数学家和物理学家的喜爱和重视。
在本文中,我们将对复变函数的几个重要概念和应用进行总结和讨论。
第一部分:复数和复平面复变函数的基础是复数的概念。
复数可以表示为a+bi的形式,其中a和b分别是实数部分和虚数部分。
虚数单位i满足i^2=-1,使得复数集在数轴上获得了垂直的“第二个维度”。
复数还可以用极坐标形式r(cosθ+isinθ)表示,其中r是模长,θ是辐角。
复平面是将复数集映射到一个二维平面上的方法。
实部和虚部可以分别看作在坐标轴上的x轴和y轴坐标,使得复数的加减乘除运算可以在平面上直观地表示。
第二部分:复变函数的定义复数的加减乘除等运算都可以直接应用到复变函数中。
一般地,复变函数可以表示为f(z)=u(x,y)+iv(x,y),其中u和v是实函数,x 和y是复平面上的坐标。
如果f(z)满足柯西-黎曼方程u_x=v_y,u_y=-v_x,那么我们称这个函数为全纯函数。
全纯函数是复变函数的重要类别之一,有着许多重要的性质和应用。
第三部分:解析函数和调和函数解析函数是一个更严格的概念,它要求函数在其定义区域内处处可导。
而全纯函数只要求满足柯西-黎曼方程即可。
解析函数在数学和物理中有广泛的应用,如调和函数、特殊函数等。
调和函数是解析函数的一种特殊情况,它在某个区域内满足拉普拉斯方程△u=0。
调和函数在电势场、热传导等领域有着重要的物理意义。
第四部分:留数定理和复积分留数定理是复变函数理论中的一大亮点。
该定理通过计算函数在奇点处的留数,从而计算出复积分的值。
留数定理在数学分析和物理计算中有着重要的应用,如计算辐射场、傅里叶变换等。
复积分是沿着曲线路径对函数进行积分的一种方法,它在物理学和工程学中有着广泛的应用。
第五部分:解析延拓和边界值问题解析延拓是复变函数中的一个重要概念,它指的是将函数在某个已知区域的解析性质推广到更大区域的过程。
解析延拓法-概述说明以及解释1.引言1.1 概述解析延拓法是一种常用的数学工具,它在不同领域都有广泛的应用。
通过对问题进行解析建模,该方法能够将问题转化成解析函数的延拓,从而更好地理解和解决问题。
在解析延拓法中,解析函数是指在复数域上定义的函数。
而延拓则是指将函数从定义域延拓到更广泛的域,通常是将函数在实轴或复平面上的一部分延拓到整个实轴或者复平面上。
通过对延拓之后的函数进行分析和计算,我们可以得到更全面和深入的信息,解决原问题中的困难或疑惑。
这种方法的优势在于它不仅能够处理具体问题,还能够揭示问题的本质和内在规律。
通过解析延拓法,我们能够理解函数的性质和行为,从而更好地研究和解决与之相关的问题。
因此,无论是在物理、工程、经济学还是其他各个领域,解析延拓法都是一种非常重要的工具和方法。
在接下来的文章中,我们将对解析延拓法进行详细的探讨。
首先,我们将介绍解析延拓法的定义,阐述其基本原理和思想。
然后,我们将进一步探讨解析延拓法的应用,以及它在不同领域中的具体应用案例。
最后,我们将总结解析延拓法的优势,并展望未来对该方法的发展和应用。
通过对解析延拓法的深入研究和理解,我们可以更好地应用它来解决实际问题,并推动相关领域的发展。
希望本文能够为读者提供有益的信息和观点,引起大家对解析延拓法的兴趣和思考。
接下来,我们将开始探索解析延拓法的定义和基本原理。
1.2文章结构文章结构部分的内容应该包括以下内容:文章的结构是指文章的整体组织框架,它决定了文章的逻辑顺序和层次结构。
对于本文来说,其结构主要分为引言、正文和结论三个部分。
引言部分主要用于引导读者进入文章的主题,并对解析延拓法进行概述。
首先,需要对解析延拓法进行简单介绍,包括其定义、原理和应用。
然后,介绍文章的结构和目的,以及大致的内容安排。
最后,对整篇文章进行总结,提供一个概览。
正文部分是文章的核心部分,用于详细解析解析延拓法。
首先,给出解析延拓法的定义,解释它是一种什么方法,并说明其在科学研究中的重要性。
黎曼曲面讲义
黎曼曲面是复变函数理论中的重要概念,它是复平面上的一种特殊结构,可以用来研究多值函数、解析函数的延拓、全纯函数等问题。
黎曼曲面的定义是:设S为一个复数平面上的有界开集,若给定S上的一个拓扑结构和在S上定义的复坐标函数,使得这些复坐标函数满足某些特定的连续性和解析性条件,则称S 为黎曼曲面。
黎曼曲面的基本性质包括:
1. 维数:黎曼曲面的维数是一维的,即它是一个二维实流形。
2. 局部同胚:黎曼曲面上的每个点都有一个局部同胚映射,将该点映射到复平面上的某个开集。
3. 解析结构:黎曼曲面上定义了一种解析结构,使得可以在曲面上定义全纯函数。
全纯函数在黎曼曲面上满足解析方程。
4. 亏格:黎曼曲面的亏格是一个拓扑性质,由欧拉公式给出。
亏格是一个标志了曲面拓扑结构复杂程度的量。
5. 延拓:某些函数在黎曼曲面上可以得到延拓,即在原定义域以外的点上也有定义,并满足解析方程。
黎曼曲面的研究在复变函数理论中具有重要的意义,它不仅提
供了对复变函数更深层次的理解,也为其他数学领域如代数几何、微分几何、奇点理论等提供了重要工具和观点。
黎曼zeta函数解析延拓黎曼zeta函数是数学中的重要函数之一,其解析延拓在数学和物理学领域有着广泛的应用。
本文将介绍黎曼zeta函数的相关性质和解析延拓的概念。
I. 黎曼zeta函数的定义和性质1. 定义黎曼zeta函数是指以下级数的和函数:$$\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}$$其中,s是一个复数。
需要注意的是,当s的实部大于1时,该级数收敛,即$$\lim_{N\rightarrow\infty}\sum_{n=1}^N \frac{1}{n^s}$$ 存在。
否则,该级数发散。
2. 基本性质2.1 函数关系:$\zeta(s)$和$\eta(s)$黎曼zeta函数与Dirichlet eta函数的关系式为:$$\zeta(s) = \frac{1}{1-2^{1-s}}\cdot\eta(s)$$其中,$$\eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}$$2.2 函数零点黎曼猜想认为$\zeta(s)$在s = -2, -4, -6, ...处有无穷多个零点。
目前已证明该猜想成立至少在实部大于1/2的范围内。
2.3 函数极点在s=1处,$\zeta(s)$有一个一阶极点。
2.4 函数奇偶性当s为实数时,$\zeta(s)$为离散奇函数。
即当s=-n时(n为整数),$\zeta(s)$的值为0。
II. 解析延拓解析延拓是指将一个函数在其定义域之外进行延拓,使得函数在整个复平面上都有定义并且具有解析性质。
黎曼zeta函数的解析延拓有两种方法,即黎曼方法和维尔斯特拉斯方法。
1. 黎曼方法黎曼方法就是将$\zeta(s)$进行下列等式展开:$$\frac{1}{1-p^{-s}} = \sum_{n=0}^\infty\frac{1}{p^{ns}}$$将该等式带入到$\zeta(s)$的表达式中,$$\zeta(s) = \prod_{p\in\text{primes}}\frac{1}{1-p^{-s}} = \sum_{n=1}^\infty \frac{1}{n^s}$$对于s的实部大于1的情况,该级数收敛。
复变函数中的解析延拓理论复变函数是数学中的一个重要分支,它研究了在复平面上定义的函数。
解析延拓是复变函数理论中的一项重要内容,它可以将函数在有限定义域外延拓到无限大的区域上,并保持函数的性质不变。
一、解析延拓的概念和基本思想解析延拓是指将一个函数从其有限定义域延拓到更大的定义域上,使其在新的定义域内解析。
在复数域上,解析延拓的基本思想是利用解析性的特点,通过对函数进行适当的变换或构造,使其在原有定义域之外也能满足解析性的条件。
二、解析延拓的方法解析延拓可以通过多种方法实现。
其中一种常见的方法是使用奇点理论,通过分析函数的奇点性质,找到可以延拓函数定义域的方式。
例如,我们可以通过去除奇点或添加极点的方式,使函数在更大的定义域上解析。
另一种常见的方法是利用解析函数的特殊性质,通过构造新的函数来延拓原函数。
例如,可以利用指数函数、三角函数等基本函数的解析性质,来延拓原函数的定义域。
这种方法常用于实数域上的函数延拓。
三、解析延拓的应用解析延拓在复变函数的研究中具有广泛的应用。
首先,通过解析延拓可以扩大函数的定义域,使其在更大的区域内解析。
这对于研究函数的性质和行为具有重要意义。
其次,解析延拓可以用于求解解析函数的特殊值和积分。
通过延拓函数的定义域,可以使得函数在原有定义域之外的点上取得有意义的值。
这对于解析函数的计算和应用具有重要意义。
最后,解析延拓还可以用于解决一些数学问题。
例如,在数论中可以使用解析延拓的方法来研究整数的性质;在微分方程中可以使用解析延拓来求解特殊的微分方程等。
四、解析延拓的发展和挑战解析延拓作为复变函数理论的重要内容,已经在数学和应用领域取得了广泛的应用。
但同时也面临着一些挑战。
首先,解析延拓的方法和理论较为复杂,需要深入的数学思想和技巧。
其次,解析延拓涉及到函数的极限和连续性等概念,需要严格的数学推导和分析。
在未来的发展中,我们可以进一步探索解析延拓的理论和应用。
通过研究更加复杂的函数和问题,深化对解析延拓的理解和应用,推动复变函数理论的发展。
黎曼曲面积分表示问题的解析延拓证明逻辑解析曲面积分在数学中扮演着重要的角色,而黎曼曲面积分是计算曲面上向量场的流量的方法之一。
然而,在某些情况下,黎曼曲面积分的定义范围可能存在限制,因此需要对其进行解析延拓。
本文将通过逻辑解析的方式对黎曼曲面积分表示问题的解析延拓进行证明。
首先,我们来回顾一下黎曼曲面积分的定义。
设M是一个黎曼流形,$D \subseteq M$是一个分割,即$D = \{D_i\}_{i=1}^n$,其中每个$D_i$都是M上的可测集。
假设$f:M \rightarrow \mathbb{R}^n$是一个连续函数,则曲面积分定义如下:$$\int_M f \cdot dS = \lim_{\|D\| \to 0} \sum_{i=1}^n f(x_i) \cdotS(D_i)$$其中,$x_i$是$D_i$中的一个点,$S(D_i)$是$D_i$的面积,$\|D\|$表示分割D的直径。
然而,在某些情况下,我们可能需要计算的函数f在曲面M上处处发散,或者M包含奇点。
这时,直接应用上述定义进行计算可能存在问题。
因此,我们需要对黎曼曲面积分进行解析延拓。
为了实现解析延拓,我们引入黎曼曲面上的良好正规相容性结构。
所谓的良好正规相容性结构可以通过黎曼曲面的结构定理得到。
该定理指出,对于任意的曲面点$p \in M$,都存在一个典范邻域$U_p$,它同胚于某个复平面域,且在$U_p$上定义了一个保角映射。
根据这个典范邻域的性质,我们可以将黎曼曲面M上的任意一个典范邻域$U_p$上的积分表示为:$$\int_{U_p} f(z)dz$$其中,z是$U_p$上的一个复变量。
我们可以通过该积分的计算来实现黎曼曲面积分的解析延拓。
接下来,我们将对黎曼曲面积分的解析延拓进行证明。
假设我们需要计算的函数f在一点$p \in M$处有一个奇点。
根据良好正规相容性结构的性质,我们可以找到一个以p为中心的典范邻域$U_p$,且在$U_p$上存在一个保角映射。
§5 黎曼几何初步一、 黎曼空间[黎曼空间及其度量张量] 若n 维空间R n 中有一组函数g ij ( x i )=g ji ( x i ),使得两邻点x i, x i +d x i之间的距离ds 由一个正定二次型d s 2 = g ij ( x )d x i d xj 决定,则称空间R n 为黎曼空间,记作V n .称黎曼空间V n 中的几何学为黎曼几何.二次型 ds 2称为V n 的线素.定义曲线弧长的微分为()j i ij x x x g s d d d =而任一曲线x i =x i(t )()a t b ≤≤的弧长为积分()()⎰=baji ij t tx t x t x g s d d d d d因为在坐标变换()x x x i i i ='下,ds 2为一个不变量,所以j ji i ij j i xx x x g g ''∂∂∂∂= 这表明g ij ( x)为一个二阶协变张量的分量,它称为黎曼空间V n的度量张量或基本张量.[矢量的长度·两矢量的标量积和夹角·伴随张量] 在黎曼空间中关于标量(场)、矢量(场)、张量(场)等的定义类似前面各节,它们的运算法则也相仿.设{}a i 是一个逆变矢量,则其长度的平方为g ij a i a j设{}i a 与{}b i 是两个逆变矢量,则其标量积为g ij a i bj 这两矢量夹角的余弦为g a b g a ag b bij i j ij ijij i j设g ij a i=a j , g ij b i=b j则{}j a 与{}j b 都是协变矢量,它们的长度与标量积分别为g ij a i a j=a j a j, g ij a i b j=a j b j张量j k i T ⋅⋅的伴随张量为j l i lk ijk T g T ⋅⋅=,k i lj jk i l T g T ⋅⋅⋅=式中g lj 满足等式g g il lj i j=δ式中j i δ为克罗内克尔符号.[黎曼联络与克里斯托弗尔符号] 在黎曼空间中总可以用唯一的方式确定联络k ij Γ,满足条件:(i) 仿射联络是无挠率的,即kji k ij ΓΓ=(ii) 仿射联络所产生的平行移动保持矢量的长度不变. 这种k ij Γ称为黎曼联络或勒维-奇维塔联络. 根据上述两个条件可以得出⎪⎪⎭⎫⎝⎛∂∂-∂∂+∂∂=l iji jl j il kl kij x g x g x g g 21Γ 如果记k ij lk l ij g ΓΓ=,则有⎥⎦⎤⎢⎣⎡∂∂-∂∂+∂∂=l ij i jl jil l ij x g x g x g 21,Γ 有时用下面的记号:[]l ij l ij ,,Γ=和{}k ij k ij Γ=它们分别称为第一类和第二类克里斯托弗尔三指标符号.此外,还有等式0=--∂∂lkj il l ki jl kij g g xg ΓΓ或i kj j ki kij xg ,,ΓΓ+=∂∂还要指出,§4中关于协变微分法的一切结果,对黎曼联络k ij Γ都成立.二、 勒维-奇维塔的平行性仿射联络空间中的平行移动,是由仿射联络ijk Γ决定的.在具有度量张量g ij 的黎曼空间Vn中,利用黎曼联络ijk Γ来定义相应的平行移动称为V n的勒维-奇维塔平行移动.设沿V n 中某一曲线 x i =x i (t )()a t b ≤≤ 给定了矢量场a i =a i(t ),如果沿这条曲线作一无穷小位移时,矢量a i(t )按规律0d d d d d =+=tx a t a t Da ji k ij k k Γ 变化,则称矢量a i(t )沿曲线作勒维-奇维塔平行移动.勒维-奇维塔平行移动具有性质:1度量张量g ij 的协变导数等于零,即0=--∂∂=∇lkj il l ki jl kij ij k g g x g g ΓΓ还有 ∇=k j i δ0, ∇=k ij g 02若两族矢量a i (t )和b i(t )都沿曲线平行移动,则()0d d=j i ij b a g t所以两矢量的标量积与夹角在平行移动下保持不变.3 黎曼空间V n中的自平行曲线(也称为测地线)和仿射联络空间中自平行曲线的情况完全一样,都由微分方程0d d d d d d 22=+s x s x sx kj i jk i Γ 所确定.不过这里的k ij Γ是黎曼联络.所以一曲线为测地线的充分必要条件是它的单位切矢量sx id d 互相平行.三、 黎曼空间中的曲率[曲率张量与李奇公式] 张量的协变导数与普通导数的明显区别是:求高阶导数时,张量导数的结果一般与求导的次序有关.例如,运算∇∇-∇∇k j j k 作用于矢量{}a i 时,则有l r kl i jr r jl i kr j i kl k i jl i k j i j k a x x a a ⎪⎪⎭⎫ ⎝⎛-+∂∂-∂∂=∇∇-∇∇ΓΓΓΓΓΓ (1) 记rkli jr r jl i kr ji klkijlikjl x x R ΓΓΓΓΓΓ-+∂∂-∂∂=它是一个三阶协变一阶逆变的四阶混合张量,称为空间V n的曲率张量或黎曼-克里斯托弗尔张量.由(1)式得∇∇-∇∇=k j i j k i kjl il a a R a左边称为逆变矢量{}a i 的交错二阶协变导数;对协变矢量{}ib 的交错二阶协变导数是r rjki i j k i k j b R b b -=∇∇-∇∇张量的交错二阶协变导数是∇∇-∇∇=-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-+-+∑∑j k s s s r r r k j s s s r r r jkir s s s r r r ir r jkq i s s s is s r r r q mp lTTR TR T ml m l p m p p l q q m l12121231212121112111211这称为李奇公式.[黎曼符号·李奇张量·曲率标量·爱因斯坦空间] 曲率张量的协变分量R g R jklr ri jkl i=称为第一类黎曼符号,而R jkl i 称为第二类黎曼符号. 曲率张量缩并得R R g R kl jkl jrj jklr ==称为李奇张量.李奇张量再缩并得R = g klR kl称为曲率标量.若李奇张量满足R nRg ij ij =1则称此空间为爱因斯坦空间. [曲率张量的性质]1曲率张量前两个指标j 和k 是反对称的,即i jkl i kjl R R -=特别R jjl i=02曲率张量对三个协变指标作循环置换后相加,使得R R R jkl i klj i ljk i++=0这称为李奇恒等式.3第一类黎曼符号R kjlr 可按下式计算:()q jl p kr q jr p kl pq l j kr r j kl r k jl l k jr jklrg x x g x x g x x g x x g R ,,,,222221ΓΓΓΓ-+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∂∂∂-∂∂∂+∂∂∂-∂∂∂= 因此R kjlr 关于指标j , k 与 l , r 是反对称的;关于前一对指标与后一对指标是对称的;对前面三个指标作循环置换后相加等于零,即R j klr =-R kjlr R j klr =-R jkrlR j klr = R lrjkR jklr +R kljr +R ljkr = 04李奇张量是对称的,即R kl = R lk . 5 空间V n 中任一点下式成立:∇+∇+∇=i jkl r j kil r k ijl rR R R 0这称为皮安奇恒等式.它表明,按协变导数的指标(i )及曲率张量前两个指标(j , k )作循环置换所得到的和等于零.[黎曼曲率(截面曲率)与常曲率空间] 对黎曼空间V n内一点M 的两个线性无关矢量{}p i 和{}q i 作()K R p q p q gg g g p q p qrijk r i j krkij rj ik r i j k=-这称为p i,q i所确定的平面的黎曼曲率,又称为截面曲率.如果对空间V n(n > 2)中所有点都有R rijk =K (g rk g ij -g rj g ik )则黎曼曲率K 为常数,这就是舒尔(Schur)定理.黎曼曲率为常数的空间Vn称为常曲率空间,这种空间的线素可化为形式()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+⋅⋅⋅+++⋅⋅⋅+=221221241d d d n n x x K x x s 这称为黎曼形式的常曲率空间的度量.常曲率空间是爱因斯坦空间.。