锅炉燃烧自动控制
- 格式:doc
- 大小:1.80 MB
- 文档页数:33
锅炉的自动化控制1-简介1-1 背景●锅炉的自动化控制是现代工业生产中一项重要的技术手段。
通过自动化控制,可以提高锅炉的效率、降低能源消耗,提高生产安全性。
1-2 目的●本文档的目的是介绍锅炉的自动化控制的基本原理、方法和应用技术,以供参考和学习。
2-基本原理2-1 控制系统组成●控制系统由传感器、执行器、控制器和人机界面组成。
传感器用于采集锅炉的各种参数,执行器用于执行控制命令,控制器用于处理信号和发出控制命令,人机界面用于操作和监控。
2-2 控制方法●控制方法主要分为开关控制和连续控制两种。
开关控制是根据设定值与实际值的差异进行开关动作,如启停燃烧器。
连续控制是根据设定值与实际值的差异进行连续调节,如调节燃烧器的燃料供给。
3-自动化控制系统的组成3-1 传感器●温度传感器、压力传感器、流量传感器等用于采集锅炉的各种参数。
3-2 执行器●燃烧器、阀门等用于执行控制命令,如调节燃料供给。
3-3 控制器●PID控制器、PLC控制器等用于处理传感器采集的信号,并发出控制命令。
3-4 人机界面●人机界面可以是触摸屏、计算机软件等,用于操作和监控锅炉的状态和参数。
4-自动化控制系统的应用技术4-1 控制策略●控制策略包括比例控制、积分控制和微分控制,结合起来可以实现更精确的控制效果。
4-2 故障检测与诊断●锅炉的自动化控制系统可以通过故障检测与诊断功能,及时发现和解决问题,保证系统的正常运行。
4-3 远程监控和管理●利用网络技术,可以远程监控和管理锅炉的状态和参数,提高运行效率和安全性。
5-附件本文档涉及以下附件:●锅炉自动化控制系统的结构图●控制策略示意图●故障检测与诊断算法流程图6-法律名词及注释●控制系统:指用于监测和控制设备或工程的系统,通常包括传感器、执行器、控制器和人机界面等组成部分。
●PID控制器:Proportional-Integral-Derivative Control的简称,比例-积分-微分控制,是一种常见的控制算法。
锅炉燃烧调整知识01 锅炉燃烧过程自动调节的任务锅炉燃烧过程自动调节的任务如下:① 维持热负荷与电负荷平衡,以燃料量调节蒸汽量,维持蒸汽压力。
② 维持燃烧充分,当燃料改变时,相应调节送风量,维持适当风煤比例。
③ 保持炉膛负压不变,调节引风与送风配合比,以维持炉膛负压。
02 锅炉风量与燃料量配合风量过大或过小都会给锅炉安全经济运行带来不良影响。
锅炉的送风量是经过送风机进口挡板进行调节的。
经调节后的送风机送出风量,经过一、二次风的配合调节才能更好地满足燃烧的需要,一、二次风的风量分配应根据它们所起的作用进行调节。
一次风应满足进入炉膛风粉混合物挥发分燃烧及固体焦炭质点的氧化需要。
二次风量不仅要满足燃烧的需要,而且补充二次风末段空气量的不足,更重要的是二次风能与刚刚进入炉膛的可燃物混合,这就需要较高的二次风速,以便在高温火焰中起到搅拌混合作用,混合越好,则燃烧得越快、越完全。
一、二次风还可调节由于煤粉管道或燃烧器的阻力不同而造成的各燃烧器风量的偏差,以及由于煤粉管道或燃烧器中燃料浓度偏差所需求的风量。
此外,炉膛内火焰的偏斜、烟气温度的偏差、火焰中心位置等均需要用风量调整。
03 四角切圆锅炉二次风调整四角切圆锅炉二次风采用的是大风箱供风方式,每角的18只喷口连接于一个共同的大风箱,风箱内设有18个分隔室,分别与18个喷口相通。
各分隔室入口处均有百叶窗式的调节挡板。
二次风的调节依据是维持最佳氧量。
辅助风是二次风中最主要的部分。
它的作用是调整二次风箱和炉膛之间的压差(原则上不低于380Pa)。
从而保证进入炉膛的二次风有合适的流速,以便入炉后对煤粉气流造成很好的扰动和混合,使燃烧工况良好。
总二次风量按照燃料量和氧量值进行调节,各燃烧器辅助风的风门开度按相关规程要求的炉膛/风箱压差进行调节。
油层均有各自的油配风,油配风的开度有两种控制方式:油枪投入前,该油枪的油配风挡板开至20%以上;油枪停用时,则与辅助风一样,按炉膛/风箱压差进行调节。
自动化锅炉控制系统:提高能源利用率和安全性的重要手段随着科技的进步和环境意识的增强,煤、天然气和油等非可再生能源的使用面临越来越大的限制。
相对而言,太阳能、风能等可再生能源的发展还需要时间,因此,如何提高能源的利用率和安全性成为了亟待解决的问题。
在实现这一目标的过程中,的应用就显得尤为关键。
一、的基本原理及作用1.基本原理是由控制器、执行机构和传感器组成的。
其中,控制器作为系统的“大脑”,根据传感器采集到的锅炉温度、压力、流量等实时数据,通过执行机构对锅炉的燃烧、供水、汽水回路等进行调节,以实现智能化的控制。
2.作用的应用可以起到以下几点作用:(1)提高锅炉的热效率传统的手动调节方式中存在诸多问题,比如:调节不及时、误差过大等,这些都会影响锅炉的热效率和安全性。
而的应用可以实现更加精确和及时的调节,从而提高锅炉的热效率,减少能源的浪费。
(2)提高锅炉运行的安全性可以监测锅炉的各项参数,及时发现并报警处理锅炉中出现的问题,确保锅炉的运行安全性。
二、的发展状况在过去的几十年中,已经得到了广泛的应用,特别是在工业、热电站等领域。
这些应用中,以数字控制系统为主流,相较于传统的模拟控制系统,数字控制系统可以更加精确和稳定的控制锅炉,提高了锅炉的热效率和运行安全性。
同时,数字化控制系统还具有易于维护,故障自诊断和可编程等特点,可以快速定位故障并进行调整优化。
三、未来的发展趋势随着技术的不断创新和行业的发展,也将会不断向以下几个方向发展:(1)智能化:整合人工智能技术,实现更加精细和智能化的控制,进一步提高锅炉的热效率和运行安全性。
(2)多元化:利用先进的通信技术,实现系统间的数据共享和融合,支持多种控制策略的切换,满足不同场景下的需求。
(3)模块化:应用模块化设计思想,提高系统的可扩展性和可维护性。
(4)绿色化:结合可再生能源的应用,实现锅炉能源的跨界融合,促进绿色能源的发展和利用。
四、结论的应用是提高能源利用率和安全性的重要手段,随着技术的发展和需求的增加,其发展也将会更加智能化,多元化,模块化和绿色化。
燃油锅炉自动控制原理燃油锅炉自动控制原理可以分为三个主要方面:燃烧过程控制、水位控制和温度控制。
1. 燃烧过程控制:燃油锅炉的燃烧过程控制是通过控制燃油和空气的供给来实现的。
燃油的供给通过调节燃油泵的转速来控制,空气的供给则通过调节引风机的转速来控制。
燃油和空气的比例决定了燃油的燃烧效率和锅炉的热效率。
燃油锅炉通常使用比例控制方式来控制燃烧过程。
所谓比例控制,就是使燃油和空气的供给量与锅炉的负荷量成正比。
一般来说,负荷越大,需要燃油和空气供给的越多,反之亦然。
为了实现比例控制,燃油锅炉通常采用一个燃烧器调节器,其中包括燃烧器阀门、传感器和控制器。
传感器用于测量锅炉的负荷量和燃烧器的燃烧效率,控制器则根据传感器的反馈信号,调节燃烧器阀门的开度,从而实现燃油和空气的比例控制。
2. 水位控制:燃油锅炉的水位控制是为了保证锅炉的安全运行。
水位过低会导致锅炉燃烧不稳定,水位过高则可能会导致水泵损坏和蒸汽质量下降。
燃油锅炉的水位控制通常使用两个浮子开关来实现。
其中一个浮子开关用于控制给水泵的启停,另一个浮子开关用于控制排放阀的开关。
当锅炉内水位过低时,浮子开关将发出信号,使给水泵启动,从而补充水量。
当锅炉内水位过高时,浮子开关将发出信号,使排放阀打开,排除多余的水分。
3. 温度控制:燃油锅炉的温度控制是为了保证锅炉的稳定供热。
温度过高会导致锅炉受损,温度过低则无法满足供热需求。
燃油锅炉的温度控制通常使用温度传感器和控制器来实现。
温度传感器用于测量燃烧室内的温度,控制器根据传感器的反馈信号,调节燃料供给和空气供给,控制燃烧室内的温度在设定范围内。
总结起来,燃油锅炉的自动控制原理是通过燃烧过程控制、水位控制和温度控制来实现的。
燃烧过程控制通过调节燃油和空气的供给来控制燃烧效率和锅炉的热效率。
水位控制通过浮子开关来控制给水泵和排放阀的启停,保证锅炉的安全运行。
温度控制通过温度传感器和控制器来调节燃料和空气供给,控制燃烧室内的温度在设定范围内。
锅炉燃烧系统的控制系统设计摘要:锅炉是热电厂重要且基本的设备,其最主要的输出变量之一就是主蒸汽压力。
主蒸汽压力的自动调节的任务是维持过热器出口气温在允许范围内,以确保机组运行的安全性和气温在允许范围内,以确保机组运行的安全性和[1]经济性。
锅炉所产生的高压蒸汽既可作为驱动透平的动力源,又可以作为精馏、干燥、反可以作为精馏、干燥、反应、加热等过程的热源。
随着工业生产的规模不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
在控制算法上、综合运用了单回路控制、串级控制、比值控制等控制方法实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效克服了彼此的扰动,使整个系统稳定运行。
运行。
关键词:锅炉;蒸汽压力;单回路控制;关键词:锅炉;蒸汽压力;单回路控制;ControlsystemdesignoftheboilercombustionsystemAbstract:Theboilerisimportantandbasicequipmentofthethermalpowerplan t,oneofthemainoutputvariableisthemainsteampressure.Thetaskoftheauto maticadjustmentofthemainsteampressureistomaintainthesuperheateroutle ttemperaturewithintheallowablerange,toensurethesafetyandeconomyofth eunitoperation.Theboilersproducehighpressuresteamcanbeusedasasource ofpower-driventurbine,butalsoasadistillation,drying,reaction,heatingandprocesshe atsource.Withindustrialproductionexpanding,asafilterforpowerandheat,b utalsotowardthehigh-capacity,high-parameter,high-efficiencydirection.Inthecontrolalgorithm,theintegrateduseofsingle-loopcontrol,cascadecontrol,ratiocontrol,thecontrolmethodoffuelcontroltoadjustthevaporpressure,airvolumecontroltoadjustthefluegasoxygenconten t,thewindcontrolthefurnacenegativepressure,andeffectivelyovercomeeac hotherdisturbancessothatthewholestabilityofthesystem.Keywords:Boiler;Vaporpressure;Single-loopcontrol引言引言随着城市的快速发展,我们对用电的需求也越来越大,如何利用好有限的能源来保证供电是一个重要的话题,在能源的利用过程中如何更加提高能源的利用率是一个可研究性的话题,本文基于上述话题对电厂的燃烧锅炉控制进行了研究。
锅炉的保护装置与自动控制锅炉的自动控制与保护装置是锅炉的重要组成部分, 对锅炉的安全运行起十分重要的作用。
它的作用主要有三点:1. 当被控对象的变化超过给定范围之后, 具有限制报警作用。
2. 当锅炉出现异常情况或操作失误时, 具有联锁保护作用。
3. 当锅炉正常工作时, 具有控制( 或测量、指示) 作用。
锅炉的自控保护装置, 其类型有多种分法, 而从上述三点作用出发, 亦可分为警报、联锁保护和自动控制三个系统。
一、锅炉的警报系统锅炉的警报系统是由水位、压力和温度的传感器与声光讯号装置相互串联而组成的一个电路系统。
当水位、压力和温度处于极限位置时, 指示灯将通过亮或灭、闪烁或颜色区别来显示相应的状态, 而音响信号装置则通过发声达到报警的目的。
( 一) 水位警报系统为了保持锅炉水位正常, 防止发生缺水或满水事故, 对蒸发量大于和等于2t/h 的锅炉, 除装设水位表外, 还需装设高低水位警报器。
它的作用是: 当锅炉内的水位高于最高安全水位或低于最低安全水位时, 水位警报器就自动发出报警声响和光信号, 提醒司炉人员迅速采取措施, 防止事故发生。
水位警报器是利用锅筒和传感器内水位同时升降而造成传感器浮球相应升降, 或者利用锅水能够导电的原理而制成, 它有安装在锅筒内和锅筒外两种。
前者因检修困难, 现在已较少应用; 后者常用的有磁钢( 铁) 式、电感式、波纹管式和电极式水位传感器四种。
1. 磁钢( 铁) 式水位传感器磁铁式水位传感器也称“ 浮子式水位传感器“, 见图4-30 。
主要由永磁钢组、浮球、三组水银开关和调整箱组件等部分组成。
当锅筒内的水位发生变化时, 浮球也随之变化, 从而带动永磁钢组上升或下降, 将高、低水位或极限低水位开关接通, 发出警报, 为了提高水位传感器的灵敏度和使用寿命, 有的单位使用干簧管取代水银开关, 收到了较好的效果。
磁钢式水位控制具有效率高, 结构简单, 无须调节仪表转换信号, 直接带动水泵工作的特点。
摘要
本文研究了燃煤锅炉燃烧系统的自动控制问题。
首先简述了燃煤锅炉的工艺流程、特点及调节系统的任务;分析了燃烧系统调节对象的特性。
根据工艺特点,把燃烧控制分成主汽压控制、燃烧经济性控制和炉膛负压控制三部分,分别进行讨论。
针对主汽压控制系统这一复杂对象,结合模糊逻辑控制理论,提出了FUZZY—SMITH控制算法,并且与传统PID控制和PID—SMITH控制相比较,仿真结果表明该算法具有良好的动静特性及很强的鲁棒性。
根据现场采集到的数据分析,在锅炉实际生产中,蒸汽压力一定的情况下,热效率和送风量存在着二次曲线的关系。
由于二次曲线存在极值,这个极值就是我们要寻求的燃烧最优点。
本论文以热量信号为寻优的目标函数,采用动态自寻优控制方法,使系统不断向最优工作点靠近,提高了热效率。
其次,由于寻优是一个连续不断的过程,所以算法可以适应由于煤质变化或工况变化等引起的最佳工作点的漂移,具有较好的实用性。
炉膛负压的控制采用传统的PID控制。
关键词
PID控制SMITH预估控制模糊控制燃煤锅炉燃烧控制
自寻优
1.1课题来源
工业锅炉已被广泛地应用于国民经济各个部门。
通常蒸发量较小的用来供热或提供循环热水,蒸发量大的用来驱动蒸汽轮机和蒸汽机,使热能转化为机械能,或进而转换为电能。
一台锅炉要能安全、可靠、有效地运行,运行参数达到设计值,除了锅炉本身设备和各种辅机完好外,还必须要求自动化仪表工作正常和自动控制系统方案正确。
通过调研我们发现,我国的工业或民用采暖锅炉的运行普遍存在自动化程度不高,靠人工经验来控制燃烧的问题。
这些问题导致锅炉效率不高,能量浪费。
同时,生产现场蒸汽用量经常变化,且没有规律,而供汽量目前都采用人工调节的办法来满足热用量的变化,这种人工调节的办法,使供汽的“量”存在浪费的问题,且供汽的“质”也难以保证。
因此,锅炉的自动控制成为一个不容忽视的研究课题。
随着科学技术的不断发展以及对节省能源和自动控制要求的不断提高,对实现自动控制的手段也提出了更高的要求。
这样就为计算机在自动控制中的应用提供了迫切性,而计算机技术本身的迅速发展也为其应用提供了可能性,利用计算机来实现生产过程的自动控制是目前自动控制技术发展的方向。
本课题为内蒙古重点攻关项目。
1.2课题发展状况
1.2.1工业锅炉简介
一、工业锅炉的工作过程[1]
图1.1为锅炉结构和工艺流程示意图。
燃烧的煤层厚度通过闸板控制,炉排转速可由交流变频调速电机控制。
尾部受热面有省煤器和空气预热器。
图1.1 10t/h锅炉结构和工艺流程示意图
给水通过省煤器预热后给锅炉上水,空气经空气预热器后由炉排左右两侧6个风道进入,烟气通过除尘器除尘,由引风机送至烟囱排放,主蒸汽经过过热器送至汽柜和用汽部门。
鼓风机、引风机都是由交流变频器来控制,通过调节鼓风机、引风机的速度来实现控制鼓风量、引风量。
二、锅炉自动控制的主要任务[2]
(一)锅炉汽包水位的控制
汽包水位是锅炉安全运行的主要参数之一。
水位过高会导致蒸汽带水进入过热器并在过热器管内结垢,影响传热效率,严重的将引起过热管爆管;水位过低又将破坏部分水冷壁的水循环,引起水冷壁局部过热而爆管。
尤其是大型锅炉,例如,30万KW机组的锅炉蒸发量为1024t/h,而汽包容积较小,一旦给水停止,则会在十几秒内使汽包内的水全部汽化,造成严重的事故。
(二)过热蒸汽温度的控制
大型锅炉的过热器是在接近过热器金属管的极限高温条件下工作的,金属管道强度的安全系数很小,过热蒸汽温度过高会使金属管道的强度大为降低,影响设备安全;温度过低则使全厂热效率显著下降。
所以过热蒸汽温度是有关安全和经济性的重要参数。
过热蒸汽温度自动调节的任务是维持过热器出口汽温在允许范围内,以确保机组运行的安全性和经济性。
(三)锅炉燃烧过程的控制
燃烧过程自动调节系统的选择虽然与燃料的种类和供给系统、燃烧方式以及锅炉与负荷的联接方式都有关系,但是燃烧过程自动调节的任务都是一样的。
归纳起来,燃烧过程调节。