材料成型技术基础2
- 格式:ppt
- 大小:803.50 KB
- 文档页数:46
[材料成型工艺技术基础]韩建民版第二章答案1.何谓塑性变形?单晶体、多晶体塑性变形的机理各是什么?金属在外力的作用下,内部产生应力,该应力使原子偏离其原来的平衡位置,当应力超过金属材料的屈服极限,外力去除后,原子达到新的平衡状态,金属恢复不到原来的形状和尺寸,产生的永久变形。
单晶体: 晶体在切应力作用下,晶体的一部分与另一部分沿着一定的晶面彼此以刚性的整体相对滑移,滑移的距离为原子间距的整数倍。
多晶体:内部每个晶粒相互协调和配合,当外力达到一定值后晶界发生变形和破碎,其中既有晶内的滑移变形,也有晶间的滑动和转动。
2.何谓冷变形,何谓热变形,冷变形后金属的组织和性能会产生怎么样的变化,热变形后金属的组织和性能会产生怎么样的变化?金属锻造在升温变形过程中,金属原子获得能量,将低温变形中出现的应力吸收,微结构中碎晶形核等生长,将变形晶粒全部消失,这个温度就是再结晶温度,此温度以下的就是冷变形,以上的就是热变形。
冷变形后,晶粒在外力作用下倍扭曲拉长,随着变化逐渐成纤维状,有些晶粒破碎成碎晶,这种结构的晶格对进一步变形有阻碍作用,使金属的的强度和硬度升高,而塑性和韧性下降;热变形后,冷变形过程中出现的碎晶或杂志为核心形核并长大,直到全部冷变形晶粒消失为止,消除加工硬化,这个过程是再结晶不是相变,其晶粒均匀生长细化,塑性增加。
3.为什么规定锻造温度范围?碳钢合理的始锻温度和终锻温度应在铁碳合金状态图的什么位置?锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。
确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。
锻造温度范围应尽可能宽一些,加热温度太低,表面会开裂,或者内部裂纹,加热温度过高,导致钢坯过烧,无法成型产品。
碳钢的锻造温度范围如图(铁-碳状态图)中的阴影线所示:钢的始锻温度主要受过热的限制,合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。
作业1 金属材料技术基础1-1 判断题(正确的画O,错误的画×)1.纯铁在升温过程中,912℃时发生同素异构转变,由体心立方晶格的α-Fe转变为面心立方晶格的γ-Fe。
这种转变也是结晶过程,同样遵循晶核形成和晶核长大的结晶规律。
(O )2.奥氏体是碳溶解在γ-Fe中所形成的固溶体,具有面心立方结构,而铁素体是碳溶解在α-Fe中所形成的固溶体,具有体心立方结构。
(O )3.钢和生铁都是铁碳合金。
其中,碳的质量分数(又称含碳量)小于0.77%的叫钢,碳的质量分数大于2.11%的叫生铁。
(×)4.珠光体是铁素体和渗碳体的机械混合物,珠光体的力学性能介于铁素体和渗碳体之间。
(O )5.钢中的含碳量对钢的性能有重要的影响。
40与45钢相比,后者的强度高,硬度也高,但后者的塑性差。
(O )6.为了改善低碳钢的切削加工性能,可以用正火代替退火,因为正火比退火周期短,正火后比退火后的硬度低,便于进行切削加工。
(×)7.淬火的主要目的是为了提高钢的硬度。
因此,淬火钢就可以不经回火而直接使用。
(×)8.铁碳合金的基本组织包括铁素体(F)、奥氏体(A)、珠光体(P)、渗碳体(Fe3C)、马氏体(M)、索氏体(S)等。
(×)1-2 选择题1.铁碳合金状态图中的合金在冷却过程中发生的(F )是共析转变,(B )是共晶转变。
A.液体中结晶出奥氏体;B.液体中结晶出莱氏体;C.液体中结晶出一次渗碳体;D.奥氏体中析出二次渗碳体;E.奥氏体中析出铁素体;F.奥氏体转变为珠光体。
2.下列牌号的钢材经过退火后具有平衡组织。
其中,( C )的σb最高,(D )的HBS最高,(A )的δ和a k最高。
在它们的组织中,(A )的铁素体最多,( C )的珠光体最多,(D )的二次渗碳体最多。
A.25;B.45;C.T8;D.T12。
3.纯铁分别按图1-1所示不同的冷却曲线冷却。
其中,沿( D )冷却,过冷度最小;沿(D )冷却,结晶速度最慢;沿(A )冷却,晶粒最细小。
材料成型技术基础课程设计一、课程设计背景与目的随着工业的发展,材料成型技术在人们的生活、生产中扮演着越来越重要的角色。
掌握材料成型技术的基本理论和工艺技能,是现代制造业人才的基本素质之一。
而材料成型技术基础课程则是培养学生掌握材料成型技术基本理论和基本操作的重要课程。
基于对学生的培养目标和课程目标的考虑,本次课程设计旨在:1.通过课程设计,让学生掌握材料成型技术相关的基本理论知识;2.通过实践操作,让学生掌握材料成型技术的基本操作技能;3.通过项目实战,让学生能够熟悉材料成型技术实际应用场景,增强其综合素质。
二、课程内容1. 材料成型技术基础理论•材料成型工艺分类;•各种类型材料的成型原理;•成型工艺中的加热、冷却、应力等关键问题;•成型工艺流程及其控制等。
2. 材料成型技术基础操作•材料成型技术基本操作流程;•成型材料的选择及其处理;•成型工具的选择及其使用;•成型工艺的后续处理。
3. 项目案例实战•通过案例实战,让学生了解材料成型技术在实际应用场景中的应用;•培养学生解决实际问题的能力;•提高学生的团队合作能力。
三、课程设计流程1. 理论学习(1周)•学生通过教师授课、资料阅读、讨论等方式学习材料成型技术相关的基本理论知识;•教师通过出题测试等方式对学生的知识掌握情况进行评估。
2. 实践操作(2周)•学生通过实践操作,掌握材料成型技术的基本操作技能;•教师引导学生深入探讨操作过程中遇到的关键问题,并进行讲解和解答;•教师通过考核实习成绩等方式对学生的实践操作情况进行评估。
3. 项目案例实战(3周)•学生以小组形式完成一项材料成型技术项目实战任务;•教师通过对项目进度、成果等方面的考核,对学生的综合素质进行评估;•学生针对项目进行收尾报告,形成项目实践总结。
四、考核及评估方式为确保课程设计效果,教师将针对不同环节制定考核及评估方式:•期中考试:考核学生对材料成型技术基础理论的掌握情况,占总评成绩的30%;•实践操作成绩:考核学生对材料成型技术基础操作技能的掌握情况,占总评成绩的30%;•项目实战成绩:考核学生运用材料成型技术解决实际问题的能力及团队协作能力,占总评成绩的40%。
材料成型技术基础材料成型技术是指将原材料通过一定的加工方式,制造成为具有特定形状、尺寸和性能的产品的过程。
材料成型技术是现代工业制造的基础,它在各个领域都有着广泛的应用,如汽车、机械、电子、建筑等。
本文将对材料成型技术的基础知识进行介绍。
1. 基本概念材料成型技术包括各种加工方式,如锻造、铸造、挤压、拉伸、滚压、剪切、锯切等。
这些加工方式都是通过对原材料的物理和化学变化,使其得到所需的形状和性能,从而实现产品的制造。
2. 锻造锻造是一种通过对金属材料进行加热和压制,使其改变形状和性能的加工方式。
锻造可以分为自由锻造和模锻造两种。
自由锻造是指将金属材料加热至一定温度后,用锤头或压力机对其进行压制,从而使其改变形状和性能。
模锻造是指将金属材料放入特定的模具中进行加热和压制,从而使其得到所需的形状和性能。
3. 铸造铸造是一种通过将液态金属材料倒入特定的模具中,使其冷却固化后得到所需的形状和性能的加工方式。
铸造可以分为压力铸造和重力铸造两种。
压力铸造是指将液态金属材料通过高压喷射进入模具中,从而得到所需的形状和性能。
重力铸造是指将液态金属材料倒入模具中,通过重力作用使其冷却固化,从而得到所需的形状和性能。
4. 挤压挤压是一种通过将金属材料通过模具中的小孔挤出,从而得到所需的形状和性能的加工方式。
挤压可以分为冷挤压和热挤压两种。
冷挤压是指将金属材料在室温下通过模具中的小孔挤出,从而得到所需的形状和性能。
热挤压是指将金属材料加热至一定温度后,通过模具中的小孔挤出,从而得到所需的形状和性能。
5. 拉伸拉伸是一种通过将金属材料拉伸,使其改变形状和性能的加工方式。
拉伸可以分为冷拉伸和热拉伸两种。
冷拉伸是指将金属材料在室温下拉伸,从而得到所需的形状和性能。
热拉伸是指将金属材料加热至一定温度后,拉伸,从而得到所需的形状和性能。
6. 滚压滚压是一种通过将金属材料通过辊轮的滚动,使其改变形状和性能的加工方式。
滚压可以分为冷滚压和热滚压两种。
材料成型技术基础第2版课后习题答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
材料成型技术基础知识点总结材料成型技术是指利用压力、温度和时间等因素,通过给予物质以一定的形状,以获得具备特定功能和要求的制品的一种技术方法。
材料成型技术在各个行业的制造过程中起着重要的作用。
下面将对材料成型技术的基础知识点进行总结。
1.材料成型的分类:材料成型可分为热成型和冷成型两类。
热成型是指在高温下进行的成型过程,包括热压、热拉伸、热挤压等。
冷成型是指在常温下进行的成型过程,包括冷弯、冷挤压、冷拔等。
2.材料成型的原理:材料成型的基本原理是通过对材料施加力和热量,使其发生塑性变形,进而得到所需形状和尺寸的制品。
材料成型的力学过程包括拉伸、挤压、弯曲、剪切等。
热量作用主要是为了降低材料的硬度,提高其变形能力。
3.材料成型工艺:材料成型的工艺包括模具设计、加工设备的选择与调试、成型过程的操作等。
模具是材料成型的关键工具,模具的设计要考虑到材料的特性、形状和尺寸的要求。
加工设备的选择与调试要根据材料的成型要求和加工量来确定。
成型过程的操作要严格控制力和热的加工参数,保证制品的质量。
4.材料成型的性能影响因素:材料成型的性能受到许多因素的影响,包括材料的物理和化学性质、成型工艺的参数、设备的性能等。
材料的性能对成型工艺的选择和制品的质量有着重要影响。
成型工艺的参数如温度、压力、速度等也会对成品的性能产生影响。
设备的性能如精度、刚度、压力等也会影响到成型的结果。
5.材料成型的应用:材料成型技术广泛应用于诸多领域,如汽车制造、航空航天、电子、建筑等。
汽车制造中的车身、发动机零部件等都需要经过冲压成型、挤压成型等工艺。
航空航天中的飞机壳体、涡轮叶片等也需要通过成型工艺进行制作。
电子产品中的外壳、散热器等也需要通过成型技术来获得所需的形状。
建筑领域中的钢结构、混凝土构件等亦需要经过成型工艺来生产。
综上所述,材料成型技术是制造过程中不可或缺的一部分。
通过了解材料成型的分类、原理、工艺、性能影响因素和应用,可以更好地理解和应用材料成型技术,提高制品的质量和生产效率。
材料成型技术基础材料成型技术基础材料成型技术是现代工业的核心技术之一,是将材料加工成所需形状、结构和性能的过程。
材料成型技术分为传统成型技术和先进成型技术两种。
前者包括热加工、冷加工、焊接等,后者则包括快速成型、激光加工、注塑成型等。
无论是哪种成型技术,都需要掌握材料成型技术基础知识才能熟练地操作和完成任务。
1.材料成型技术原理材料成型技术在原理上是通过施加压力,改变材料外观和性质。
采用不同的成型方法和工艺流程,可获得所需的形态和性能。
例如,金属冷加工依靠的是材料的塑性变形,而激光切割则是利用激光的高能量和热量来割断材料。
因此,不同成型技术的原理不同,工艺流程也不同。
2.材料成型技术分类材料成型技术主要可以分为常规材料成型技术和高级材料成型技术两类。
常规材料成型技术包括热加工、冷加工、铸造、焊接、切削等。
这些技术在工业生产中应用广泛,可以制造出各种形态的零部件和产品。
高级材料成型技术是在常规成型技术基础上,运用现代科技和工程技术发展起来的成型技术。
例如,金属材料的选择性激光烧结技术(SLS)、三维打印技术、激光切割技术和注塑成型技术等。
这些技术通常被用于制造高性能、高单价、高品质的工业产品。
3.常规材料成型技术热加工热加工技术是利用高温对材料进行塑性变形的加工方式。
通过热处理,可以使金属变得更加容易软化和延展。
热加工适合于制造大量的同样尺寸和形状的零件,例如轴、齿轮等机械元件。
冷加工冷加工技术是不需要高温处理的制造加工方法。
冷加工一般用于金属加工,由于没有热变形,冷加工一般具有更好的精度和表面光洁度。
冷加工应用广泛,例如冷拔、冷轧、冷环等。
铸造铸造是利用熔化的金属,将其注入模具中成型制品的加工方法。
铸造可以生产出各种不同尺寸和形状的零件,应用范围广泛,例如钢铁、铝合金、铜、铜合金等材料。
焊接焊接是将两个物体连接在一起的加工方式。
焊接广泛应用在车辆工业、建筑工业、航空航天工业等领域,例如电弧焊、气体保护焊、激光焊等技术。
材料成型技术基础第2章铸造1、铸造的定义、优点、缺点:铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法。
优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。
缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。
2、充型能力的定义、影响它的三个因素:金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。
影响因素:①金属的流动性;②铸型条件;③浇注条件。
3、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的铸型的三个条件;浇注温度和压力对充型能力是如何影响的:影响流动性的因素:①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。
结晶温度范围越窄,合金流动性越好。
②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好。
影响充型能力的铸型的三个条件:①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力。
蓄热系数越大,金属液保持液态时间短,充型能力越低。
(在型腔喷涂涂料,减小蓄热系数)②铸型温度:铸型温度越高,有利于提高充型能力。
③铸型中的气体:铸型的发气量过大且排气能力不足,就会使型腔中气压增大,阻碍充型。
浇注温度和压力对充型能力的影响:①浇注温度:提高浇注温度,延长保持液态的时间,从而提高流动性。
温度不能过高,否则金属液吸气增多,氧化严重,增大了缩孔、气孔、粘砂等缺陷倾向。
②充型压力(流动方向上的压力):充型压力越大,流动性越好。
名词解释一、二章(绪论+铸造成型):1缩孔、缩松:液态金属在凝固的过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,细小而分散的孔洞称为缩松。
2顺序凝固:指采用各种措施保证铸件结构各部分,从远离冒口部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固再向冒口方向顺序凝固的凝固方式。
3同时凝固:由顺序凝固的定义可得。
4偏析:铸件凝固后截面上不同部位晶粒内部化学成分不均匀的现象称为偏析。
5:宏观偏析:其成分不均匀现象表现在较大尺寸范围,也称为区域偏析。
6微观偏析:指微小范围内的化学成分不均匀现象。
7流动性:液态金属自身的流动能力称为“流动性”。
8充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力叫充型能力。
9正偏析:当溶质的分配系数K>1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越低,这种成分偏析称之为正偏析。
10逆偏析:当溶质的分配系数K<1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越高,这种成分偏析称之为逆偏析。
11:自由收缩:铸件在铸型中收缩仅受到金属表面与铸型表面的摩擦阻力时,为自由收缩。
12:受阻收缩:如果铸件在铸型中的收缩除了受到金属表面与铸型表面的摩擦阻力,还受到其他阻碍,则为受阻收缩。
13:析出性气孔:溶解于熔融金属中的气体在冷却和凝固的过程中,由于溶解度的下降而从合金中析出,当铸件表面已凝固,气泡来不及排除而保留在铸件中形成的气孔。
14:反应性气孔:浇入铸型的熔融金属与铸型材料、芯撑、冷铁或熔渣之间发生化学反应所产生的气体在、铸件中形成的孔洞,称为反应气孔。
15:侵入性气孔:浇注过程中熔融金属和铸型之间的热作用,使型砂和型芯中的挥发物挥发生成,以及型腔中原有的空气,在界面上超过临界值时,气体就会侵入金属液而不上浮逸出而形成的气孔。
三章(固态材料塑性成型)1金属塑性变形:是指在外力作用下,使金属材料产生预期的变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。