y cos x sin x .
令 y 0,
得
x1
3 4
,
x2
7 4
.
f (3) 2 0, f (7) 2 0,
4
4
中值定理与导数的应用
10
在[0,2]内曲线有拐点为 (3 ,0), (7 ,0).
4
4
中值定理与导数的应用
11
二、渐近线
定义: 当曲线 y f ( x) 上的一动点 P 沿着曲线 移向无穷点时, 如果点 P 到某定直线 L 的距离 趋向于零, 那么直线 L 就称为曲线 y f ( x) 的 一条渐近线.
22
lim
x0
f
(x)
4( x 1)
lim[
x0
x2
2]
,
得铅直渐近线 x 0.
列表确定函数升降区间,凹凸区间及极值点和拐点:
x (,3) 3 (3,2) 2 (2,0) 0 (0,)
f ( x)
0 不存在
f (x)
0
f (x)
拐点
(3, 26) 9
极值点
3
间
断 点
中值定理与导数的应用
解 D : (,), 无奇偶性及周期性.
f ( x) (3x 1)(x 1), f ( x) 2(3x 1).
令 f ( x) 0, 得驻点 x 1 , x 1. 3
令 f ( x) 0,
得特殊点 x 1 . 3
补充点: A (1,0),
B (0,1), C (3 , 5). 28
f (x)在点 x0处二阶导数不存在 .
中值定理与导数的应用
6
例2 求曲线 y 3x4 4x3 1的拐点及
凹、凸的区间.