电磁感应四大专题.
- 格式:ppt
- 大小:842.00 KB
- 文档页数:30
电磁感应中的电路问题▲知识梳理1.求解电磁感应中电路问题的关键是分析清楚内电路和外电路。
“切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。
2.几个概念(1)电源电动势或t n E ∆∆=φ。
(2)电源内电路电压降,r 是发生电磁感应现象导体上的电阻。
(r 是内电路的电阻)(3)电源的路端电压U ,(R 是外电路的电阻)。
3.解决此类问题的基本步骤(1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。
(2)画等效电路:感应电流方向是电源内部电流的方向。
(3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。
特别提醒:路端电压、电动势和某电阻两端的电压三者的区别:(1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。
(2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。
(3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势。
▲疑难导析电磁感应与电路知识的综合1.解题思路(1)明确电源的电动势:(2)明确电源的正、负极:根据电源内部电流的方向是从负极流向正极,即可确定“电源”的正、负极。
(3)明确电源的内阻:相当于电源的那部分电路的电阻。
(4)明确电路关系:即构成回路的各部分电路的串、并联关系。
(5)结合闭合电路的欧姆定律:结合电功、电功率等能量关系列方程求解。
2.注意问题在分析电磁感应中的电路问题时,要注意全面分析电路中的电动势。
(1)在有些问题当中,轨道上有两根金属棒,且两棒均切割磁感线产生感应电动势,此时应充分考虑这两个电动势,将它们求和(同向时)或求差(反向时)。
(2)有些题目中虽只有一根棒切割磁感线,但同时磁场也发生变化,则此时电路中也有两个感应电动势,一个是动生电动势,一个是感生电动势,应求和(同向时)或求差(反向时)。
第四章电磁感应知识点(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章电磁感应第一模块:电磁感应、楞次定律(先介绍右手螺旋定则)『基础知识』一、划时代的发现1、奥斯特梦圆“电生磁”奥斯特实验:在1820年4月的一次讲演中,奥斯特碰巧在南北方向的导线下面放置了一枚小磁针、当电源接通时,小磁针居然转动了(如右图)。
随后的实验证明了电流的确能使磁针偏转,这种作用称为电流的磁效应。
突破:电与磁是联系的2、法拉第心系“磁生电”1831年8月29日,法拉第终于发现了电磁感应:把两个线圈绕在同一铁环上(如右图),一个线圈接入接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电瞬间,另一个线圈也出现了电流,这种磁生电的效应终于被发现了。
物理学中把这种现象叫做电磁感应.由电磁感应产生的电流叫做感应电流.二、感应电流的产生1、N极插入、停在线圈中和抽出(S极插入、停在线圈中和抽出)有无感应电流(如图)。
磁铁动作表针摆动方向磁铁动作表针摆动方向极插入线圈偏转S极插入线圈偏转N极停在线圈中不偏转S极停在线圈中不偏转N极从线圈中抽出偏转S极从线圈中抽出偏转实验表明产生感应电流的条件与磁场的变化有关。
2、闭合回路中的一部分导体在磁场中做切割磁感应线运动时,导体中就产生感应电流。
实验表明磁场的强弱没有变化,但是导体棒切割磁感的运动是闭合的回路EFAB包围的面积在发生变化。
这种情况下线圈中同样有感应电流。
3、磁通量定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)单位:韦伯(Wb)物理意义:表示穿过磁场中某个面的磁感线条数磁通量虽然是标量,但有正负之分。
三、楞次定律1、S极插入线圈和抽出线圈中会有感应电流,那么他的方向会如何呢。
条形磁铁运动的情况N 极向下插入线圈N 极向上拔出线圈S极向下拔出线圈S极向上插入线圈原磁场方向(向上或向下)?向下?向下?向上?向上穿过线圈的磁通量变化情况(增加或减少)?增加?减少?减少?增加感应电流的方向(流过灵敏电流计的方向)?向左?向右?向左?向右结论:楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化2、对楞次定律中阻碍二字的正确理解“阻碍”不是阻止,这里是阻而未止。
高中物理知识点总结电磁感应
电磁感应: 1. 感应电动势:当静止的磁通线沿着一个电流通道移动时,会产生一个电动势; 2. 电感:电感是指在一个电路中,磁场变化引起的电动势; 3. 电感耦合:当两个电路相连时,它们之间的磁感耦合,使得磁场可以在两者之间传播; 4. 交流电的感应电流:当一个静止的磁通线沿着一个有电流的线路移动时,会产生一个和该电流周期性变化的电流; 5. 磁通闭环:将电流回路的一端,用一个磁通线或线圈绕制成一个闭环,就形成了一个磁通闭环; 6. 晶体管的感应原理:晶体管是由磁感耦合原理来实现信号放大的; 7. 电磁共振:当一个电流通过一个磁感耦合的电路时,会出现电磁共振的现象,即磁场的能量在电路的两端交替传递。
高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。
(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。
二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。
产生电动势的那部分导体相当于电源。
2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。
3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。
产生感应电动势的那部分导体相当于电源。
【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。
2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。
②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
电磁感应学问点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流缘由:闭合回路磁感线通过面积发生改变不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生缘由闭合电路磁场B发生改变开关闭合、开关断开、开关闭合,快速滑动变阻器,只要线圈A中电流发生改变,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生改变2、产生感应电流的常见状况.(1)线圈在磁场中转动。
(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。
(3)磁场强度B改变或有效面积S改变。
(比如有电流产生的磁场,电流大小改变或者开关断开)3、对“磁通量改变”需留意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不肯定切割,切割不肯定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生改变。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的改变。
(2)“阻碍”的含义.从阻碍磁通量的改变理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(4)“阻碍”的形式.1.阻碍原磁通量的改变,即“增反减同”。
2.阻碍相对运动,即“来拒去留”。
3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。
物理电磁感应知识点
电磁感应是物理学中的一个重要概念,它描述了磁场与电流、电压之间的关系。
以下是关于电磁感应的主要知识点:
1. 法拉第电磁感应定律:当一个线圈中的磁通量发生变化时,在线圈中会产生感应电动势。
感应电动势的大小与磁通量变化率成正比,即E=-dΦ/dt,其中E是感应电动势,Φ是磁通量,t是时间。
2. 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
换句话说,感应电流的磁场总是试图阻止产生它的磁通量变化。
3. 右手定则:当导线在磁场中运动,并且导线中的电流方向已知时,可以用右手定则来判断导线受到的安培力方向。
具体来说,伸开右手,使拇指与其余四指垂直,并让磁感线穿过手心,拇指指向电流的方向,四指指向安培力的方向。
4. 交流电和电磁场:交流电会产生变化的磁场,这个变化的磁场又会产生感应电动势。
在电力系统中,变压器就是利用这个原理来升高或降低电压的。
5. 麦克斯韦方程组:麦克斯韦方程组是描述电场、磁场和电荷密度、电流密度之间关系的方程组。
它包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
以上是关于电磁感应的主要知识点,掌握这些知识点有助于理解电场和磁场之间的相互作用,以及它们在电力系统和电子设备中的应用。
电磁感应基础知识总结Hello,大家好,这里是法雕本周我们来说说电磁感应部分的基础知识!一样大家能将他们掌握好,为下面的四个专题:图像,电路,力学,能量问题打好基础。
(此篇文章不包括互感,自感,涡流等问题)该文章分为3部分:1.电磁感应现象与其产生条件2.楞次定律3.法拉第电磁感应定律———————————————————一.电磁感应现象与产生条件:首先,让我们应了解两位物理学家:奥斯特,法拉第。
物理学史:1.1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,这种现象被称为电流磁效应。
2.1831 年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
简单来说,电流的磁效应就是电磁;电磁感应是磁电,电磁感应中得到的电流叫感应电流,得到的电动势叫感应电动势。
我们可以类比电流和感应电动势的关系,得到感应电流和感应电动势的关系。
有了感应电流,接下来,就该研究感应电流的方向了。
现在我们介绍一下楞次定律!二.楞次定律物理学史:1834 年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律楞次定律告诉我们:感应电流的磁场总要阻碍引起感应电流磁通量的变化。
即:△Ψ是因,产生的感应电流是果。
这里面有一个重点也是它的核心:阻碍(用一张图来说明)在做题的过程中,有三个口诀(大家老师也说过吧,在以后的文章中会专门用3道题来探讨这3个口诀的作用)1.增反减同---磁通量变化2.来拒去留---导体相对运动3.增缩减扩---线圈补充:Ψ △Ψ △Ψ/△t(法感会用到)!:在求算这三个量时,它们均与线圈的匝数n无关。
就Ψ,如下图:均穿过一条,所以,当我们求磁通量时,不妨利用穿过平面的磁感线净条数来求这样会使问题简化。
还有一个问题:它们三者有关系吗?这里,我们不妨类比V △V a 高一我们知道a,△V与V无必然联系,一切皆有可能,那么Ψ,△Ψ,△Ψ/△t也是一样。
(在交流电一章我们会发现:对于交流电来说当Ψ最大即BS时,△Ψ/△t=0;当Ψ最小即0时,△Ψ/△t最大)我们继续回到楞次定律中干货:楞次定律使用步骤:1.原(原来的B方向)2.感(利用阻碍,判出感B的方向)3.电流(安培定则)在楞次定律的基础上,我们可以得到右手定则,右手定则需要掌握的就是右手的每个部位代表这什么:1.B穿掌心(不要怕,不痛的)2.拇指指运动3.四指即感应电流方向(内电路中,也就是电势高的方向)三.电磁感应定律:注意:1.在运用E=BLV时,L为导体棒的有效切割长度即导体棒在垂直于速度V方向上的投影长度。
电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
电磁感应一、磁通量 1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且S是跟磁场方向垂直的面积;若不垂直Φ=BS⊥=BSsinθ,θ是S与磁场方向的夹角.3.磁通量Φ是标量,但有正负. 4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.二、电磁感应现象.产生感应电动势的条件:穿过电路的磁通量发生变化.电磁感应现象的实质是产生感应电动势.如果回路闭合,则有感应电流;如果回路不闭合,则只有感应电动势而无感应电流说明:产生感应电动势的那部分导体相当于电源. 三、感应电流方向的判断 1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律内容:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量变化. 3.判断感应电流方向问题的思路运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”【例1】面积为S的矩形线框abcd,处在磁感应强度为B的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ= .拓展在水平面上有一不规则的多边形导线框,面积为S=20cm2,在竖直方向加以如图9-1-2所示的磁场,则下列说法中正确的是(方向以竖直向上为正)( )A.前2s内穿过线框的磁通的变化为ΔΦ=0B.前1s内穿过线框的磁通的变化为ΔΦ=-30WbC.第二个1s内穿过线框的磁通的变化为ΔΦ=-3x10-3WbD.第二个1s内穿过线框的磁通的变化为ΔΦ= -1x10-3Wb例2】某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( )A.a→○G→bB.先a→○G→b,后b→○G→aC.先b→○G→aD.先b→○G→a,后a→○G→b练习.如图9-1-16所示,水平放置的两条光滑轨道上,有可自由移动的金属棒PQ、MN,当PQ 在外力作用下运动时,MN在磁场力作用下向右运动,则PQ所做的运动可能是( )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动感应电动势 1.法拉第电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:nt∆ΦE=∆由tnE∆∆Φ=算出的是时间t∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值.2.导体切割磁感线产生的感应电动势(1)公式:E=BL v sinθ若θ=900,即B⊥v时,公式可简化为E=BL v,此时,感应电动势最大;若θ=00,即B∥V时,导体在磁场中运动不切割磁感线,E=0.若导体是曲折的,则L应是导体的有效切割长度,即是导体两端点在B、v所决定平面的垂线上的投影长度.公式E=BL v中,若v为一段时间内的平均速度,则E亦为这段时间内感应电动势的平均值;若v为瞬时速度,则E亦为该时刻感应电动势的瞬时值.3.直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v计算时,式中v 是导线上各点切割速度的平均值,20L v ω+= ,所以122L ωE =4.E=nBSωsinωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt【例2】如图9-2-2所示,导线全部为裸导线,半径为r 的圆环内有垂直于平面的匀强磁场,磁感应强度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上无摩擦地自左端匀速滑到右端.电路的固定电阻为R ,其余电阻不计.试求MN 从圆环的左端滑到右端的过程中,电阻R 上的电流的平均值及通过的电荷量.电磁感应中的图象问题 解决此类问题的一般步骤(1)明确图象的种类,即是B-t 图还是Ф-t 图,或者E-t 图、I-t 图等. (2)分析电磁感应的具体过程. (3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律写出函数方程. (4)根据函数方程,进行数学分析,例如分析斜率的变化、截距等. (5)画图象或判断图象.【例1】在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图9-4-1(甲)所示,当磁场的磁感应强度B 随时间t 按如图9-4-1(乙)变化时,下图中ABCD 能正确表示线圈中感应电动势ε变化的是 ( )● 拓展 一矩形线圈位于一随时间t 变化的磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图9-4-2(甲)所示,磁感应强度B 随时间t 的变化规律如图(乙)所示.以I 表示线圈中的感应电流,以图(甲)中线圈上箭头所示方向的电流为正,则以下的I-t 图中正确的是( )【例3】2007 全国·21 如图9-6-3所示,在PQ 、QR 区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面.一导线框abcdefa 位于纸面内,框的邻边都相互垂直,bc 边与磁场的边界P 重合.导线框与磁场区域的尺寸如图所示.从t=0时刻开始,线框匀速横穿两个磁场区域.以a →b →c →d →e →f 为线框中的电动势ε的正方向,以下四个ε→t 关系示意图中正确的是()【变式】一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图(甲)所示。
高中物理电磁感应总结
电磁感应是指导线或导体中有磁场变化时,产生感应电动势和感应电流的现象。
1.法拉第电磁感应定律:当导线中有磁通量的变化时,沿导线会产生感应电动势,其大小与磁通量的变化率成正比。
即E=-dΦ/dt,其中E为感应电动势,Φ为磁通量,t为时间。
2.楞次定律:感应电流的方向总是阻碍产生它的磁场的变化。
根据楞次定律,当磁场增大时,感应电流的方向与原磁场方向相反;当磁场减小时,感应电流的方向与原磁场方向相同。
3.自感与互感:当电流通过导线时,导线本身也会产生磁场,这就是自感。
而当通过一根线圈的电流发生变化时,会在另一根线圈中感应出电动势,这就是互感。
4.电磁感应的应用:电磁感应是许多电器设备运行的基础,例如发电机、变压器、电感、电动机等。
电磁感应也广泛应用于现代科技领域,如无线充电、电磁拖动、电磁制动等。
5.电磁感应与电磁波:电磁感应是电磁波的产生和接收机制之一。
当导体中有电磁波经过时,会产生感应电动势,从而实现电磁波的接收和转化。
而反过来,当导体中有感应电动势时,也可以产生电磁波的辐射。
电磁感应是一种重要的物理现象,它不仅具有理论意义,而且有着广泛的应用价值。
通过研究电磁感应,可以深入理解电磁现象的本质,并为科技创新和实际生活带来便利。
电磁感应专题一、考点清单1、电磁感应现象,磁通量.法拉第电磁感应定律.楞次定律2、导体切割磁感线时的感应电动势.右手定则3、自感现象4、电磁感应与能量二、典型例题例1. 如图所示,有两个同心导体圆环。
内环中通有顺时针方向的电流,外环中原来无电流。
当内环中电流逐渐增大时,外环中有无感应电流?方向如何? 例2. 如图所示,闭合导体环固定。
条形磁铁S 极向下以初速度v 0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?例3. 如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有垂直于纸面向外的匀强磁场。
以下哪些情况下abcd 中有感应电流产生?方向如何?A.将abcd 向纸外平移B.将abcd 向右平移C.将abcd 以ab 为轴转动60°D.将abcd 以cd 为轴转动60°例4. 如图所示装置中,cd 杆原来静止。
当ab 杆做如下那些运动时,cd 杆将向右移动?A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动 例5. 如图所示,当磁铁绕O 1O 2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?例6. 如图所示,水平面上有两根平行导轨,上面放两根金属棒a 、b 。
当条形磁铁如图向下移动时(不到达导轨平面),a 、b 将如何移动?例7. 如图所示,绝缘水平面上有两个离得很近的导体环a 、b。
将条形磁铁沿它们的正中向0 abd c下移动(不到达该平面),a 、b 将如何移动?例8. 如图所示,在条形磁铁从图示位置绕O 1O 2轴转动90°的过程中,放在导轨右端附近的金属棒ab 将如何移动?例9. 如图所示,a 、b 灯分别标有“36V 40W ”和“36V 25W ”,闭合电键,调节R ,使a 、b 都正常发光。
这时断开电键后重做实验:电键闭合后看到的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?例10. 如图所示,用丝线将一个闭合金属环悬于O 点,虚线左边有垂直于纸面向外的匀强磁场,而右边没有磁场。
电磁感应经典专题总结电磁感应专题1、关于电磁感应的几个基本问题(1)电磁感应现象利用磁场产生电流(或电动势)的现象,叫电磁感应现象。
所产生的电流叫感应电流,所产生的电动势叫感应电动势。
所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场;如周围空间中有导体存在,一般导体中将激起感应电动势;如导体构成闭合回路,则回路程还将产生感应电流。
(2)发生电磁感应现象,产生感应电流的条件发生电磁感应现象,产生感应电流的条件通常有如下两种表述。
①当穿过线圈的磁通量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。
如线圈闭合,则线圈子里就将产生感应电流。
②当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势,如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。
产生感应电动势的那部分导体相当于电源。
应指出的是闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。
所以上述两个条件从根本上还应归结磁通量的变化。
但如果矩形线圈abcd在匀强磁场B中以速度v平动时,尽管线圈的bc和ad边都在做切割磁感线运动,但由于穿过线圈的磁通量没有变,所以线圈回路中没有感应电流。
(3)发生电磁感应现象的两种基本方式及其理论解释①导体在磁场中做切割磁感线的相对运动而发生电磁感应现象当导体在磁场中做切割磁感线的相对运动时,就将在导体中激起感应电动势。
这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。
②磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。
这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。
(4)引起磁通量变化的常见情况(1)线圈在磁场中转动;(2)线圈在磁场中面积发生变化;(3)线圈中磁感应强度发生变化;(4)通电线圈中电流发生变化。