合工大快速原型课后复习题及解答
- 格式:docx
- 大小:354.17 KB
- 文档页数:13
八、刚体的平面运动8.1 如图所示,O 1A 的角速度为ω1,板ABC 和杆O 1A 铰接。
问图中O 1A 和AC 上各点的速度分布规律对不对?8.2如图所示,板车车轮半径为r ,以角速度ω 沿地面只滚动不滑动,另有半径同为r 的轮A 和B 在板车上只滚动不滑动,其转向如图,角速度的大小均为ω,试分别确定A 轮和B 轮的速度瞬心位置。
[解] 板车作平动,轮A 、B 与板车接触点 E 、F 的速度相同,且r v v v O F E ω=== 对A 轮由基点法求轮心A 的速度 A E AE =+v v v ,r v AE ω=∴ r v A ω2=,且A 轮的速度瞬心在E 点下方r 处。
同理可得B 轮的速度瞬心就在轮心B 处。
8.3直杆AB 的A 端以匀速度v 沿半径为R 的半圆弧轨道运动,而杆身保持与轨道右尖角接触。
问杆AB 作什么运动?你能用几种方法求出杆AB 的角速度?E FPOE v Av Fv Ov[解] AB 杆作平面运动。
(一) 瞬心法AB 杆作平面运动,速度瞬心为P 。
Rv AP v AAB2==ω (二)基点法D A DA =+v v v ,DA v v AB A DA ωθ==sin又 DA =2R cos(90o -θ)=2R sin θ ∴ Rv AB 2=ω(三)自然法: d d AB tϕω=,而R S ϕ2= ∴d d 2d d S R v t t ϕ==, d d 2vt R ϕ= ∴ Rv AB 2=ω 8.4如图所示四连杆机构OABO 1中,OA=O 1B=AB/2,曲柄OA 的角速度ω=3rad/s 。
当OA 转到与OO 1垂直时,O 1B 正好在OO 1的延长线上,求该瞬时AB 杆的角速度ωAB 和曲柄O 1B 的角速度ω1。
[解]取AB 为研究对象,AB 作平面运动。
以A 为基点,画B 点速度合成图 由B A BA =+v v v(rad/s)32230sin o==∴⋅=⋅==ωωωωAB OAAB OA v v AB AB ABABBBvvvDAv Dv Dv111cos3022(rad/s)B BAv v OA O Bωωω=︒=⋅=∴=8.5图示曲柄摇机构中,曲柄OA以角速度oω绕O轴转动,带动连杆AC在摇块B内滑动,摇块及与其固结的BD杆绕B铰转动,杆BD长l;求在图示位置时摇块的角速度及D点的速度。
1.快速成型工艺过程分为哪三个阶段(P28-P32)前处理:(1)CAD 三维造型(2)数据转换(3)确定摆放位置(4)施加支撑(5)切片分层;原型制作;后处理:主要包括原型的清理、去除支撑、后固化以及必要的打磨等工作。
2.叙述光固化快速成型的原理(P14-P15)光固化快速成型工艺的液槽中盛满液态光敏树脂,氦—镉激光器或氩离子激光器发出的紫外激光束,在控制系统的控制下按零件的各分层截面信息在光敏树脂表面进行逐点扫描,使被扫描区域的数值薄层产生光聚合反应而固化,形成零件的一个薄层。
一层固化完毕后,工作台下移一个层厚的距离,以使在原先固化好的树脂表面再覆上一层新的液态数值,刮板将粘度较大的树脂液面刮平,然后进行下一层的扫描加工,新固话的一层牢固地粘贴在前一层上,如此重复直至整个零件制造完毕,得到一个三维实体原型。
3.光固化快速成型的特点(P16)(1)光固化成型的优点1)成型过程自动化程度高。
2)尺寸精度高,可达到±0.1mm3)优良的表面质量4)可以制作结构十分复杂, 尺寸叫惊喜的模型5)可制作具有中空结构的消失型6)制作原型可在一定程度上替代塑料件(2)光固化成型的缺点1)制件较易弯曲2)性能尚不如常用的工业塑料,一般较脆,易断裂。
3)运转及维护费用高4)使用的材料种类较少5)液态树脂有一定的气味和毒性6)通常需要二次固化4.光固化成型有几种常见的固化方式(P47-P53)传统:光固化快速成型工艺,简称SLA微光固化快速成型制造技术,SL -μ基于单光子吸收效应的SL -μ技术&&基于双光子吸收效应的SL -μ技术5.光固化成型的后处理工艺过程(P32)光固化成型的后厨艺主要包括原型的清理、去除支撑、后固化以及必要的打磨等工作。
以某一SLA 原型为例给出其后处理过程1)原型叠层制作结束后,工作台升出液面,停留5~10min2)将原型和工作台网一起斜放晾干,并将其浸入清洗液中。
4 部份习题参考答案以下各数均为十进制数,请采纳8位二进制补码运算,并回答标志寄放器FLAGS中CF和OF的值,运算结果所代表的十进制数是多少?若是用16位二进制补码运算,其结果所代表的十进制数是多少?FLAGS中CF和OF的值呢?(1)85+69 (2)85+(-69) (3)85-(-69) (4)85-(69)85=55H,69=45H,-69=BBH,8位二进制补码运算:(1)85+69 =55H+45H=9AH, CF=0,OF=1(2)85+(-69)=55H+BBH=110H,CF=1,OF=0其余略实模式下,写出段地址和偏移地址为1234:200二、1430:004二、FF00:0FFF 的物理地址。
1234:2002=12340+2002=143421430:0042=14300+0042=14342FF00:0FFF=FF000+0FFF=FFFFF已知8086系统某存储单元物理地址为:52506H,你以为段基址的最大值、最小值别离是多少? 8086微机最多能够有多少个不同的段基址?52506=5250:0006, 段基址的最大值=525052506=4251:FFF6, 段基址的最小值=4251从物理地址为00100H开始到00103H单元中顺序寄存的数据为:12H,34H,56H,78H。
请画出数据寄存示用意,并回答以下问题:(1)写出00101H字节单元的内容(00101)= 34H(2)写出00102H字单元的内容(00102)= 7856H习题3别离说明8086处置器中各寄放器的名称和作用是什么?溢出标志OF与进位标志CF有何作用和区别?何为段地址?何为有效地址?何为物理地址?用指令举例说明。
带符号数比较大小,当AX < BX时程序转向标号L1,假设前导指令为CMP AX, BX后续指令应什么缘故?假设视为二个无符号数比较大小, 后续指令应什么缘故?带符号数:JL L1, 无符号数:JB L1ADD指令和ADC指令在什么情形下是一样的结果?CF=0说出CALL指令和INT 21H指令的操作,有何异同?CALL把断点压入堆栈,不必然是远调,INT 21H还要把FLAGS压入堆栈,且是远调,总入口地址为84H内存中的两个字。
习题8-11.自点(),,P a b c 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解在,,xoy yoz zox 坐标面上的垂足坐标分别为(),,0a b 、()0,,b c 、(),0,a c ,在x 轴、y 轴、z 轴上垂足的坐标分别为(),0,0a 、()0,,0b 、()0,0,c .2.已知三角形个的三个顶点的坐标分别为()4,1,9A 、()10,1,6B -、()2,4,3C ,求该三角形的三边长度,此三角形由何特点?解7AB ==,7AC ==,BC =由于AB AC =,且222AB ACBC +=,故此三角形为等腰直角三角形.3.在z 轴上求与点()4,1,7P -和点()3,5,2Q -等距离的点的坐标.解设z 轴上的点为()0,0,M z,则MP MQ=即=,解得149z =,故点为140,0,9M ⎛⎫ ⎪⎝⎭.4.求到两定点()1,2,1A -和()2,1,2B -等距离的点(),,M x y z 的轨迹.解由于MA MB =,从而有=解得26630x y z +--=.5.设平行四边形的两条对角线向量为a 和b,求其四条边向量.解如意8-1所示,由向量加减法的平行四边形法则有,,c d a c d b ⎧+=⎪⎨-=⎪⎩ 故2a b c += ,2a b d -=,即平行四边形的四条边向量为2a b + 、2a b + 、2a b - 、2a b- .(图8-1)(图8-2)6.设A 、B 、C 、D 是一个四面体的顶点,M 、N 分别是边AB 、CD 的中点,证明:()12MN AD BC =+.证如图8-2所示,AD DN AN +=,BC CN BN += ,AN AM MN -= ,BN BM MN -= ,又DN CN =- ,AM BM =- ,于是22AN BN AD BC MN ++==.7.已知两点()A 和()3,0,2B ,计算向量AB 的模、方向余弦、方向角及与AB平行的单位向量.解由于{}1,AB =-,则有2AB = ,1cos 2α=-,cos 2β-,1cos 2γ=-,方向角为23πα=,34πβ=,3πγ=,与AB 平行的单位向量为121,,222⎧⎫⎪⎪±--⎨⎬⎪⎪⎩⎭.8.设358a i j k =++,27b i j k =--,求向量23c a b =+在x 轴上的投影及在z 轴上的分向量.解23945c a b i j k =+=+-,故c 在x 轴上的投影为9,在z 轴上的分向量为5k - .9.一向量的终点在点()2,1,7B -,它在x 轴、y 轴及z 轴上的投影依次为4,4-和7,求这向量的起点A 的坐标.解设起点(),,A x y z ,由{}{}2,1,74,4,7AB x y z =----=-解得()2,3,0A -.10.设{}3,5,1a =- ,{}2,2,3b = ,{}4,1,3c =-- ,求与a b c +-平行的单位向量.解{}1,8,5a b c +-=,故与a b c +-平行的单位向量为±.11.设5AB a b =+ ,618BC a b =-+ ,()8CD a b =-,试证A 、B 、D 三点共线.证因为()()6188210BD BC CD a b a b a b=+=-++-=+()252a b AB=+=所以AB平行BD ,即A 、B 、D 三点共线.12.已知向量AB 的模为10,与x 轴正向夹角为4π,与y 轴正向夹角为3π,求向量AB .解设向量AB的方向余弦为cos α、cos β、cos γ,由于4πα=,3πβ=,222cos cos cos 1αβγ++=,得1cos 2γ=±于是向量{}211cos ,cos ,cos 10,,222AB AB αβγ⎫⎪==±⎨⎬⎪⎪⎩⎭.习题8-21.设4a i j k =+-,22b i j k =-+ ,求(1)()()22a b a b +⋅-;(2)()()22a b a b +⨯- ;(3)a 与b 夹角.解(1)a =,3b =,4a b ⋅=-()()222223230a b a b a a b b +⋅-=-⋅-=;(2)114794221i j k a b i j k⨯=-=----()()225354520a b a b a b i j k +⨯-=-⨯=++;(3)设a 与b夹角为θ,则cos9a ba bθ⋅===-arccos9θ⎛⎫=-⎪⎪⎝⎭.2.已知向量a 和b相互垂直,且1a=,b=,求(1)()()a b a b+⋅-;(2)()()a b a b+⨯-;(3)()a b+与()a b-夹角.解(1)()()22222a b a b a b a a b b a b+⋅-=+⋅-⋅-=-=-;(2)()()2a b a b a a b a a b b b a b+⨯-=⨯+⨯-⨯+⨯=-⨯=(3)()a b+与()a b-夹角为θ,则()()()()21cos42a b a ba b a bθ+⋅--===-+-,故23πθ=.3.已知13a=,19b=,24a b+=,求a b-.解()()2222a b a b a b a a b b+=+⋅+=+⋅+()()2222a b a b a b a a b b-=-⋅-=-⋅+两式相加,得()22222a b a b a b-=+-+()2222131924484=+-=,22a b-=.4.已知()1,1,2A-、()5,6,2B-、()1,3,1C-,求:(1)同时与AB及AC垂直的单位向量;(2)三角形ABC的面积ABCS∆;(3)B点到边AC的距离d.解(1){}4,5,0AB=-,{}0,4,3AC=-,450151216043i j kAB AC i j k⨯=-=++-故同时与AB 及AC 垂直的单位向量为{}115,12,1625AB AC AB AC⨯±=±⨯;(2)12522ABC S AB AC ∆=⨯=;(3)由于1122ABC S AB AC AC d ∆=⨯=⋅,且5AC = ,则5d =.5.设平行四边形的对角线2c a b =+ ,34d a b =- ,其中1a =,2b = ,且a b ⊥ ,求平行四边形的面积.解设平行四边形的两邻边分别为m 、n,则c m n =+ ,d m n =-,从而()()1142222m c d a b a b =+=-=-,()()1126322n c d a b a b =-=-+=-+ ,55sin 102S m n a b a b π=⨯=⨯== .6.已知向量a 、b 、c两两垂直,且1a = ,2b = ,3c = ,求向量s a b c =++ 的长度,以及s 分别与a 、b 、c的夹角.解()()222214s a b c a b c a b c =++⋅++=++=,于是s =cos ,s a s a s a⎛⎫⋅===⎪⎝⎭cos ,s b s b s b ⎛⎫⋅== ⎪ ⎪⎝⎭cos ,s c s c s c ⎛⎫⋅== ⎪⎝⎭所以,s a arc ⎛⎫= ⎪⎝⎭,s b arc ⎛⎫= ⎪ ⎪⎝⎭,,s c arc ⎛⎫= ⎪⎝⎭7.试用向量证明直径上的圆周角是直角.证取圆心为原点建立坐标系如图8-3所示,则圆周方程为222x y R +=,在圆周上任取一点(),A x y ,直径BC ,(),0B R -,(),0C R ,().AB R x y =--- ,().AC R x y =--则()()22220AB AC R x R x y R x y ⋅=---+=-++=故AB AC ⊥,即直径BC 所对应的圆周角为直角,由圆周关于任意一条直径都对称的性质知,直径所对应的圆周角是直角.(图8-3)8.判断下列两组向量a 、b 、c是否共面:(1){}2,1,3a =- ,{}1,0,5b =- ,{}1,1,4c =-;(2){}4,2,1a =- ,{}2,6,3b =- ,{}1,4,1c =-.解(1)21310540114abc -⎡⎤=-=≠⎣⎦- ,故a 、b 、c 不共面;(2)4212630141abc -⎡⎤=-=⎣⎦-,故a 、b 、c共面.9.计算顶点()2,1,1A -、()5,5,4B 、()3,2,1C -、()4,1,3D 的四面体的体积.解{}3,6,3AB = ,{}1,3,1AC =- ,{}2,2,2AD =,则四面体的体积为36311132366222V ABAC AD ⎡⎤==-=⎣⎦ .10.如果存在向量c同时满足11a c b ⨯= ,22a c b ⨯= ,证明:12210a b a b ⋅+⋅= .证由于()()12211221a b a b a a c a a c ⋅+⋅=⋅⨯+⋅⨯ ()()2112a c a a c a =⨯⋅+⨯⋅ [][]2112a ca a ca =+ [][]21210a ca a ca =-=习题8-3.1.求出满足下列条件的各平面方程:(1)过点()2,1,1-且与平面32120x y z -+-=平行;(2)过三点()1,1,1-、()2,2,2--、()1,1,2-;(3)过点()2,1,2,且分别垂直于平面32x y z ++=和平面3241x y z +-=;(4)平行x 轴且过两点()1,0,1和()1,1,0;(5)通过z 轴和点()3,1,2-.解(1)设所求平面的法向量n ,可取平面的法向量为{}3,2,1n =-故过点()2,1,1-平面方程为()()()322110x y z ---++=,即3230x y z -+-=;(2)由三点式平面方程知,所求平面方程为1113330023x y z --+--=-即320x y z --=;(3)设所求平面的法向量n ,{}11,3,1n = ,{}23,2,4n =-{}1213114,7,7324i j kn n n =⨯==---,则所求平面方程为()()()14271720x y z --+---=,即250x y z -+-=;(4)设平面的一般式方程为0Ax By Cz D +++=,由于平面平行x 轴,且点()1,0,1、()1,1,0在平面上,从而有000A A C D A B D =⎧⎪++=⎨⎪++=⎩解得0A =,B D =-,C D =-,且0D ≠,故平面方程为10y z +-=;(5)设过z 轴的平面为0Ax By +=,且点()3,1,2-在平面上,则由30A B -=,得3B A =,且0A ≠所以平面方程为30x y +=.2.求平面2260x y z -++=与各坐标面的夹角的余弦.解平面的法向量{}2,2,1n =- ,取xoy 坐标面的法向量{}10,0,1n =,yoz 坐标面的法向量{}21,0,0n = ,zox 坐标面的法向量{}30,1,0n =,则平面与xoy 、yoz 、zox 各坐标面的夹角余弦分别为1cos 3α=,2cos 3β=,22cos 33γ-==.3.求过点()0,1,0-和()0,0,1,且与xoy 坐标面成3π角的平面.解设平面的一般式方程为0Ax By Cz D +++=,从而有0,0,cos ,3B D C D π⎧⎪-+=⎪⎪+=⎨⎪⎪=⎪⎩得,A B D C D ⎧=⎪=⎨⎪=-⎩于是,所求平面方程为10y z +-+=.4.在z 轴上求一点P ,使它到点()1,2,0M -与到平面:32690x y z π-+-=有相等的距离.解设z 轴上点()0,0,P z,则PM =又()1,2,0M -到:3269x y z π-+-=的距离为697z d -=则有697z -=,即2131081640z z ++=,解得2z =-或8213z =-,故所求点为()0,0,2-或820,0,13⎛⎫-⎪⎝⎭.5.试求平面270x y z -+-=与平面2110x y z ++-=的夹角平分面的方程.解设(),,M x y z 为该平面上任取的一点,那么M到两平面的距离相等,即有于是有()27211x y z x y z -+-=±++-故所求平面方程为240x y z --+=或60x z +-=.6.设从原点到平面1x y za b c++=的距离为ρ,试证明:22221111a b c ρ++=,并由此求点(),,a b c 到该平面的距离.证由点到平面的距离公式知ρ=1ρ=,即22221111a b c ρ++=.点(),,a b c到平面的距离2d ρ=.7.判别平面:3210x y z π+-+=与下列各平面之间的位置关系:(1)1:3210x y z π+--=;(2)2:520x y z π-++=;(3)3:2310x y z π-+-=.解(1)取平面π法向量{}1,3,2n =- ,1π法向量{}11,3,2n =-,由于n与1n 的坐标成比例,故n 与1n平行,且d ==;(2)取平面2π法向量{}25,1,1n =-,由于20n n ⋅= ,故2n n ⊥,即两平面相互垂直;(3)取平面3π法向量{}32,3,1n =-,两平面夹角余弦339cos 14n n n n θ⋅==所以两平面斜交,夹角9arccos14θ=.习题8-4.1.求满足下列条件的各直线方程:(1)过两点()13,2,1M -和()21,0,2M -;(2)过点()4,2,1-且平行于直线230,510,x y y z --=⎧⎨--=⎩平行;(3)过点()1,2,2-且垂直于平面3210x y z +-+=.解(1)直线的方向向量可取{}124,2,1s M M ==-于是直线方程为321421x y z -+-==-,(2)直线的方向向量可取{}1202,1,5051i j k s =-=-则直线方程为421215x y z -+-==;(3)平面法向量{}3,2,1n =- ,直线的方向向量可取{}3,2,1sn ==-于是直线方程为122321x y z -+-==-.2.用对称式方程和参数方程表示下列直线10,2340.x y z x y z +++=⎧⎨-++=⎩解直线的方向向量{}1114,1,3213ij k s ==---,可在直线上取一点()1,0,2A -,则直线的对称式方程和参数方程分别为12413x y z -+==--,14,4,2 3.x t y z t =+⎧⎪=-⎨⎪=--⎩3.求过点()0,1,2M 且与直线11112x y z --==-垂直相交的直线方程.解过点()0,1,2M 且垂直直线L 的平面方程为()()()01220x y z ---+-=即230x y z -+-=解方程组230,11,112x y z x y z -+-=⎧⎪⎨--==⎪⎩-,得直线与平面的交点为131,,122M ⎛⎫⎪⎝⎭由此可得121,,122s MM ⎧⎫==--⎨⎬⎩⎭,故所求直线方程为12312x y z --==--.4.求直线240,3290.x y z x y z -+=⎧⎨---=⎩在平面41x y z -+=上的投影直线的方程.解设过直线240,3290.x y z x y z -+=⎧⎨---=⎩的平面束方程为()()243290x y z x y z λ-++---=,(λ为非零常数)即()()()2341290x y z λλλλ+-++--=,上述平面法向量为{}23,4,12n λλλ=+--- ,已知平面法向量为{}14,1,1n =-选择λ使1n n ⊥,即()()()()234411210λλλ+⋅-+⋅-+-⋅=,解得1311λ=-故得与已知平面垂直的平面为1731371170x y z +--=则所求投影直线为1731371170,4 1.x y z x y z +--=⎧⎨-+=⎩5.求过点()3,1,2M -且通过直线43521x y z-+==的平面方程.解()4,3,0P -为直线上的一点,直线的方向向量为{}5,2,1s =,则平面的法向量{}1428,9,22521i j kn MP s =⨯=-=- 故所求平面方程为()()()83912220x y z --+-++=即8922590x y z ---=.6.已知平面220x y z +--=及平面外一点()2,1,4M -,求点M 关于已知平面的对称点N .解过点()2,1,4M -且垂直于平面220x y z +--=的直线方程为214121x y z +--==-设M 关于已知平面的对称点(),,N x y z ,则有214,121x y z +--⎧==⎪-⎪=解得0,5,2,x y z =⎧⎪=⎨⎪=⎩即对称点()0,5,2N .7.设0M 是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为0d ⨯=MM s s.证设向量0MM 与直线L 的方向向量s 的夹角为θ,则00000sin MM s MM s MM MM MM ssd θ⨯⨯==⋅=.8.求点()03,1,2M -到直线10,240,x y z x y z +-+=⎧⎨-+-=⎩的距离.解直线的方向向量{}1110,3,3211=-=---ij ks ,在直线上取一点()1,2,0M -,则{}02,1,2=---MM ,{}02123,6,6033⨯=---=----i j kMM s 所以0322d ⨯===MM s s.习题8-51.指出下列方程在平面解析几何中和空间解析几何中分别表示什么图形:(1)1x y +=;(2)22y x =;(3)222x y R +=;(4)22149x y -=.解(1)在平面解析几何表示直线,空间解析几何中表示平面;(2)在平面解析几何表示抛物线,空间解析几何中表示抛物柱面;(3)在平面解析几何表示圆,空间解析几何中表示圆柱面;(4)在平面解析几何表示双曲线,空间解析几何中表示双曲柱面.2.说明下列旋转曲面是怎样形成的:(1)2221x y z --=;(2)()222z a x y -=+.解(1)将xoy 平面上双曲线221x y -=绕x 轴旋转一周;(2)将yoz 平面上直线z y a =+绕z 轴旋转一周.3.根据常数k 的不同取值,分别讨论下列方程所表示的曲面是什么曲面.(1)22x ky z +=;(2)222x y z k +-=.解(1)当0k >时,为椭圆抛物面,特别地当1k =时为旋转抛物面,当0k =时,为抛物柱面,当0k <时,为双曲面;(2)当0k >时,为旋转单叶双曲面,当0k =时,为圆锥面,当0k <时,为旋转双叶双曲面.4.作出下列曲面所围成的图形:(1)22,1z x y z =+=;(2)z =,z ;(3)0x =,0y =,0z =,1x y +=,226x y z +=-;(4)2y x =,1x y z ++=,0z =.解(1)见图8-4;(2)见图8-5(图8-4)(图8-5)(3)见图8-6;(4)见图8-7(图8-6)(图8-7)习题8-61.将空间曲线222,:1,z x y x z ⎧=+Γ⎨+=⎩转换成母线平行于坐标轴的柱面的交线方程.解曲线Γ等价于212,1,y x x z ⎧=-⎨+=⎩,表示母线平行于z 轴的柱面212y x =-与母线平行于y 轴的柱面1x z +=的交线,或等价于221,1,y z x z ⎧=-⎨+=⎩,表示母线平行于x 轴的柱面221y z =-与母线平行于y 轴的柱面1x z +=的交线.2.将下列曲线的一般方程转化为参数式方程:(1)()22221,11,z x y x y ⎧=--⎪⎨-+=⎪⎩(2)2229,,x y z y x ⎧++=⎨=⎩.解(1)曲线的参数方程为1cos ,sin ,2sin ,2x t y t t z ⎧⎪=+⎪=⎨⎪⎪=⎩(02t π≤≤);(2)曲线的参数方程为,,3sin ,2x t y t t z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(02t π≤≤).3.试分别确定常数,,B C D 的各组值,使得平面0By Cz D ++=与圆锥面222z x y =+的截痕为:(1)一点;(2)一条直线;(3)两条相交直线(4)圆;(5)双曲线.解(1)取0B D ==,1C =,则平面0z =与圆锥面的截痕为一点()0,0,0;(2)取1B C ==,0D =,则平面0y z +=与圆锥面的截痕为一条直线0,0;y z x +=⎧⎨=⎩(3)取1B =,0C D ==,则平面0y =与圆锥面的截痕为为两条直线0,,y z x =⎧⎨=⎩和0,;y z x =⎧⎨=-⎩(4)取0B =,1C =,1D =-,则平面1z =与圆锥面的截痕为圆221,1;x y z ⎧+=⎨=⎩(5)取1B =,0C =,1D =-,则平面1y =与圆锥面的截痕为为双曲线221,1;z x y ⎧-=⎨=⎩4.求下列曲线在三个坐标面上的投影曲线方程:(1)22,1;z x y z x ⎧=+⎨=+⎩(2)cos ,sin ,2.x y z θθθ=⎧⎪=⎨⎪=⎩解(1)消去z 得曲线在xoy 面投影曲线方程:2210,0;y y x z ⎧+--=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:22310,0;y z z x ⎧+-+=⎨=⎩消去y 得曲线在zox 面投影曲线方程:1,0;x z y +=⎧⎨=⎩(2)消去z 得曲线在xoy 面投影曲线方程:221,0;x y z ⎧+=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:sin20;z y x ⎧=⎪⎨⎪=⎩消去y 得曲线在zox 面投影曲线方程:cos ,20.z x y ⎧=⎪⎨⎪=⎩5.求由旋转抛物面22z x y =+与222z x y =--围成的立体在三个坐标面上的投影区域.解立体在xoy 面投影区域(){}22,1xy D x y xy =+≤,立体在yoz 面投影区域(){}22,2,11yz D y z yz y y =≤≤--≤≤,立体在zox 面投影区域(){}22,2,11zx D x z xz x x =≤≤--≤≤总复习题八1.填空题(1)设()2a b c ⨯⋅= ,则()()()a b b c c a ⎡⎤+⨯+⋅+=⎣⎦;(2)设{}2,1,2a = ,{}4,1,10b =- ,c b a λ=- ,且a c ⊥,则λ=;(3)yoz 平面的圆()222,0,y b z a x ⎧-+=⎪⎨=⎪⎩(0b a >>)绕z 轴旋转一周所得环面的方程为;(4)点()2,1,0M 到平面3450x y z ++=的距离d=;(5)设有直线1158:121x y z L --+==-与26,:23,x y L y z -=⎧⎨+=⎩则1L 与2L 的夹角为.(1)答案“4”.解()()()()24a b b c c a a b c ⎡⎤+⨯+⋅+=⨯⋅=⎣⎦;(2)答案“3”.解{}42,1,102c b a λλλλ=-=---- ,由a c ⊥ ,()()()2421121020λλλ⋅-+⋅--+⋅-=,解得3λ=;(3)答案“()()2222222224x y z b a b x y +++-=+”.解绕z轴旋转环面的方程为()222b z a -+=,即222222x y b z a +±++=所以()()2222222224x y z b a b x y +++-=+(4)答案解d ;(5)答案“3π”.解1L 和2L 的方向向量分别为{}11,2,1s =-和{}21,1,2s =-- 则12121cos 2s s s s θ⋅== ,3πθ=.2.选择题(1)直线11:213x y z L +-==-与平面:1x y z π--=的关系为();(A )L 在π上(B )L 平行π但L 不在π上(C )L π⊥(D )一般斜交(2)两条直线111:201x y z L --==-与22:112x y z L +==的关系为();(A )平行(B )相交但不垂直(C )垂直相交(D )异面直线(3)直线方程23,1,x y z x y z --=⎧⎨+-=⎩可化为();(A )21213x y z -+==-(B )114213x y z +++==-(C )12213x y z ++==(D )122213x y z -+-==-(4)旋转曲面22z x y =+不是由平面曲线()旋转而成的.(A )2,0,z y x ⎧=⎨=⎩绕z 轴(B )2,0,z x y ⎧=⎨=⎩绕z 轴(C )2,,z xy x y =⎧⎨=⎩绕z 轴(D ),,z xy x y =⎧⎨=⎩绕z 轴.(1)答案选(B ).解直线L 的方向向量{}2,1,3s =-,()1,0,1M -为直线L 上一点,平面π的法向量为{}1,1,1n =--,显然0s n ⋅=,且点()1,0,1M -不在平面π上,故L 平行π但L 不在π上;(2)答案“C ”.解1L 、2L 的方向向量分别为{}12,0,1s =- 、{}21,1,2s = ,则120s s ⋅=,直线1L 与2L 垂直,又()11,1,0M 、()20,0,2M -分别为1L 、2L 上的点,且12122011120112s s M M -⎡⎤==⎣⎦---,即1L 、2L 在同一平面上;(3)答案选(C ).解直线的方向向量{}2112,1,3111i j k s =--=-,()0,1,2--为直线上一点,故选(C );(4)答案选(D ).解在曲线,:,z xy L x y =⎧⎨=⎩上任取一点()0000,,M x y z ,设(),,M x y z 是0M 绕z 轴旋转轨迹上任一点,则有20000,z z x y x ⎧===⎪==故得旋转曲面方程为()2212z x y =+.3.已知2c a b =+ ,d a b λ=+ ,2a = ,1b = ,且a b ⊥,求:(1)λ为何值时,c d ⊥;(2)λ为何值时,以,c d为邻边所围成的平行四边形的面积为6.解(1)由于c d ⊥ ,则0c d ⋅=,即()()22220a b a b a b λλ+⋅+=+= 解得2λ=-;(2)由题设条件知6c d ⨯=而()()()22c d a b a b a bλλ⨯=+⨯+=-⨯则有()22sin 222c d a b a b πλλλ⨯=-⨯=-=- 所以226λ-=,5λ=或1λ=-.4.设一平面通过从点()1,1,1-到直线10,0,y z x -+=⎧⎨=⎩的垂线,且与平面0z =垂直,求此平面方程.解过点()1,1,1M -且与直线10,:0,y z L x -+=⎧⎨=⎩垂直的平面1π的方程为()()()0111110x y z ⋅-+⋅++⋅-=,即y z +=解方程组10,0,0,y z x y z -+=⎧⎪=⎨⎪+=⎩得直线L 与平面1π的交点1110,,22M ⎛⎫ ⎪⎝⎭,平面0z =的法向量{}10,0,1n = ,则所求平面的法向量可取为111001,1,0211122ij kn n M M ⎧⎫=⨯==⎨⎬⎩⎭-所以所求平面方程为()()11102x y -++=,即210x y ++=.5.求通过直线3220,260,x y x y z -+=⎧⎨--+=⎩且与点()1,2,1的距离为1的平面方程.解设过直线3220,260,x y x y z -+=⎧⎨--+=⎩的平面束方程为()()322260x y x y z λ-++--+=(λ为非零常数)即()()321260x y z λλλλ+-+-++=,由点()1,2,1到平面的距离为1,即1d =解得2λ=-或3λ=-,所以所求平面方程为22100x y z ++-=或43160y z +-=.6.在xoy 面上求过原点,且与直线x y z ==的夹角为3π的直线方程.解设所求直线L 方程为,0,y Ax z =⎧⎨=⎩即10x y zA ==,直线L 的方向向量{}1,,0s A= 由题意知1cos32π==,得4A =-于是,所求直线方程为(40,0,xy z ⎧+=⎪⎨=⎪⎩或(40,0.x y z ⎧+=⎪⎨=⎪⎩7.求通过点()1,2,3--,平行于平面62350x y z --+=,且又与直线13x -=1325y z +-=-相交的直线方程.解过点()1,2,3M--作已知平面的平行平面,此平面方程为()()()6122330x y z +---+=即62310x y z --+=求此平面与已知直线的交点,由62310,113,325x y z x y z t --+=⎧⎪-+-⎨===⎪-⎩解得0t =,交点为()01,1,3M -,故所求直线的法向量为{}02,3,6s MM ==-所求直线方程为123236x y z +-+==-.8.确定常数k 的值,使得平面y kz =与椭球面222241xy z ++=的交线为圆.解平面与椭球面的交线222241,:,x y z y kz ⎧++=Γ⎨=⎩等价于方程组()22222241,:,x y k z y kz ⎧++-=⎪Γ⎨=⎪⎩要使交线为圆,只须242k-=,即k =,交线为2221,2.x y z y ⎧++=⎪⎨⎪=⎩9.求曲面2221x y z ++=和()()222111x y z -+-+=的交线在yoz 平面上的投影曲线方程.解由题设两曲面的方程消去x ,得交线在yoz 平面上的投影柱面方程22220y y z -+=所求投影曲线方程为22220,0.y y z x ⎧-+=⎨=⎩10.求两曲面22z x =与z =所围立体在三个坐标面上的投影区域.解两曲面的交线在xoy 面上的投影柱面为()2211x y -+=,则投影区域为()(){}22,11xy D x y x y =-+≤,两曲面的交线在yoz 面上的投影柱面为222112z y ⎛⎫-+=⎪⎝⎭,则投影区域为()222,112yz z D y z y ⎧⎫⎛⎫⎪⎪=-+≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,两曲面的交线在zox 面上的投影柱面为z 和z x =,则投影区域为(){,zx D x z x z =≤≤.11.画出下列曲面所围立体的图形:(1)22z xy =+,1x =,1y =,0z =;(2)z xy =,0z =,1x y +=;(3)22z xy =+,2y x =,1y =,0z =;(4)2y x =,212y x =,1x z +=,0z =.解(1)见图8-8;(2)见图8-9;(图8-8)(图8-9)(3)见图8-10;(4)见图8-11.(图8-10)(图8-11)习题9-11指出下列平面点集中,那些是开集、闭集、有界集、连通集、开区域以及闭区域?并分别求其聚点和边界点:(1)22{(,)|0<1}x y x +y <;(2){(,)|}x y y x >;(3){(,)|2,2,2}x y x y x y ≤≤+≥;(4)2222{(,)|1}{(,)|(1)1}x y x y x y x y +>⋂+-≤.解(1)为有界开区域;聚点为集合22{(,)|1}x y x +y ≤,边界点为集合22{(,)|=1}{(0,0)}x y x +y ⋃;(2)为无界的开区域;聚点为集合{(,)|}x y y x ≥,边界点为集合{(,)|,}x y y x x =-∞<<+∞;(3)为有界闭区域;聚点集合为该区域上所有点,边界点集合为三个直线段{(,)|2,02}x y x y =≤≤与{(,)|2,02}x y y x =≤≤及{(,)|2,02}x y x y x +=≤≤的并集;(4)为有界连通集合;聚点为2222{(,)|1}{(,)|(1)1}x y x y x y x y +≥⋂+-≤,边界点为圆弧221{(,)|1,2x y x y y +=≥及圆弧221{(,)|(1)1,}2x y x y y +-=≥的并集.2.证明:点0P 为点集E 的聚点的充分必要条件是点0P 的任意邻域内都至少含有一个点集E 中异于0P 的点.证明:“⇒”由聚点的定义即可得;“⇐”取101(,){|01}U P P P P δδ=<<=(其中0P P 表示点0P 与点P 的距离),则111(,)P U P E δ∃∈⋂,记20112P P δ=,则202(,)P U P E δ∃∈⋂ ,依此类推,由数学归纳法可知对于每个正整数n ,均可取到点01101111(,),22n n n n n P U P E P P δδ----∈⋂=≤ ,由此可得一个两两均不相同的点列{}n P ,若0δ>,因lim 0n n δ→∞=,则k δ∃使得k δδ<,那么当n k ≥时必有0(,)n P U P δ∈,即在0(,)U P δ中比含有集合E 的无穷多个点,因此点0P 为点集E 的聚点.3.求下列各函数值:(1)设22(,)2x y f x y xy-=,求(,1)x f y ;(2)设22(,)y xf x y x y xye =+-,求(,)f tx ty ;(3)设(,)3f x y x y =+,求(,(,))f x f x y ;(4)设(,,)v u v f u v w u w +=+,求(,,)f x y x y xy +-;(5)设22(,)y f x y x y x+=-,求(,)f x y .解(1)2221(,1)(,)22x y x x y f f x y x y xy y⎛⎫- ⎪-⎝⎭===;(2)222222(,)(,)yxf tx ty t x t y t xye t f x y =+-=;(3)(,(,))3(3)49f x f x y x x y x y =++=+;(4)2(,,)()()x y x f x y x y xy x y xy -+-=++;(5)设,,,11y u uv u x y v x y x v v =+===++,222(1)(,)111u uv u v f u v v v v -⎛⎫⎛⎫=-=⎪ ⎪+++⎝⎭⎝⎭,2(1)(,)1x y f x y y-=+.4.设1)z f =+-,若当1y =时,z x =,求函数()f u 及(,)z z x y =的表达式.解由题设有11),1)1x f f x =+=-,令1u =,则2(1)x u =+,所以有2()2f u u u =+,相应的有(,)1z z x y x ==-.5.求下列函数的定义域:(1)(,)f x y =;(2)(,)ln()f x y y x =-+;(3)22221(,)arcsin 4x y f x y x y+=+-;(4)(,,)f x y z =解(1){(,)|}D x y y x y =-<<;(2)22{(,)|0,,1}D x y x y x x y =≥>+<;(3)22{(,)|4,}D x y x y y x =+≤≠;(4)222{(,,)|1,D x y z x y z z =++<>.习题9-21.证明:2222001lim()sin0x y x y x y →→+=+.证明0ε∀>,因为2222221()sinx y x y x y+≤++,取δ=当0δ<<时,则有2222221()sin 0x y x y x y ε+-≤+<+,因此有2222001lim()sin 0x y x y x y →→+=+.2.求下列极限:(1)201ln()lim 2x x y e y x y →→++;(2)220x y →→(3)100lim(1sin )xyx y xy →→-;(4)22()lim ()x y x y x y e-+→+∞→+∞+解(1)原式0ln(1)ln 21e +==;(2)原式220220lim 21()2x y x y x y →→+==--+;(3)原式sin 11sin 00lim (1sin )xyxyxyx y xy e ---→→⎡⎤=-=⎢⎥⎢⎥⎣⎦;(4)原式222()()lim (2),lim lim 0,lim lim 0u x y x y x y x y u x y x x x x y y y x y x y x y u x ye e e e e e e =+++→+∞→+∞→+∞→+∞→+∞→+∞→+∞++=-⋅======,原式0=.3.证明下列极限不存在:(1)22400lim x y xy x y →→+;(2)2222200lim ()x y x y x y x y →→+-.解(1)当取点(,)P x y 沿曲线2:C y kx =趋于点(0,0)O 时则有222422000lim lim 1x x y xy kx k x y x kx k →→→==+++,k 取值不同,则该极限值不同,因此该极限不存在;(2)当取点(,)P x y 沿直线y x =趋于点(0,0)O 时则有2222200lim 1()x y x y x y x y →→=+-,而当取点(,)P x y 沿直线0y =趋于点(0,0)O 时则有2222200lim 0()x y x y x y x y →→=+-,因沿不同方向取极限,则该极限值不同,故该极限不存在.4.讨论下列函数的连续性:(1)22(,)y xf x y y x+=-;(2)22,(,)(0,0),(,)0,(,)(0,0);xyx y x yf x y x y ⎧≠⎪+=⎨⎪≠⎩(3),)(0,0),(,)0,(,)(0,0);x y f x y x y ≠=≠⎩(4)(,,)f x y z =.解(1)函数的定义域为2{(,)|}D x y y x =≠,它在D 内处处连续,抛物线2:C y x =上的点均为它的间断点;(2)函数在全平面内处处有定义,它在区域{(,)|(,)(0,0)}D x y x y =≠内处处连续,由于00lim (,)x y f x y →→不存在,故(0,0)O 是它的间断点;(3)当(,)(0,0)x y ≠时,函数显然是连续的,又00lim0(0,0)x y f →→==,所以它在(0,0)O 处也连续,因此该函数在全平面内处处连续;(4)函数(,,)f x y z 的定义域为222{(,,)|14}x y z x y z Ω=<++<,在定义域内(,,)f x y z处处连续,在球面2221x y z ++=及2224x y z ++=上函数间断.5.设二元函数(,)f x y 在有界闭区域E 上连续,点(,),1,2,,i i x y E i n ∈=⋅⋅⋅,证明至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.证明令112211(,)min{(,)},(,)max{(,)}i i i i i i i i i ni nm f x y f x y M f x y f x y ≤≤≤≤====,则有(,),1,2,,i i m f x y M i n≤≤=⋅⋅⋅,由此可得1(,)ni i i mn f x y Mn=≤≤∑,即1(,)niii f x y m M n=≤≤∑.(1)若m M =,则1122(,)(,)(,)n n f x y f x y f x y ==⋅⋅⋅=,取11(,)(,)x y ξη=即可;(2)若m M <,则有1(,)niii f x y m M n=<<∑,由连续函数介值定理知至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.习题9-31.求下列函数的一阶偏导数:(1)2tan()cos ()z x y xy =++;(2)arctanx yz x y+=-;(3)ln(z x =+;(4)(1)yz xy =+.解(1)22sec ()2cos()sin()sec ()sin(2)zx y y xy xy x y y xy x∂=+-=+-∂,由对称性可知2sec ()sin(2)zx y x xy y ∂=+-∂;(2)22222212,()1zy y z xxx y x y y x yx y x y ∂--∂=⋅==∂-+∂+⎛⎫++ ⎪-⎝⎭;(3)z z xy ∂∂==∂∂;(4)21(1),(1)[ln(1)]1y y z z xyy xy xy xy x y xy-∂∂=+=+++∂∂+.2.求下列函数在指定点的偏导数:(1)(,)sin(2)xf x y ex y -=+,求(0,)4x f π'及(0,)4y f π';(2)22(,)(2)arccos f x y x y x =++-,求(2,)y f y '.解(1)(0,)4(0,)[(cos(2)sin(2)]1,(0,)044x x y f e x y x y f πππ-''=+-+=-=;(2)()2(2,)42y f y yy ''=+=.3.求下列函数的二阶偏导数:(1)2cos ()z ax by =+;(2)z =;(3)arctan 1x yz xy+=-;(4)z yu x =,求2ux z ∂∂∂及22u y ∂∂.解(1)2cos()sin()sin 2(),sin 2()z za ax by ax by a ax byb ax by x y∂∂=-++=-+=-+∂∂,22222222cos 2(),2cos(),2cos 2()z z z a ax by ab ax by b ax by x x y y ∂∂∂=-+=-+=-+∂∂∂∂.(2)2222222222222222,,,()()z x z y z y x z xy x x y x x y x x y x y x y ∂∂∂-∂-====∂+∂+∂+∂∂+,2222222()z x y y x y ∂-=∂+;(3)22211()1(1)111z xy y x y xxy x x y xy ∂-++=⋅=∂-+⎛⎫++ ⎪-⎝⎭,由对称性可知211z y y ∂=∂+,22222222222,0,(1)(1)z x z z yx x x y y y ∂-∂∂-===∂+∂∂∂+;(4)2222112224ln ln 2ln ln ,,,zzzzy y y yu z u y z x u z x u yz x z x x x x x x y x z y y y y y --∂∂+∂∂+===-=∂∂∂∂∂.4.求下列函数的指定高阶偏导数:(1)ln()z x xy =,求32z x y ∂∂∂及32z x y ∂∂∂;(2)u x y z αβγ=,求3ux y z∂∂∂∂.解(1)23232222111ln()1,,0,,z z z z z xy x x x x y x y y x y y∂∂∂∂∂=+====-∂∂∂∂∂∂∂∂;(2)23111111,,u u u x y z x y z x y z x x y x y zαβγαβγαβγααβαβγ------∂∂∂===∂∂∂∂∂∂.5.设322,(,)(0,0),(,)20,(,)(0,0),xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩求(0,0)xyf ''及(0,0)yx f ''.解(,0)(0,0)(0,0)lim0,0x x f x f f y x →-'==≠时,0(,)(0,)1(0,)lim 2x x f x y f y f y y x →-'==,(0,)(0,0)1(0,0)lim 2x x xyy f y f f y →''-''==,0(0,)(0,0)(0,0)lim 0,0y x f y f f x y→-'==≠时,0(,)(,0)(,0)lim 0y y f x y f x f x y →-'==,0(,0)(0,0)(0,0)lim 0y y yx x f x f f x→''-''==.6.已知二元函数(,)z z x y =在区域{(,)|0}D x y x =>内有定义,且满足3,(1,)cos z x y z y y x x∂+==∂,试求(,)z x y .解由3z x yx x∂+=∂可得31(,)ln ()3z x y x y x C y =++,由(1,)cos z y y =可得1()cos 3C y y =-,因而31(,)(1)ln cos 3z x y x y x y =-++.7.分别讨论下列函数在点的连续性和可偏导性:(1)222,(,)(0,0),(,)0,(,)(0,0);xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩(2)(,)f x y =(3)2222,(,)(0,0),(,)1,(,)(0,0).x y x y f x y x yx y ⎧-≠⎪=+⎨⎪=⎩解(1)因为22212xy y x y ≤+,所以22200lim 0x y xy x y →→=+,因此该函数在点(0,0)处连续,又[][]0(0,0)(,0)0,(0,0)(0,)0x y x x f f x f f y ==''''====,因而该函数在(0,0)处存在偏导数;(2)因00(0,0)x y f →→==,因而该函数在点(0,0)处连续,而0(0,0)limx x x f x→'=不存在,同理(0,0)y f '也不存在,因而该函数在(0,0)处不存在偏导数;(3)当取点(,)P x y 沿直线y kx =趋于点(0,0)O 时,则有222222001lim 1x y x y k x y k →→--=++,由于k 取不同值时,上述极限不一样,故222200lim x y x y x y →→-+不存在,因而该函数点(0,0)处不连续,(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)limx y x y f x f f y f f f xy→→--''===∞,故在点(0,0)处偏导数(0,0)x f '存在,而偏导数(0,0)y f '不存在.8.考察函数2244,(,)(0,0),(,)0,(,)(0,0),x y x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩并回答下列问题:(1)(,)f x y 在点(0,0)处是否有二阶偏导数;(2)(,)x f x y '与(,)y f x y '在点(0,0)处是否连续.解(1)2444422(3),(,)(0,0),(,)()0,(,)(0,0),x xy x y x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩2444422(3),(,)(0,0),(,)()0,(,)(0,0),y x y y x x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩0(,0)(0,0)(0,0)lim 0x x xx y f x f f x →''-''==0(0,)(0,0)(0,0)lim 0y yyy f y f f y→''-''==,0(0,)(0,0)(0,0)lim 0x x xyy f y f f y→''-''==.(2)当取点(,)P x y沿直线(y kx k =≠趋于点(0,0)O 时则有2442444242000002(3)2(13)lim (,)lim lim ()(1)x x x x y y xy x y k k f x y x y x k →→→→→--'===∞++,故(,)x f x y '在点(0,0)处不连续,同理可证(,)y f x y '点(0,0)处也不连续.9.设arctan y u z x =,证明2222220u u ux y z∂∂∂++=∂∂∂.证明222221,1uy yz z y xx x y x∂--=⋅⋅=∂++222222()u xyz x x y ∂=∂+,同理有222222()u xyzy x y ∂-=∂+,22arctan ,0u y uz x z∂∂==∂∂,所以有2222222222222200()()u u u xyz xyz x y z x y x y ∂∂∂++=-+=∂∂∂++.10.证明:如果(,)f x y 在区域D 内偏导数(,)x f x y '与(,)y f x y '有界,则函数(,)f x y 在区域D 内连续.证明因为(,)x f x y '与(,)y f x y '在D 内有界,所以0M ∃>,对(,)x y D ∀∈均有(,),(,)x y f x y M f x y M ''≤≤,设000(,)P x y D ∈,则0δ∃>,当ρδ=<时有00(,)x x y y D +∆+∆∈,记100200(,),(,)P x x y P x x y y +∆+∆+∆,则线段01P P 与12PP 必完全属于D 内,由Lagrange 中值定理知0000(,)(,)f x x y y f x y +∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x x y f x x y f x y =+∆+∆-+∆++∆-001020(,)(,)y x f x x y y y f x x y x θθ''=+∆+∆∆++∆∆,0000(,)(,)()f x x y y f x y M x y +∆+∆-≤∆+∆,由夹逼准则可知00000lim[(,)(,)]0x y f x x y y f x y ∆→∆→+∆+∆-=,即函数(,)f x y 在点000(,)P x y 处连续,由点000(,)P x y 的任意性可知,函数(,)f x y 在区域D 内处处连续.习题9-41.求函数22z x xy y =+-在点000(,)P x y 处当自变量,x y 分别取得增量,x y ∆∆时相应的全增量及全微分.解222200000000()()()()()z x x x x y y y y x x y y ∆=+∆++∆+∆-+∆--+2200000000(2)(2),d (2)(2)x y x x y y x x y y y x y x x y y =+∆+-∆+∆+∆∆-∆=+∆+-∆.2.求下列函数的全微分:(1)yz yx =;(2)arctan y z x=;(3)2222x y z x y-=+;(4)u =.解(1)21d d (1ln )d y y z y x x x x y -=++;(2)22d d d y x x yz x y -+=+;(3)2224(d d )d ()xy y x x y z x y -=+;(4)d u =3.试证:(,)f x y =在点(0,0)处连续,偏导数存在,但不可微.证明000(0,0)x y f →→==,因而函数(,)f x y 在点(0,0)处连续,00(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)lim 0x y x y f x f f y f f f x y→→--''====,因而函数(,)f x y 在点(0,0)处偏导数存在,又00limx x y y →→→→''---=不存在,故该函数在点(0,0)处不可微.4.设221sin ,(,)(0,0),(,)0,(,)(0,0).xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩证明:(1)(0,0),(0,0)x y f f ''存在;(2)(,),(,)x y f x y f x y ''在点(0,0)处不连续;(3)(,)f x y 在点(0,0)处可微.解(1)00(,0)(0,0)(0,)(0,0)lim0,(0,0)lim 0y x y f x f f y f f x y→→--'====,因此(0,0)x f ',(0,0)y f '存在;(2)222222220000121lim (,)lim[sin cos ]()x x x y y x y f x y y x y x y x y →→→→'=-+++不存在,因而(,)x f x y '在(0,0)处不连续,又222222220000121lim (,)lim[sin cos ]()y x x y y xy f x y x x y x y x y →→→→'=-+++不存在,因此(,)x f x y '在(0,0)处也不连续;(3)22001sin lim0x x y y xy x y →→→→''---==,因而函数(,)f x y 在点(0,0)处可微.5的近似值.解令22(,)(,)(,)x y f x y f x y f x y ''===,则有(1.02,1.97)(1,2)(1,2)0.02(1,2)(0.03)x y f f f f ''=≈+⨯+⨯-130.022(0.03) 2.952=+⨯+⨯-=.6.设有一无盖的圆柱形容器,容器的壁与底厚均为0.1cm ,内高为20cm ,内半径为4cm ,求容器外壳体积的近似值.解若圆柱体的底半径为r ,高为h ,则体积为2V hr π=,223d 22 3.144200.1 3.1440.155.3cm V V rh r r h ππ∆≈=∆+∆=⨯⨯⨯⨯+⨯⨯=.。
合肥工业大学 2011-2012学年第一学期高等数学习题册参考解答何先枝2011 .10――――――――――――――――――――――――――――――――――――――――――――― 习题11- 函数1.设函数2,0,()2,0,x x x f x x +≤⎧=⎨>⎩,求(1)(1)f -,(0)f ,(1)f ; (2)()(0)f x f x ∆-∆,()(0)f x f x-∆-∆(0x ∆>).【解】(1)2|2)1(,2|)2()0(,1|)2()1(101===+==+=-==-=x x x x f x f x f ;(2)()(0)f x f x ∆-∆⎪⎩⎪⎨⎧<∆>∆∆-=⎪⎩⎪⎨⎧<∆∆-∆+>∆∆-=∆∆.0,1,0,220,2)2(,0,22x x x x x x x x xx()(0)f x f x-∆-∆)0(12)2(>∆-=∆-∆-=x x x 。
■2.已知1()f x x=()f x .【解】令x t 1=,则2111)(t t t f ++=,故2111)(xx x f ++=。
■ 3.证明:()2sin f x x x =+在(,)-∞+∞内是严格递增函数. 【证】方法1(定义法)∵对任意2121),,(,x x x x <+∞-∞∈,有)s i n 2()s i n 2()()(112212x x x x x f x f +-+=-2sin 2cos2)(2sin sin )(21221121212xx x x x x x x x x -++-=-+-= 2)1(2)(22sin )1(2)(212121212xx x x x x x x -⋅-⋅+->-⋅-⋅+-≥012>-=x x ,其中用到)0(sin ,cos 1>≤≤-x x x x ,∴()2s i n f x x x =+在(,)-∞+∞内是严格递增函数。
我们也要正确面对考试成绩。
“不以物喜,不以己悲",胜败乃兵家常事,对于一次考试的成功,我们不能盲目乐观,无论是谁,都不可能完美无缺,也许你还有许多弱点和缺点没有暴露,每份试卷都 会有不同的结果。
应该说,良好的开端是成功的一半,那另一半就是你要善于总结,不停地拼搏。
假如你还一直陶醉在暂时的幸福中,失败只是迟早到来的结局。
在顺利登上理想的彼岸之前,不轻言成功,这才是我们应取的态度。
考试失利的同学也未必是坏事,失败是一支清醒剂,是不断成功的动力,即使我们一百次跌倒也要 第一百零一次爬起,因为我们正处在人生攀登的山腰上,还有好长的路等待我们去开拓、创造。
失败乃成功之母,有人说我怎么只遇到成功的母亲。
是的,关键是你 没有能抓住成功的父亲,那就是——“态度、目标、勤奋、恒心”。
态度决定一切。
有这样一句话:“当我冷眼旁观时,生命是一只蓝色的蛹;当我热情相拥时,生命是一只金色的蝶”。
学习也是这样,当你把学习当作自己成 长发展的需要时,才能体验到学习的快乐;当你把学习当作是一种负担时,学习就是一种痛苦。
谁愿在一片郁闷和痛苦中学习呢?所以说,我们首先要调整心态,以愉快的心情投入到紧张的学习生活中,并善于在学习的过程中体验获取知识的快乐,体验克服困难的快乐,体验取得成功的快乐。
1、如图a 所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。
解 1)取比例尺l μ绘制其机构运动简图(图b )。
2)分析其是否能实现设计意图。
图 a ) 由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F 故:00)0142(33)2(3=--+⨯-⨯='-'-+-=F p p p n F h l因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。
5.13 字数组ARRAY,第一个单元为元素个数N,后面为N个元素,编写程序,把零元素从数组中清除,移动元素位置并修改第一个单元(元素个数)。
;delete the 0 from arraydata segmentarray dw 6,3,4,0,15,0,7loca dw 999 ;此单元地址为结束标记data endscode segmentassume cs:code,ds:datastart:mov ax, datamov ds, axmov cx, arraylea bx, array+1next: cmp word ptr[bx],0jz moveadd bx,2dec cxcmp cx,0jnz nextjmp exitmove: dec arraymov di,bxmnext:cmp di,offset locaja nextmov ax, [di+2]mov [di],axadd di,2cmp di,offset locajnb nextjmp mnextexit: mov ah,4chint 21hcode endsend start5.14 下表为奥运会获金牌前十名国家的成绩统计表,请编写程序,统计并填写表中的合计栏数据。
;先逐行求小计,再按列求合计。
data segmentarray db 1,0,1,? ;设简单数据db 1,1,0,?db 1,1,0,?db 1,1,1,?db 1,1,1,?db 1,1,1,?db 1,1,1,?db 1,1,1,?db 1,1,1,?db 1,1,1,?org 30hsumvd db ?,?,?,? ;存放按列求的合计数org 40hloca dw ? ;存放array的第一行地址data endscode segmentassume cs:code,ds:datastart:mov ax, datamov ds, axmov ax, 0mov cx, 10lea bx, arraysumh: mov di, 3sum3: add al, [bx]inc bxdec dijnz sum3mov [bx],al ; 存放行的小计mov ax,0inc bxloop sumh; 下面按列求合计lea bx, arraymov loca,bxlea si, sumvdmov cx,10mov di,4sumv3:mov ax,0mov bx,locasumv: add al, [bx]add bx,4loop sumvmov [si],almov cx,10inc siinc locadec dijnz sumv3exit: mov ah,4chint 21hcode endsend start6.1过程定义如下,补充括号中的指令。
第二章光固化快速成型工艺1 .叙述光固化快速成型的原理。
氦-镉激光器或氩离子激光器发出的紫外激光束在控制系统的控制下按零件的各分层截面信息在光敏树脂表面进行逐点扫描,使被扫描区域的树脂薄层产生光聚合反应而固化,形成零件的一个薄层。
一层固化完毕后,工作台下移一个层厚的距离,以使在原先固化好的树脂表面再敷上一层新的液态树脂,刮板将粘度较大的树脂液面刮平,然后进行下一层的扫描加工,新固化的一层牢固地粘结在前一层上,如此重复直至整个零件制造完毕,得到一个三维实体原型。
2 .光固化快速成型的特点有哪些?优点:(1)成型过程自动化程度高;(2)尺寸精度高;(3)优良的表面质量;(4)可以制作结构十分复杂的模型、尺寸比较精细的模型;(5)可以直接制作面向熔模精密铸造的具有中空结构的消失型;(6)制作的原型可以一定程度地替代塑料件。
缺点:(1)制件易变形,成型过程中材料发生物理和化学变化;(2)较脆,易断裂性能尚不如常用的工业塑料;(3)设备运转及维护成本较高,液态树脂材料和激光器的价格较高;(4)使用的材料较少,目前可用的材料主要为感光性的液态树脂材料;(5)液态树脂有气味和毒性,并且需要避光保护,以防止提前发生聚合反应,选择时有局限性;(6)需要二次固化3.光固化材料的优点有哪些?光固化树脂主要分为几大类?优点:(1)固化快(2)不需要加热(3)可配成无溶剂产品(4)节省能量。
(5)可使用单组分,无配置问题,使用周期长。
(6)可以实现自动化操作及固化,提高生产的自动化程度,从而提高生产效率和经济效益。
分类:(1)自由基光固化树脂(2)阳离子光固(3)混杂型光固化树脂4.光固化成型工艺过程主要分为几个阶段,其后处理工艺过程包括哪些基本步骤?阶段:前处理、原型制作和后处理三个阶段。
后处理步骤:(1)原型叠层制作结束后,工作台升出液面,停留5~10min(晾干);(2)将原型和工作台一起斜放景干,并将其浸入丙酮、酒精等清洗液中,搅动并刷掉残留的气泡,45min后放入水池中清洗工作台;(3)由外向内从工作台上取下原型,并去除支撑结构;(4)再次清洗后置于紫外烘箱中进行整体后固化。
5.光固化成型的支撑结构的类型有哪些?支撑的作用是什么?类型:斜支撑、直支撑、单腹板、双腹板、十字壁板。
作用:支撑结构除了确保原型的每一结构部分都能可靠固定之外,还有助于减少原型在制作过程中发生的翘曲变形。
6.光固化原型工艺中的收缩变形来自于哪几个方面?(1)零件成型过程中树脂收缩产生的变形;(2)后固化时收缩产生的变形。
7.影响光固化原型精度的因素有哪些?为提高原型精度,各因素是如何控制的?1. 几何数据处理造成的误差;措施:(1)直接切片;(2)自适应分层。
2. 成型过程中材料的固化收缩引起的翘曲变形;措施:(1)成型工艺的改进;(2)树脂配方的改进。
3. 树脂涂层厚度对精度的影响;措施:二次曝光法—多次反复曝光后的固化深度与以多次曝光量之和进行一次曝光的固化深度是等效的。
4.光学系统对成型精度的影响;措施:(1)光路校正;(2)光斑校正。
5.激光扫描方式对成型精度的影响;措施:采用分区扫描方式。
6. 光斑直径大小对成型尺寸的影响;措施:光斑补偿方法。
7.激光功率、扫描速度、扫描间距产生的误差。
措施:首先对扫描固化过程进行理论分析,进而找出各个工艺参数对扫描过程的影响。
第三章叠层实体快速成型工艺1.叠层实体快速原型制造工艺的基本原理答:叠层实体快速原型制造技术由计算机、材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台和数控系统和机架等组成。
首先在工作台上制作基底,工作台下降,送纸滚筒送进一个步距的纸材,工作台回升,热压滚筒滚压背面涂有热熔胶的纸材,将当前迭层与原来制作好的迭层或基底粘贴在一起,切片软件根据模型当前层面的轮廓控制激光器进行层面切割,逐层制作,当全部迭层制作完毕后,再将多余废料去除,最终形成三维工件原型。
2.叠层实体快速原型制造工艺的特点答:优点:原材料价格便宜,原型制作成本低;制件尺寸大;无须后固化处理;无须设计和制作支撑结构;废料易剥离;热物性与机械性能好,可实现切削加工;精度高;设备可靠性好,寿命长;操作方便。
缺点:不能直接制作塑料工件;工件的抗拉强度和弹性不够好;工件易吸湿膨胀;工件表面有台阶纹,需打磨3.当前开发出来的叠层实体快速成型材料主要有几种?其中常用的是什么?答:薄层材料:纸、塑料薄膜、金属箔等粘结剂:热熔胶制备工艺:涂布工艺;常用的是涂有热熔胶的纸材4.列举若干叠层实体快速成型设备的主要型号答:5.影响叠层实体快速原型制造精度的原因答:CAD模型STL文件输出造成的误差;切片软件STL文件输入设置造成的误差;成型过程误差:不一致的约束,成型功率控制不当,切碎网格尺寸,工艺参数不稳定;设备精度误差:激光头的运动定位精度,X、Y轴系导轨垂直度,Z轴与工作台面垂直度;成型之后环境变化引起误差:热变形,湿变形。
6.提高叠层实体快速原型制造质量的措施答:在进行STL转换时,可以根据零件形状的不同复杂程度来定。
在保证成形件形状完整平滑的前提下,尽量避免过高的精度。
不同的CAD软件所用的精度范围也不一样,例如Pro/E 所选用的范围是0.01~0.05mm,UGⅡ所选用的范围是0.02~0.08mm,如果零件细小结构较多可将转换精度设高一些;STL文件输出精度的取值应与相对应的原型制作设备上切片软件的精度相匹配。
过大会使切割速度严重减慢,过小会引起轮廓切割的严重失真;模型的成型方向对工件品质(尺寸精度、表面粗糙度、强度等)、材料成本和制作时间产生很大的影响。
应该将精度要求较高的轮廓(例如,有较高配合精度要求的圆柱、圆孔),尽可能放置在X-Y平面;为提高成形效率,在保证易剥离废料的前提下,应尽可能减小网格线长度,可以根据不同的零件形状来设定。
当原型形状比较简单时,可以将网格尺寸设大一些,提高成型效率;当形状复杂或零件内部有废料时,可以采用变网格尺寸的方法进行设定,即在零件外部采用大网格划分,零件内部采用小网格划分;热湿变形控制:采用新的材料和新的涂胶方法;改进后处理方法;根据制件的热变形规律预先对CAD模型进行反变形修正;原型制作后的处理措施:加压下冷却叠层块;充分冷却后剥离;及时进行表面处理(涂覆增强剂如强力胶、环氧树脂漆或聚氨酯漆等,有助于增加制件的强度和防潮效果)。
7.新型的“Offset Fabrication”叠层实体快速原型工艺方法的基本原理答:该方法使用的薄层材料为双层结构,上面一层为制作原型的叠层材料,下面的薄层材料是衬材。
双层薄材在叠层之前进行轮廓切割,将叠层材料层按照当前叠层的轮廓进行切割,然后进行粘接堆积,粘接后,衬层材料与叠层材料分离,带走当前叠层的余料。
第四章选择性激光烧结成型工艺1、叙述选择性激光烧结快速原型工艺的基本原理。
答:选择性激光烧结加工过程是采用铺粉辊将一层粉末材料平铺在已成形零件的上表面,并加热至恰好低于该粉末烧结点的某一温度,控制系统控制激光束按照该层的截面轮廓在粉层上扫描,使粉末的温度升至熔化点,进行烧结并与下面已成形的部分实现粘接。
当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,如此反复,直至完成整个模型。
2、选择性激光烧结工艺的特点有哪些?答:优点:①可直接制作金属制品;②可采用多种材料;③无需支撑结构;④制造工艺比较简单;⑤材料利用率高。
缺点:①原型表面粗糙;②烧结过程挥发异味;③有时需要比较复杂的辅助工艺。
3、简述高分子粉末材料的烧结工艺过程。
答:高分子粉末材料激光烧结快速原型制造工艺过程同样分为前处理、粉层烧结叠加以及后处理过程三个阶段。
①前处理阶段主要完成模型的三维CAD造型,并经STL数据转换后输入到粉末激光烧结快速原型系统中。
②粉层激光烧结叠加:首先对成型空间进行预热,对于PS高分子材料,一般需要预热到100℃左右。
在预热阶段,根据原型结构的特点进行制作方位的确定,当摆放方位确定后,将状态设置为加工状态;然后设定建造工艺参数,如层厚、激光扫描速度和扫描方式、激光功率、烧结间距等。
当成形区域的温度达到预定值时,便可以启动制作了。
在制作过程中,为确保制件烧结质量,减少翘曲变形,应根据截面变化相应的调整粉料预热的温度;所有叠层自动烧结叠加完毕后,需要将原型在成型缸中缓慢冷却至40℃以下,取出原型并进行后处理。
③后处理:激光烧结后的PS原型件,强度很弱,需要根据使用要求进行渗蜡或渗树脂等进行补强处理。
由于该原型用于熔模铸造,所以进行渗蜡处理。
4、简述金属粉末材料间接烧结工艺过程。
答:金属零件间接烧结工艺使用的材料为混合有树脂材料的金属粉末材料,SLS工艺主要实现包裹在金属粉粒表面树脂材料的粘接。
其工艺过程如图1所示。
由图中可知,整个工艺过程主要分三个阶段:一是SLS原型件(“绿件”)的制作,二是粉末烧结件(“褐件”)的制作,三是金属溶渗后处理。
图15、简述金属粉末材料直接烧结工艺过程。
答:金属零件直接烧结工艺采用的材料是纯粹的金属粉末,是采用SLS工艺中的激光能源对金属粉末直接烧结,使其融化,实现叠层的堆积。
其工艺流程如图2所示。
金属零件直接烧结成型过程较间接金属零件制作过程明显缩短,无需间接烧结时复杂的后处理阶段。
但必须有较大功率的激光器,以保证直接烧结过程中金属粉末的直接熔化。
因而,直接烧结中激光参数的选择,被烧结金属粉末材料的熔凝过程及控制是烧结成型中的关键。
6、高分子材料粉末激光烧结原型的后处理一般有哪两种方式?各自面向的用途是什么?答:高分子粉末材料烧结件的后处理工艺主要有渗树脂和渗蜡两种。
当原型件主要用于熔模铸造的消失型时,需要进行渗蜡处理。
当原型件为了提高强硬性指标时,需要进行渗树脂处理。
以高分子粉末为基底的烧结件力学性能较差,作为原型件一般需对烧结件进行树脂增强。
在树脂涂料中,环氧树脂的收缩率较小,可以较好地保持烧结原型件的尺寸精度,提高高分子粉末烧结件的适用范围。
7、粉末激光烧结快速原型工艺中的烧结工艺参数主要有哪些?它们是如何影响原型尺寸和性能的?图2答:(1)激光功率:①激光功率的增加,尺寸误差向正方向增大②激光功率增加时,强度也随着增大③激光功率过大会加剧因熔固收缩而导致的制件翘曲变形(2)扫描速度①扫描速度增加,尺寸误差向负误差的方向减小②扫描速度增加,烧结制件强度减小(3)烧结间距①烧结间距增加,尺寸误差向负误差方向减小②烧结间距增加,烧结制件强度减小③烧结间距增加,成型效率提高(4)单层层厚①单层层厚增加,尺寸误差向负误差方向减小②单层层厚增加,烧结制件强度减小③单层厚度增加,成型效率提高(5)预热①没有预热,或者预热温度不均匀,将会使成型时间增加,所成型零件的性能低和质量差,零件精度差,或使烧结过程完全不能进行。