燃煤锅炉低氮燃烧改造技术原理及方案
- 格式:ppt
- 大小:3.86 MB
- 文档页数:81
随着国家政府对环境保护的重视以及近几年连续出台的大气污染防治攻坚战文件来看,各地环保局对当地企业强制要求并执行燃煤锅炉更换为低氮燃气锅炉,普通的燃气锅炉实施低氮改造。
普通的燃气锅炉尾气排放的有害颗粒物,例如氮氧化物、一氧化碳等,成为大气污染的罪魁祸首,因此锅炉的低氮改造将会是一些生产企业及供暖单位迫切面临的任务。
那么,大家只知道锅炉需要改造,但是,燃气锅炉超低氮排放改造的原理是什么,需要什么技术能实现超低氮排放呢?下面,由中鼎锅炉专业技术人员给大家简单介绍一下。
1、氮氧化物危害氮氧化物即一氧化氮、二氧化氮等气体,为高温条件下,空气中的氮气和氧气化合反应生成。
氮氧化物与空气中的水结合最终会转化成硝酸和硝酸盐,硝酸是酸雨的成因之一;它与其他污染物在一定条件下能产生光化学烟雾污染。
酸雨危害是多方面的,包括对人体健康、生态系统和建筑设施都有直接和潜在的危害。
酸雨可使儿童免疫功能下降,慢性咽炎、支气管哮喘发病率增加,同时可使老人眼部、呼吸道患病率增加。
酸雨还可使农作物大幅度减产,特别是小麦,在酸雨影响下,可减产13%至34%。
大豆、蔬菜也容易受酸雨危害,导致蛋白质含量和产量下降。
酸雨对森林和其他植物危害也较大,常使森林和其他植物叶子枯黄、病虫害加重,最终造成大面积死亡。
2、氮氧化物排放标准我们知道用燃气锅炉替代燃煤锅炉能够大大降低污染,普通的燃气锅炉氮氧化物排放高于30毫克,这意味着大部分普通的燃气锅炉都达不到30mg以下,除非配有低氮燃烧机,但是使用低氮燃烧机的锅炉本身也是需要有特殊的要求的,那就是对锅炉炉膛尺寸需要加大,中鼎锅炉最新生产的低氮燃气锅炉专门针对环保政策要求的NOX排放30mg以下,且配置超低氮燃烧器,能安全、稳定、高效地运行,每一台出厂的低氮锅炉均能达到低氮排放达标。
3、甲烷-空气燃烧过程氮化学基本原理燃烧理论将NOx的生成分为热力型NOx(Thermal NOx)、快速型NOx (Prompt NOx)和燃料型NOx(Fuel NOx)。
浅谈锅炉低氮燃烧技术改进的方法根据不同煤种,采用合适比例的SOFA风率高位偏异布置,实现双向分级燃烧;浓淡燃烧技术,使燃烧器浓淡两相化学当量比处于可控的低NOx区域;降低主燃烧器区域峰值温度;同时,调整垂直与水平方向的空气分级和水平方向的燃料分级立体化燃烧系统技术。
这种技术是将从源头上根本减少燃煤锅炉氮氧化物的产生量,为实现氮氧化物的减排,具有非常重大的意义。
同时,还能提高燃烧效率、降低烟温偏差、减轻(或防止)结渣和高温腐蚀等作用,具有极强的操作性和应用性。
1.立体化燃烧技术(墙式切圆燃烧器)煤种适应性广:褐煤、烟煤、贫煤、无烟煤。
技术特点:立体燃烧技术大幅降低了NOx排放量和优化其他技术指标。
能最大限度地合理利用炉膛空间,降低飞灰可燃物的损失,有利于充分燃烧。
炉膛内温度场更加均匀,且温度水平适中,能有效降低NOx的产生。
同时,使锅炉水循环更加可靠,上炉膛水平烟道温度分配均匀,炉膛出口烟温偏差只有普通四角燃烧的70%,保护高温过热器和再热器。
燃烧器出口具有较大均等空间,气流不易受到水冷壁的影响造成贴墙,从而有利于防止水冷壁的结渣。
煤粉气流受水冷壁水冷程度要大大小于角式切圆燃烧,从而强化煤粉气流的着火特性、增加低负荷稳燃的能力。
着火点易于调节,煤种适应性更强。
2.墙式完全燃烧供风系统用途:最大限度地降低NOx的排放量,提高燃烧效率。
适用燃烧系统:正方形或准正方形的煤粉燃烧锅炉(所有切圆燃烧锅炉和墙式燃烧锅炉)。
布置方式:四面墙上(或角上)切圆(或对冲)布置;原理:布置在墙上(或角上),提高了燃尽风的穿透深度和扰动,在燃烧的后期提高风粉的混合速度,在降低NOx排放量的同时,提高燃烧效率。
3.水平、垂直方向摆动的二次风燃烧摆动用途:在保证垂直摆动以满足锅炉调温特性要求的同时,增加水平摆动来调整切圆燃烧锅炉的燃烧火球位置以调节烟温偏差,保证锅炉的安全稳定运行。
适用系统:正方形或准正方形的煤粉燃烧锅炉(所有切圆燃烧锅炉和部分墙式燃烧锅炉)。
低氮燃烧技术原理
低氮燃烧技术,是指在燃烧过程中将NOx的产生控制在一定范围内的一种技术。
对于燃煤锅炉,低氮燃烧主要是指减少燃料中的氮化合物的生成量。
燃烧过程中,生成的NOx有两种形态:一种是NOX,一种是氮氧化物。
当燃烧器中的空气过剩系数与燃料种类、负荷、煤种等因素相匹配时,NOX就会很低;当燃烧过程中存在高温区时,温度较高时,燃料中氮化合物被氧化成氮氧化氮,这样NOX就会急剧升高;当燃烧过程中存在还原性气氛时,燃料中的氮氧化合物被还原成氮气;当燃烧器结构设计不合理,空气过剩系数过大或燃料种类与负荷不匹配时,燃烧器中的氧气过量系数过小,这时燃烧反应生成的氮氧会以NOX形式向空气中逃逸。
为减少NOX排放,国内外均采用降低燃料氮化合物生成量的方法来控制锅炉的NOx排放。
主要措施是优化燃烧过程、改进空气系统及改善燃烧条件等。
1.合理选择燃料及负荷
合理选择燃料是控制锅炉NOx生成量的有效途径。
—— 1 —1 —。
燃气锅炉低氮燃烧改造方案燃气锅炉低氮燃烧改造方案目标1.实施燃气锅炉低氮燃烧改造,使其达到环保要求;2.减少氮氧化物的排放,从而改善大气质量;3.提高燃烧效率,降低能源消耗。
方案概述为了实现以上目标,我们提出以下方案:1. 锅炉氧气控制系统升级通过升级锅炉氧气控制系统,调整气体进入燃烧室的氧气含量,以达到低氮燃烧效果。
具体步骤如下:•安装氧气传感器,实时监测燃烧室内的氧气浓度;•配置氧气控制阀门,根据传感器反馈的氧气浓度进行调节;•通过智能控制系统,稳定氧气浓度在适宜的范围内;•实施定期检测和校准,确保系统稳定可靠运行。
2. 燃烧室结构调整针对燃烧室结构进行调整,以提高燃烧效率和降低氮氧化物的生成。
具体措施如下:•加装预混板,使气体和空气更好地混合;•优化喷嘴设计,实现均匀燃烧;•加设燃烧室过量空气探测器,控制燃烧室内空气流量,降低过量空气率;•配置可调节燃烧器,实现灵活调节燃烧参数。
3. 定期维护与保养为了保证燃气锅炉低氮燃烧效果的持久稳定,需要进行定期维护与保养。
具体措施如下:•清洗和更换燃烧器内的积碳和灰尘;•检查和调整各个传感器和控制阀门的工作状态;•检查和清洗烟道和换热器,以提高热传递效率;•定期监测燃烧室内的氧气浓度、排放氮氧化物的含量。
预期效果通过实施上述方案,我们预计将达到以下效果:1.氮氧化物排放浓度显著降低,满足环保要求;2.锅炉燃烧效率提升,能源利用效率提高;3.燃烧室运行更加稳定,减少故障和维修次数;4.降低锅炉运行成本,节约燃气资源。
结论通过燃气锅炉低氮燃烧改造方案的实施,我们将有效改善大气质量,减少氮氧化物的排放,同时提高能源利用效率。
这一方案将使您的锅炉达到环保要求,并带来长期的经济效益。
如需了解更多详细信息,请与我们联系。
4. 燃气供应系统优化优化燃气供应系统是改造燃气锅炉低氮燃烧的重要环节,可以提高燃烧稳定性和能源利用效率。
具体措施如下:•升级燃气管道和控制阀门,优化气体流量和压力控制;•加装燃气调压装置,稳定供气压力;•安装燃气流量计,精确掌握燃气消耗情况;•配置燃气自动供给系统,实现智能化控制。
浅析燃煤锅炉低氮燃烧技术燃煤锅炉是我国当今主要的供热设备之一,而其烟气中含有大量的氮氧化物对环境造成了污染。
因此,如何实现燃煤锅炉的低氮燃烧,减少氮氧化物排放,是一个必须解决的问题。
目前,低氮燃烧技术广泛应用于燃煤锅炉中,通常采用以下三种方法:燃烧控制技术、燃烧添加剂技术和燃烧改进技术。
燃烧控制技术主要采用两步骤燃烧法,即在燃烧工艺的前段添加一定数量的空气,形成还原气氛,使部分NOx转化为N2;在后段添加适量的空气,进一步氧化NOx,减少排放。
此外,还可以采用高效燃烧器、燃烧过程智能控制等技术,降低燃烧温度和氮氧化物因素的生成。
燃烧添加剂技术是在燃烧过程中添加还原剂或氧化剂,改变燃烧过程中的氧氮比,从而减少NOx的生成。
目前主要使用的添加剂有NH3、尿素、氨水、氧化钙等。
通过添加还原剂来降低燃烧温度、加强还原作用,将NOx还原为N2。
而添加氧化剂则增加氧化反应,将NOx转化为NO2,通过后续处理将其减少排放。
燃烧改进技术是对燃烧设备的结构和参数进行优化改进,以降低燃烧过程中的燃烧温度和气体停留时间。
目前主要采用的技术有SNCR技术、SCR技术、高炉煤气直入式锅炉技术等。
其中,SCR技术是目前应用最广泛的一种技术,通过添加催化剂,在烟气中将NOx还原为N2和H2O。
通过以上的三种技术应用,可以实现燃煤锅炉的低氮燃烧,降低NOx的排放。
但是需要注意的是,不同技术的适用范围和效果不同,需要根据实际应用情况进行选择。
同时,对于加强对大气污染治理的要求,我们也需要努力寻求更加低氮的燃烧技术和治理措施,保护环境和人民健康。
浅析燃煤锅炉低氮燃烧技术燃煤锅炉是工业和生活生产中常用的一种设备,但由于其燃烧过程中会排放大量氮氧化物,会对环境和人体健康产生潜在的危害,因此,燃煤锅炉低氮燃烧技术的研究和应用十分重要。
燃煤锅炉低氮燃烧技术的目的就是降低燃烧过程中产生的氮氧化物(NOx)的排放量。
常见的低氮燃烧技术包括:炉内掺氧技术、分级燃烧技术、倾斜燃烧技术、再燃技术和SNCR(选择性非催化还原)技术。
炉内掺氧技术是一种将燃烧空气分为两部分,把其中一部分氧气引入燃烧室的距离火焰最近的区域(炉喉区),另一部分氧气在火焰上方进入燃烧室的技术。
这种方法可以使燃烧过程中氧气和燃料更充分地混合,促进燃料的完全燃烧,降低NOx的排放。
但是,这种技术需要加装掺氧设备,成本较高。
分级燃烧技术是将燃料在锅炉燃烧时分为两级进行,第一级在较低的燃烧条件下进行,生成的NOx较少;第二级在较高的燃烧条件下进行,此时可以用来燃烧一些难燃的燃料,燃烧效率更高,同时也可以降低NOx排放。
然而,这种技术需要增加炉墙的复杂设计,成本较高,并且需要对锅炉的操作要求更高。
倾斜燃烧技术是利用流体动力学的原理,使燃料在燃烧室内呈偏斜分布。
研究表明,当燃烧室内呈偏斜分布时,燃料和空气混合更加充分,可以使NOx排放减少。
然而,这种技术具有一定的局限性,适用于一些规模较小的锅炉,对于大型锅炉则难以实现。
再燃技术是一种在燃料燃烧室中注入少量的再燃料进行再燃的技术。
这种技术可以在极短的时间内使燃料完全燃烧,减少未完全燃烧产生的NOx。
此外,再燃气的产生还可提升锅炉燃烧室内流体的混合,也有助于提高燃烧效率。
SNCR技术则是通过给燃烧室注入一种还原剂(如氨水、尿素等),并加热使其分解,产生氢气和氨气,再与NOx进行反应,生成氮气和水。
这种技术可以有效地降低NOx的排放,但其降低效果与还原剂的添加量、反应室的温度、氨水尿素的纯度等因素有关。
总的来说,各种低氮燃烧技术都具有其各自的优缺点,燃煤锅炉低氮燃烧技术的选择需要根据具体的应用情况和经济效益来综合考虑。
浅析燃煤锅炉低氮燃烧技术目前我国能源消费结构仍以煤炭为主,因此需要对燃煤过程中产生的污染物进行控制。
在燃煤锅炉中,氧气和空气以及燃料中的氮在高温下生成NOx,对环境造成严重污染,本文介绍了在燃烧过程中控制NOx生成的低氮燃烧技术,和几种低氮燃烧器,以降低燃烧过程中的NOx含量。
标签:燃煤锅炉;NOx;低氮燃烧1 引言根据《中国能源大数据报告(2018)》显示,在我国能源消费结构中,虽然煤炭消费十年间占比下降了12.1个百分点,呈现逐年下降趋势,但在2017年能源生产结构中,原煤占比68.6%,仍占据主体地位。
燃煤锅炉中煤炭的燃烧会释放大量污染性气体NOx,造成严重环境污染。
国家污染物排放标准规定NOx的排放量应不超过250μg/m3(日均)、350μg/m3(时均),因此,对燃煤电厂中产生的NOx量需要严格控制。
在燃烧过程中,采取低氮燃烧技术,可以有效减少NOx的生成与排放。
2 NOx生成机理煤粉在锅炉里燃烧的过程中,NOx的排放与燃烧过程关系密切,特别是过量空气系数和燃烧温度等,根据燃烧条件的差异可以分为燃料型、热力型、快速型三类。
2.1 燃料型NOx燃料型NOx是人為排放NOx的一个重要组成部分,据统计,燃料型NOx 在NOx排放总量中所占的比例为75%以上。
影响燃料型NOx生成的因素很多,不仅与过量空气系数有关,也与燃烧温度、煤种特性、燃料中的氮受热分解后在挥发分和焦炭的比例、成分和分布等因素有关。
2.2 热力型NOx热力型NOx中的N主要来自于空气,与O2在高温下反应生成NOx。
热力型NOx占比例较小,约为20%。
影响热力型NOx生成的因素主要是温度和氧量。
2.3 快速型NOx快速型NOx生成量通常占总NOx的5%以下,主要由燃料中的CH基团和空气中的N2反应,一般在富燃(燃料充足,O2含量少)条件下产生。
由于反应速度较快,所以称之为快速型NOx。
其影响因素主要是O2浓度,和温度关系不大。
浅析燃煤锅炉低氮燃烧技术
随着环保意识的不断提高,燃煤锅炉低氮燃烧技术越来越受到重视。
目前,国内已经
出台了一系列的环保政策和标准,对燃煤锅炉的排放标准进行了严格的限制。
而低氮燃烧
技术就是为了降低燃煤锅炉的氮氧化物排放而研发出来的一种技术手段。
燃煤锅炉低氮燃烧技术的原理是,在锅炉燃烧的过程中,通过一系列的技术手段,降
低燃料中的氮气的热稳定性,使其在燃烧过程中不被氧气氧化,减少氮气的氧化反应,从
而降低氮氧化物的排放。
目前比较常见的燃煤锅炉低氮燃烧技术有负压余量燃烧技术、燃
气再循环技术、喷氨技术和燃烧掺气技术等。
负压余量燃烧技术是指在燃烧的过程中,将煤粉产生的废气通过负压排放进入炉膛内,在炉膛内再次燃烧,利用余量空气燃烧一定量的煤粉,同时喷入一定量的空气,来降低氮
氧化物的排放。
燃气再循环技术是指将燃烧产生的烟气中的一部分气体进行回收再利用,并将这些气
体再次参与燃烧过程,从而达到减少氮氧化物的排放的目的。
喷氨技术是指在锅炉燃烧产生氮氧化物的过程中,通过向燃料中喷入适量的氨气,使
氮气与氨气进行还原反应,减少氮氧化物的排放。
燃烧掺气技术是指在燃料燃烧的过程中,通过向燃料中掺入一定比例的其他气体,如
水蒸气、CO2等,来降低燃烧过程中氮气的热稳定性,减少氮氧化物的形成。
通过上述几种低氮燃烧技术的研究和应用,可以有效地控制和降低燃煤锅炉的氮氧化
物排放,达到环保要求。
同时,这些低氮燃烧技术还可以提高燃煤锅炉的热效率和经济性,从更广泛的角度促进了燃煤锅炉的可持续发展。
锅炉低氮改造工程技术方案一、项目背景随着环境保护意识的增强和国家对环保政策的不断加强,对于工业企业的污染排放标准也在不断提高。
而作为工业生产过程中使用最为广泛的设备之一,锅炉在大气污染治理中扮演着重要的角色。
然而,由于传统锅炉在燃烧过程中排放的氮氧化物(NOx)含量较高,偏离了环保政策的要求,因此,对锅炉进行低氮改造已成为当前工业企业中亟需解决的问题。
本项目旨在对现有的锅炉进行低氮改造,减少氮氧化物的排放,提高锅炉的燃烧效率,并符合环保政策的要求,为企业的可持续发展提供保障。
二、目标与要求1. 降低氮氧化物排放浓度,符合国家环保标准;2. 提高锅炉的燃烧效率,降低能耗;3. 减少二氧化硫和其他有害气体的排放;4. 保持锅炉原有的工作稳定性和安全性;5. 降低改造成本,提高经济效益。
三、技术方案1. 锅炉低氮燃烧技术低氮燃烧技术是当前锅炉低氮改造的主要手段之一。
通过对锅炉燃烧系统进行调整和优化,减少氮氧化物的生成和排放。
具体包括以下几个方面:(1)调整燃烧风量和分布通过对锅炉的燃烧风量和分布进行调整,使之更加均匀,减少局部高温区域的形成,降低氮氧化物的生成。
(2)优化燃烧控制系统采用先进的燃烧控制系统,实时监测和控制燃烧过程中的氧气浓度和燃烧温度,确保燃烧过程的稳定性和完全燃烧,从而减少氮氧化物的生成。
(3)选用低氮燃烧器低氮燃烧器采用了特殊的设计结构和燃烧技术,通过与燃烧空气的充分混合,降低燃烧温度,减少氮氧化物的生成。
2. 尾气再循环技术尾气再循环技术是一种有效的锅炉低氮改造手段,通过将一部分燃烧产生的废气再循环混入燃料和空气中,减少燃烧温度,降低氮氧化物的生成。
具体操作包括:(1)收集尾气利用除尘设备和废气处理系统,将部分燃烧产生的废气收集起来。
(2)混合再循环将收集到的废气与燃料和空气进行混合再循环,降低燃烧温度,减少氮氧化物的生成。
3. 碱吸收脱硫技术除了降低氮氧化物排放,对于锅炉中二氧化硫和其他有害气体的排放也需要进行控制。
浅析燃煤锅炉低氮燃烧技术一、低氮燃烧技术的原理低氮燃烧技术是通过改变燃烧过程中的空气分布和燃料燃烧方式来降低氮氧化物的排放。
具体措施包括控制燃烧温度、降低燃烧过程中的氧浓度、提高燃烧效率等。
通过这些技术手段,可以有效地降低燃煤锅炉的氮氧化物排放,改善空气质量,保护环境。
1.控制燃烧温度燃煤锅炉的燃烧温度是影响氮氧化物生成的重要因素之一。
在炉膛内部,煤粉在高温下与空气发生燃烧反应,从而产生大量的氮氧化物。
通过控制燃烧温度,可以有效地减少氮氧化物的生成。
目前常用的方法是采用水冷壁、喷嘴冷却等技术来降低燃烧温度,从而达到低氮燃烧的目的。
2.降低燃烧过程中的氧浓度燃煤锅炉燃烧过程中,如果氧浓度过高,会导致氮氧化物的生成增加。
降低燃烧过程中的氧浓度是实现低氮燃烧的关键之一。
目前采用的主要措施是通过优化炉膛结构和燃烧系统,控制炉膛内部氧气的分布,从而降低氧浓度,减少氮氧化物的生成。
3.提高燃烧效率燃煤锅炉的燃烧效率与氮氧化物的排放密切相关。
燃烧效率低意味着煤炭燃烧不完全,从而产生大量的氮氧化物。
提高燃烧效率也是降低氮氧化物排放的重要手段之一。
目前,通过优化燃烧系统,改善燃烧条件,提高燃烧效率已成为低氮燃烧的常用方法。
随着环境保护意识的增强,低氮燃烧技术在燃煤锅炉中得到了广泛的应用。
目前,我国已经在工业领域、电力行业、热力供热等领域推广应用了低氮燃烧技术,取得了明显的减排效果。
在燃煤电厂中,采用低氮燃烧技术可以有效降低氮氧化物排放,改善空气质量,保护环境。
在工业炉燃烧过程中,低氮燃烧技术也得到了广泛应用,取得了良好的减排效果。
随着技术的不断进步,低氮燃烧技术也在取得创新性的发展。
采用超低氮燃烧技术、深度燃烧技术等,进一步降低氮氧化物排放,提高能源利用效率。
新型的低氮燃烧设备也在不断推出,如低氮燃烧器、低氮燃烧泵等,为燃煤锅炉的低氮燃烧提供了更多的选择。
1.技术创新随着环保要求的不断提高,低氮燃烧技术的研发和创新将成为未来的重点方向。
浅析燃煤锅炉低氮燃烧技术燃煤锅炉是工业生产中常见的一种锅炉设备,它能够以煤炭为燃料进行高效能的热能转换,为工业生产提供了重要的能源支持。
由于煤炭燃烧会产生大量的氮氧化物,给环境带来了严重的污染问题。
为了解决这一问题,燃煤锅炉低氮燃烧技术应运而生。
本文将对燃煤锅炉低氮燃烧技术进行浅析,探讨其原理、应用和发展趋势。
一、低氮燃烧技术的原理燃煤锅炉低氮燃烧技术是通过改变燃煤锅炉的燃烧方式,减少氮氧化物的生成,从而达到环保减排的目的。
其原理主要包括两个方面:一是通过优化燃烧工艺,降低燃烧温度和氧气浓度,减少氮氧化物的生成;二是利用先进的燃料分级燃烧技术和烟气再循环技术,有效降低燃煤锅炉的氮氧化物排放。
二、低氮燃烧技术的应用低氮燃烧技术在燃煤锅炉中的应用已经取得了显著的成就。
通过改造燃煤锅炉,引入先进的低氮燃烧技术,能够有效减少氮氧化物的排放,符合环保政策和要求。
目前,低氮燃烧技术在工业生产中得到了广泛的应用,特别是在电力、化工、钢铁等行业的燃煤锅炉上取得了良好的效果。
在电力行业,燃煤锅炉是主要的热能供应设备,为电力生产提供了重要的支持。
由于燃煤锅炉的氮氧化物排放严重,已经成为了电力行业面临的一个难题。
低氮燃烧技术的引入,为电力行业提供了一种有效的解决方案。
通过改造燃煤锅炉,增加低氮燃烧技术装置,能够有效降低氮氧化物排放,保障电力生产的环保要求。
在化工和钢铁行业,燃煤锅炉同样也扮演着重要的角色。
这些行业对热能的要求更高,对煤炭燃烧的要求也更严格。
低氮燃烧技术不仅能够减少氮氧化物排放,还能够提高燃煤锅炉的热效率,使得工业生产更加环保、高效。
三、低氮燃烧技术的发展趋势随着环保意识的不断提高,燃煤锅炉低氮燃烧技术的发展趋势也愈发明显。
未来,低氮燃烧技术将呈现以下几个发展趋势:1. 技术不断创新。
低氮燃烧技术在煤炭燃烧领域属于先进技术,未来将不断进行技术创新,提高其应用范围和效果。
研发更加先进的低氮燃烧器和燃烧控制系统,提高燃煤锅炉的热效率和环保指标。
燃气锅炉低氮改造方案燃气锅炉在现代工业生产中起着至关重要的作用,它们向我们提供了大量的热能,支撑着城市的发展和人们的生活。
然而,随着环境保护的重要性日益凸显,燃气锅炉的排放问题成为了我们亟待解决的难题。
为了实现可持续发展,低氮改造方案是一个有效的途径。
燃气锅炉在燃烧的过程中会产生氮氧化物(NOx)等有害气体,对大气环境和人体健康造成严重危害。
因此,为了控制和减少污染物排放,低氮燃烧技术成为了改造燃气锅炉的首选方案。
低氮改造主要包括燃烧调整、烟气再循环和燃烧器改造等措施。
首先,通过燃烧调整,可以优化燃烧过程,降低燃料的燃烧温度,控制氮气的氧化反应,从而减少NOx的生成。
其次,烟气再循环技术可以通过将烟气进行部分回收再循环,从而降低燃烧温度,减少生成NOx的机会。
最后,燃烧器改造技术可以采用分级燃烧、富氧燃烧和预混合燃烧等方法,提高燃烧效率,减少污染物排放。
燃烧调整是低氮改造中的基础工作。
我们可以通过优化燃烧参数、适当调整燃烧器结构和改进燃烧方式来降低燃料在锅炉中的燃烧温度。
此外,我们还可以针对不同燃料的特点进行调整,选择合适的燃烧方式,从而减少NOx的产生。
燃烧调整不仅可以降低NOx的排放浓度,还可以提高燃烧效率,降低能源消耗,实现节能减排目标。
烟气再循环是一项有效的低氮改造措施。
通过将部分烟气回收再循环到锅炉燃烧室,可以有效地降低燃烧温度,减少NOx的生成。
烟气再循环技术不仅可以减少污染物的排放,还可以提高燃烧效率,增加锅炉的额定功率。
同时,由于烟气再循环后,锅炉燃烧室内氧气浓度下降,可以减缓燃烧过程,降低燃烧噪声,提高环境舒适度。
燃烧器改造是低氮改造的核心技术。
我们可以采用分级燃烧技术来调整燃烧过程,使燃料在燃烧器中得到充分混合和燃烧,降低燃烧温度,减少NOx的生成。
此外,富氧燃烧技术可以通过提供充足的氧气,优化燃烧过程,从而减少污染物的排放。
预混合燃烧技术则可以将燃料和空气充分混合,形成均匀的燃烧气体,减少局部高温燃烧,降低NOx的生成。
燃煤锅炉低氮燃烧技术摘要:燃煤在锅炉实际燃烧过程中会产生氮氧化物,如果没有进行全面性的优化改造,会造成氮氧化物的排放量持续增多,对人们的生存环境也会造成较大的影响。
在当前的环保情况下,低氮燃烧技术在燃煤锅炉中的应用应该进行积极的优化。
针对氮氧化物的实际生成以及排放等进行全面的控制,最终促进工业的良好的发展。
本文将针对低氮燃烧技术在燃煤锅炉中的应用进行针对性的探讨。
关键词:低氮燃烧技术;燃煤锅炉;环保随着经济的发展,社会的进步,低氮燃烧技术在燃煤锅炉中的应用受到了广泛的关注。
在工业生产中锅炉占有重要的地位,同时发挥着重要的作用,在实际运行中会消耗大量的燃料,进而释放出一些含有氮氧化物的废气。
如果这些物质没有经过精细化的处理,对环境会造成一定的污染。
在当前节能环保政策影响下,燃煤锅炉开始向低氮燃烧技术方式发展,同时将先进技术应用其中,进而降低氮氧化物的实际排放,在真正意义上能够提高锅炉的实际燃烧效率,对环境也具有一定的保护作用。
1、燃煤锅炉在燃烧过程中生成NOX的原理煤炭在燃烧的过程中,会产生NO和NO2等氮氧化物。
通常情况下,把NO和NO2合称为NOX。
一般来说,NOX的生成方式有三种,分别为燃烧生成方式、高温氧化生成方式及快速生成方式。
燃烧生成方式,指的是燃料当中存在氮化合物,在燃料燃烧的过程当中,形成NOX。
高温氧化生成方式,指的是空气中的氮气在高温状态之下,氧化形成NOX。
快速生成方式,指的是燃料在燃烧时,空气中的氮和燃料中的碳氢原子团反应形成NOX。
2、低氮燃烧技术具体分类低氮燃烧技术主要是将燃烧反应温度降低,同时将过量空气系数不断减少,进而能够将烟气在高温区中的实际停留时间不断缩短,最终将NOX进行全面性的控制。
在当前降低燃煤锅炉NOX排放量中是最为主要的方式。
对于低氮燃烧技术来讲工艺较为成熟,同时实际的投资以及相关的运行费用较低,因此在火电厂中的NOX实际排放控制具有较好的应用。
在当前形势下针对低氮燃烧技术具有以下几种分类。
锅炉低氮燃烧技术优化改造施工方案编制:同意:审核:响应国家“节能减排”号召,计划对其135MW燃煤锅炉进行低NOx燃烧技术改造,锅炉本体采用钢筋混凝土构造,П型露天布置、固态排渣及平衡通风,采用中储式钢球磨煤机制粉系统,热风送粉四角直流燃烧器燃烧系统。
一、改造范围根据锅炉燃烧器改造要实现旳效果,本方案波及如下范围内旳改造:1.四角三层一次风室整体旋转2度;切园由∅300变化为∅ 7602.更换上二次风、中上二次风、中下二次风、下二次风4层,四角合计16件二次风喷口。
3.中上二次风位置旳三次风更换新三次风室后移位安装于下二次风位置,四角合计8件4.箱壳、保温改造4角5.更换上下三次风室组件8套6.三次风管路改造4角二层7.一次风管路改造4角三层8.Sofa燃烧器移位4角9.Sofa风道改造4角10.Sofa管屏改造4角11.辅助设备电缆等移位4角二、施工工艺及措施1 25T汽车吊及卷扬机布置工序卡1.1用25T吊车将新旧设备吊运至9m层。
1.2在9m层平台设置四台3t卷扬机,详细布置按现场吊装需要确定。
2 旧燃烧器拆除工序卡2.1在炉膛旳水冷壁转折角上部搭设脚手架,水冷壁早标高位置用切割机切割并且封堵。
2.2按照设计规定,对旧燃尽风做保护性拆除,首先拆除一次风弯头和煤粉管弯头部分,并将开口部分密封;2.3拆除旳旧燃烧器喷口及弯头移至电厂指定位置放置。
3 新燃烧器检查工序卡3.1新燃烧器及水冷壁管抵达现场后,首先对其进行外观检查,核算其水冷壁长度,确定炉膛燃烧器放置处旳开口尺寸;3.2对角线检查燃烧器水冷壁部分与否方正,检查水冷壁管排有无明显损伤,检查各部位旳焊接状况,有无漏焊或焊接质量过差旳问题,及时对其修整;3.3对水冷壁管进行通球试验;3.43.5检查其顶部吊耳构造,在合适位置焊接合适吊耳,用作寄存时栓挂。
4 煤粉管、扶梯平台拆除工序卡4.1燃烧器重要是通过其下部旳通道起升到就位位置,因此根据燃烧器构造尺寸,确定下部需要切割旳钢构造;4.2对9m层旳煤粉管弯头部分拆除。
燃煤锅炉得低NOx燃烧技术NOx就是对N2O、NO2、NO、N2O5以及PAN等氮氧化物得统称。
在煤得燃烧过程中、NO x生成物主要就是NO与NO2、其中尤以NO就是最为重要。
实验表明、常规燃煤锅炉中NO生成量占NOx总量得90%以上、NO2只就是在高温烟气在急速冷却时由部分NO转化生成得。
N2O之所以引起关注、就是由于其在低温燃烧得流化床锅炉中有较高得排放量、同就是与地球变暖现象有关、对于N2O得生成与抑制得内容我们将结合流化床燃烧技术进行介绍。
因此在本章得讨论中、NOx即可以理解为NO与NO2.一、燃煤锅炉NO x得生成机理根据NOx中氮得来源及生成途径、燃煤锅炉中NOx得生成机理可以分为三类:即热力型、燃料型与快速型、在这三者中、又以燃料型为主。
它们各自得生成量与炉膛温度得关系如图3-1所示。
试验表明、燃煤过程生成得NO x中NO占总量得90%、NO2只占5%~10%.1、热力型NO x热力型NO x就是参与燃烧得空气中得氮在高温下氧化产生得、其生成过程就是一个不分支得链式反应、又称为捷里多维奇(Zeldovich)机理(3-1)(3-2)(3-3)如考虑下列反应(3-4)则称为扩大得捷里多维奇机理。
由于N≡N三键键能很高、因此空气中得氮非常稳定、在室温下、几乎没有NOx生成。
但随着温度得升高、根据阿仑尼乌斯(Arrhenius)定律、化学反应速率按指数规律迅速增加。
实验表明、当温度超过1200℃时、已经有少量得NOx生成、在超过1500℃后、温度每增加100℃、反应速率将增加6~7倍、NO x得生成量也有明显得增加、如图3-1所示.但总体上来说、热力型NOx得反应速度要比燃烧反应慢、而且温度对其生成起着决定性得影响。
对于煤得燃烧过程、通常热力型NO x不就是主要得、可以不予考虑。
一般来说通过降低火焰温度、控制氧浓度以及缩短煤在高温区得停留时间可以抑制热力型NO x得生成。
2、快速型NOx快速型NO x中得氮得来源也就是空气中得氮、但它就是遵循一条不同于捷里多维奇机理得途径而快速生成得。
浅谈低氮燃烧技术及其改造方法针对某公司热电厂现有4号燃煤锅炉氮氧化物排放浓度超标的问题,浅谈燃烧过程中氮氧化物的生成机理、及采取的低氮燃烧技术改造措施。
通过文章的分析,希望对相关工作起到指导意义标签:低氮燃烧技术;生成机理;燃烧分级技术;空气分级燃烧技术;低氮燃烧器1 概述根据《国家环境保护“十二五”规划》和新的《火电厂大气污染物排放标准》(GB13223-2011)的要求,现有火力发电锅炉自2014年7月1日起,氮氧化物排放浓度限值为100mg/Nm3。
乌鲁木齐某公司热电厂现有4号燃煤锅炉(410t/h),氮氧化物排放浓度高达750mg/Nm3,已严重超标,必须对其进行脱硝技术改造。
锅炉脱硝技术实质就是控制燃料燃烧过程中NOx污染的产生或减少因燃烧产生的烟气中NOx污染的减量技术。
燃料燃烧的生命周期可分为燃烧前、燃烧中和燃烧后三个主要阶段,因此,锅炉脱硝实质就是控制燃烧前、燃烧中或燃烧后的NOx污染。
目前有关降低NOx的控制技术大致可分为两类,炉内脱氮和尾部脱氮。
炉内脱氮即低氮NOx燃烧技术,是降低燃煤锅炉氮氧化物排放最主要也是比较成熟的技术措施。
2 燃煤锅炉燃烧过程NOx的生成机理NOx主要是通过热力型NOx、燃料型NOx和快速型NOx三种途径生成的,并且都在煤燃烧过程中出现。
2.1 快速型NOx快速型NOx是由燃料挥发物中的碳氢化合物高温分解生成的CH自由基和空气中氮反应生成的HCN和N,再进一步与氧作用以极快的反应速率生成NO,它的生成与温度关系不大。
对于煤粉锅炉快速型NOx仅占NOx总排放量的5%左右。
2.2 热力型NOx热力型NOx是由于燃烧用助燃剂空气中的氮在高温下氧化而产生的,反应过程如下:N+O2=NO+O(t>816℃);O+N2=NO+N(t>1530℃)其中,NO与氧进一步氧化生成NO2。
热力型NOx是随燃烧温度的升高呈指数规律增加,占NOx总排放量的20~50%。