工程力学课后习题答案第四章 平面任意力系
- 格式:doc
- 大小:10.84 KB
- 文档页数:5
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞车D上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
第一章 静力学基本概念与物体的受力分析下列习题中,未画出重力的各物体的自重不计,所有接触面均为光滑接触。
1.1 试画出下列各物体(不包括销钉与支座)的受力图。
解:如图(g)(j)P (a)(e)(f)WWF F A BF DF BF AF ATF BA画出下列各物体系统中各物体(不包括销钉与支座)以及物体系统整体受力图。
解:如图F BB(b)(c)C(d)CF D(e)AFD(f)FD(g)(h)EOBO E F O(i)(j) BYFB XBFXE(k)铰链支架由两根杆AB、CD和滑轮、绳索等组成,如题图所示。
在定滑轮上吊有重为W的物体H。
试分别画出定滑轮、杆CD、杆AB和整个支架的受力图。
解:如图'D题图示齿轮传动系统,O1为主动轮,旋转方向如图所示。
试分别画出两齿轮的受力图。
解:1o xF2o xF2o yF o yFFF'结构如题图所示,试画出各个部分的受力图。
解:第二章 汇交力系在刚体的A 点作用有四个平面汇交力。
其中F 1=2kN ,F 2=3kN ,F 3=lkN , F 4=,方向如题图所示。
用解析法求该力系的合成结果。
解 00001423cos30cos45cos60cos45 1.29Rx F X F F F F KN ==+--=∑ 00001423sin30cos45sin60cos45 2.54Ry F Y F F F F KN ==-+-=∑2.85R F KN ==0(,)tan63.07Ry R RxF F X arc F ∠==题图所示固定环受三条绳的作用,已知F 1=1kN ,F 2=2kN ,F 3=。
求该力系的合成结果。
解:图示可简化为如右图所示023cos60 2.75Rx F X F F KN ==+=∑ 013sin600.3Ry F Y F F KN ==-=-∑2.77R F KN ==0(,)tan6.2Ry R RxF F X arc F ∠==-力系如题图所示。
4-1试求题4.1图所示各梁支座的约束力。
设力的单位为kN,力偶矩的单位为kN・m,长度单位为m,分布载荷集度为kN/m o(提示:计算非均布载荷的投影和与力矩和时需应用积分)。
解:(b): (1)整体受力分析,画出神图(平面慝力系);20I ill IM=S Z A兀.。
."(2)选坐标系Axy,列出平衡力程;0.8 错误!不能通过编辑域代码创建对象。
0.4r B0.4错误!不能通过编辑域代码创建对象。
错误!不能通过编辑域代码创建对象。
约束力的方向如图所示。
(c): (1)研究AB杆,受力分析,画出受力图(平面任意力系);M=3F A X(2)选坐标系Axy,列出平翩邱;1 错误!不能通过编辑域代码创痂瓦q =2 : 2xdxX错误!不能通过编辑域代码创建对象。
错误!不能通过编辑域代码创建对象。
约束力的方向如图所示。
(e): (1)研究CABD杆,受力分析,画出受力图(平面任意力系);(2)选坐标系Axy,列出平衡方程;错误!不能通过编辑域代码创建对象。
错误!不能通过编辑域代码创建对象。
错误!不能通过编辑域代码创建对象。
约束力的方向如图所示。
4-16由AC 和CD 构成的复合梁通过饺链C 连接,它的支承和受力如题4-16图所示。
已知 均布载荷集度q=10 kN/m,力偶M=40 kN-m, a=2 m,不计梁重,试求支座A 、B 、D 的约 束力和钗链C 所受的力。
qrrrrprn履F _寂c_瀛 解:(1)研究CD 杆,受力分析,画出受力图(平面平行力加y qax9mlnc⑵选坐标系Cxy,列出平衡方程;Fc 错误!不能通过编辑域代码创建对象。
错误!不能通过编辑域代码创建对象。
⑶ 研究ABC 杆,受力分析,画出受力图(平面平行力系);AOy qdxTS I T TXqdx C XF'c (4)选坐标系Bxy,列出平衡方程救错误!不能通过编辑域代码创建对象匚 错误!不能通过编辑域代码创建对象。
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2—2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2—3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2—5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2—6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2—7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2—9解:各处全为柔索约束,故反力全为拉力,以D,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2—10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2—11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
第四章 平面任意力系习 题4.1 重W ,半径为r 的均匀圆球,用长为L 的软绳AB 及半径为R 的固定光滑圆柱面支持如图,A 与圆柱面的距离为d 。
求绳子的拉力T F 及固定面对圆球的作用力N F 。
题4.1图F TyxOF N解:软绳AB 的延长线必过球的中心,力N F 在两个圆球圆心线连线上N F 和T F 的关系如图所示:AB 于y 轴夹角为θ 对小球的球心O 进行受力分析:0,sin cos TNX F F θθ==∑ 0,cos sin T NY F F W θθ=+=∑sin R rR d θ+=+ cos L rR dθ+=+ ()()()()22T R d L r F W R r L r ++=+++()()()()22NR d R r F W R r L r ++=+++4.2 吊桥AB 长L ,重1W ,重心在中心。
A 端由铰链支于地面,B 端由绳拉住,绳绕过小滑轮C 挂重物,重量2W 已知。
重力作用线沿铅垂线AC ,AC =AB 。
问吊桥与铅垂线的交角θ为多大方能平衡,并求此时铰链A 对吊桥的约束力A F 。
题4.2图A yF A xF解:对AB 杆件进行受力分析:120,sin cos 022A L M W W L θθ=-=∑ 解得:212arcsinW W θ= 对整体进行受力分析,由:20,cos02Ax X F W θ=-=∑2cos2Ax F W θ=210,sin02Ay Y F W W θ=+-=∑22121Ay W W F W +=4.3 试求图示各梁支座的约束力。
设力的单位为kN ,力偶矩的单位为kN ·m ,长度单位为m ,分布载荷集度为kN /m 。
(提示:计算非均布载荷的投影和与力矩和时需应用积分。
)题4.3图解:AyF AxF ByAxF AyF ByFBAxF AyF AyF Ax F AM(a )受力如图所示0,0.8cos300AxX F =-=∑ 0,0.110.80.150.20AByM F=⨯+⨯-=∑0,10.8sin300Ay By Y F F =+--=∑0.43, 1.1,0.3Ax By Ay F KN F KN F KN ===(b )受力如图所示0,0.40AxX F =+=∑0,0.820.5 1.60.40.720AByM F=⨯-⨯-⨯-=∑0,20.50Ay By Y F F =+-+=∑0.4,0.26,0.24Ax By Ay F KN F KN F KN =-==(c )受力如图所示0,sin300AxBX F F =-=∑ 0,383cos300ABM F =+-=∑ 0,cos3040AyBY F F =+-=∑2.12, 4.23,0.3Ax By Ay F KN F KN F KN ===(d )受力如图所示()()133q x x =- 0,0AxX F==∑()()33010,3 1.53Ay Y F q x dx x dx KN ===-=∑⎰⎰()30,0A A M M xq x dx =+=∑⎰()3013 1.53A M x x dx KN m =-=-•⎰4.4 露天厂房立柱的底部是杯形基础。
第四章 平面任意力系习 题4.1F TyxOF N解:软绳AB 的延长线必过球的中心,力N F 在两个圆球圆心线连线上N F 和T F 的关系如图所示:AB 于y 轴夹角为θ 对小球的球心O 进行受力分析:0,s i n c o sT NXF F θθ==∑ 0,cos sin T N Y F F W θθ=+=∑ s i n R r R dθ+=+ c o s L r R dθ+=+()()()()22T R d L r F W R r L r ++=+++ ()()()()22N R d R r F W R r L r ++=+++4.2。
AyF AxF 解:对AB 杆件进行受力分析:120,sin cos022AL MW W L θθ=-=∑解得: 212a r c s i n WW θ=对整体进行受力分析,由:20,c o s 02A x X F W θ=-=∑210,sin 02A y YF W W θ=+-=∑ 22121Ay W W F W +=4.3 解:A yF A xF B yA xF A yF B yFBA xF A yF A xF AM(a )受力如图所示0,0.8cos 300AxX F =-=∑0,0.110.80.150.20ABy MF =⨯+⨯-=0,10.8sin 300AyBy Y FF =+--=∑, 1.1,0.3Ax By Ay F F KN F KN ===(b )受力如图所示0,0.40AxX F =+=∑0,0.820.5 1.60.40.720ABy MF =⨯-⨯-⨯-=∑0,20.50AyBy Y F F =+-+=∑ 0.4,0.26,0.24Ax By Ay F K N F K N F K N =-==(c )受力如图所示0,sin 300AxB X F F =-=∑0,383cos 300AB MF =+-=∑0,cos 3040AyB Y FF =+-=∑2.12, 4.23,0.3Ax By Ay F K N F K N F K N ===(d )受力如图所示()()133q x x =- 0,0Ax X F ==∑()()33010,3 1.53A y YF q x dx x dx K N ===-=∑⎰⎰()30,0AA M M xq x dx =+=∑⎰()3013 1.53AMx x dx K N m =-=-∙⎰4.4AyF解:立柱底部A 处的受力如图所示,取截面A 以上的立柱为研究对象0,0AxX F qh =+=∑ 20Ax F qh K N =-=-0,0AyY F G F =--=∑ 100Ay F G F K N =+=0,0hA A M M qxdx Fa =--=∑⎰ 211302AMqh F a K N m =+=⋅4.5解:设A ,B 处的受力如图所示, 整体分析,由:()210,2202AB y MaF qa W a W a e =----=∑415By F K N =0,20Ay By Y F F W qa =+--=∑ 1785A y F K N =取BC 部分为研究对象()0,0CBy Bx M aF F a W a e =+--=∑ 191Bx F K N =-再以整体为研究对象0,191Ax XF KN ==∑4.7。
1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a)B(b)(c)(d)A(e)B A(a)(b)A(c)A(d)A(e)B解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)(e)B(a)B(b)(c)F BF(a)W (c)F(b)1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
A ’ D ’B ’(d)(e)(a)F(b)W A (c)(d)F D(e)F Bx(a)(b)(c)(d)CD(e)W(f)解:1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
(a)D(b) CB(c)BF D (d)F CCD(e)WB(f)F ABF BC(a)(b)解:(a)(b)(c)(d)AF ABF ATF AF BAFCAA C(e)(e)DDC’B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:F 1F(2)211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
4日1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
(f) 节点B。
(d) (e)DBC2-32-4(2)相似关系: 几何尺寸:FF B F Adc e求出约束反力:2-6 如图所示结构由两弯杆ABC和DE构成。
构件重量不计,图中的长度单位为cm。
已知F=200 N,试求支座A和E的约束力。
3-1 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。
求在图a,b,c 三种情况下,支座A和B的约束力M1=500矩大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB。
各杆重量不计。
解:(1) 研究BC列平衡方程:(2) 研究AB (二力杆),受力如图:M 2F B4-1 试求题4-1图所示各梁支座的约束力。
设力的单位为kN ,力偶矩的单位为kN ?m ,长度单位为m和时需应用积分)解:(b):(1) );(c)(e)4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC 和A B 各重为Q ,重心在A P 立于F 处,试求绳子DE 的拉力和B 、C 解:(1)); (2) 选坐标系Bxy x(3) 研究AB ,受力分析,画出受力图(平面任意力系);A 、kN ,(a)(3) 选坐标系(a (b B(b):(1) 研究CD杆,受力分析,画出受力图(平面任意力系);=20 mm,所以桁架的强度足够。
8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A处承受铅直方向的载荷F作用,试确定钢杆的直径d与木杆截面的边宽b。
已知载荷F=50 kN,钢的许用应力[σS] =160 MPa,木的许用应力[σW] =10 MPa。
,试计AC杆缩短。
8-26 图示两端固定等截面直杆,横截面的面积为A,承受轴向载荷F作用,试计算杆内横截面上的最大拉应力与最大压应力。
解:(1)(b列平衡方程:(2) 用截面法求出AB 、BC 、CD 段的轴力; (3) 用变形协调条件,列出补充方程; 代入胡克定律; 求出约束反力:(4) 最大拉应力和最大压应力;A =300,板宽b =80 mm ,板厚δ=10 mm ,铆钉直径d =16 mm ,许用应力[σ]=160 MPa ,许用切应力[τ] =120 MPa ,许用挤压应力[σbs ] =340 MPa 。
习题解答第四章平面任意力系第四章平面任意力系
习题 4.1 yF TFNxO 解:软绳AB的延长线必过球的中心,力在两个
圆球圆心线连线上和的关系如图F FFTNN所示:AB于y轴夹角为
对小球的球心O进行受力分析:。
FAxFA y解:对AB杆件进行受力
分析:A1222 22
习题解答第四章平面任意力系W解得:2W1对整体进行受力分析,由:
Ax2222
Ay Ay21W21 4.3 解:FAxF Ax FByFFAyAyFBy M FAxF A Ax F B FAyFAy (a)受力如图所示
30
sin
(b)受力如图所示
(c)受力如图所示
NAxByAyAyB (d )
受力如图所示
0,
A304.4 23
习题解答 第四章 平面任意力系 F Ay 解:立柱
底部A 处的受力如图所示,取截面A 以上的立
柱
为研究对象
0,
m
AAA20
4.5 q eCeaWWFAaaBxBFAxFByFAy 解:设A ,B
处的受力如图所示, 整体分析,由:
取BC 部分为研究对象
ByBxCBx 再以整体为研究对象。
解: (1)取系统整
体为研究对象,画出受力如图所示。
24
习题解答第四章平面任意力系FAyFAx F F FFByFAyDyBC F FAxDx F WBy 显然,,列平衡方程:F,
,,
(2)为了求得BC杆受力,以ADB杆为研究对象,画出受力图所示。
列平衡方程
解得解得负值,说明二力杆BC
杆受压。
4.8 解:先研究整体如(a)图所示 25
习题解答第四章平面任意力系B
再研究AB部分,受力如(b)图所示0,FaFacos解得
TNB2L2h 4.9解:FAx F AxFFFFAyByFByAyDy(a)显然D处受力为0 对ACB进行受力分析,受力如图所示:Ax
(b)取CD为研究对象
DyCDy2取整体为研究对象
解:F qCyM FCx F ND先研究CD梁,如右图所示 26
习题解答第四章平面任意力系解得
再研究ABC梁,如图(b)
解得
解:去整体为研究对象,受力如图所示FEx FEx FEy F FEyFDx
取ED为研究对象,受力如图所示0,
EyDxDy33再去整体为研究
对象EyAyAy34.12。
解: 27
习题解答第四章平面任意力系F E08 F C004211FFFAxDx Ax160FFDyAyFAy 取ABC
为研究对象
取
整体为研究对象
Dy
E
解:
A 与
B 一起作为研究对象,则与地面摩擦力为
地A 与B 之间的摩擦力为
力在水平与竖直方向分解
sin
Ax
由于 所以是A 与B 相对滑动 地 4.14 解:A 与
B
之
间
的
摩
擦
力
为
: 0.3KNA
与地面之间的摩擦力为: sAB
地
地 4.17 解: W 28
习题解答 第四章 平面任意力系 设提起砖时系统处于
平衡状态,则由右图可知 接着取砖为研究对象(图
(b )),由,
可得再由 FSASDNANDSASDW
得
SASDNDNA2
最后研究曲杆AGB
,如图(c ),
由
解出
FNA 砖不下滑满足条件 由此两式可
得 。
解: F IH F FBxBH FBxF F By E FBCF By 桁架中零力杆
有
BI
,HC ,GD 所以
GD
受力为零, 以整体为研究对象
如图所示截取
左部分BHIBHBy2100220
BCHIBH33GDBHCD334.20 解:(a)1,2 (b)
1,2,5,11,13 (c) 2,3,6,7,11 4.21 29
习题解答第四章平面任意力系F1F4F8F10G
解:以G点为研究对象
HG10GE25以右部分为研究对象,受力如
图所示
48H148GH212
148224.22解:m FFAx4FF B FAy5FB F 6 整体分析
以m线截取整体之右部分
为研究对象,受力如图所示,设5杆与
杆夹角为
30。