人教版八年级上册数学 画轴对称图形
- 格式:ppt
- 大小:1.72 MB
- 文档页数:22
人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
13.2画轴对称图形例1. 传说在古罗马时代的亚历山大城有一位精通数学和物理的学者,名叫海伦。
一天,一位将军专程去拜访他,想他请叫一个百思不得其解的问题。
将军每天都从军营A出发(如图),先到河边C处饮马,然后再去河岸的同侧B开会,他应该怎样走才能使路程最短?据说当时海轮略加思索就解决了它。
C现在同学们已经学习了轴对称,可曾想过,被广为流传的“将军饮马”的问题就是用这一知识解决的。
例2. 在旷野上,一个人骑马从A处出发,他先到河边N饮水,再到草场M出放马,然后返回A地,如图,请问他应该怎样走才能使总路程最短?M例3. (1)在图3所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为;关于坐标原点O对称的两个三角形的编号为;(2)在图中,画出与△ABC关于x轴对称的△A1B1C1例.4. ..(1)...如图..1.-.1.,要在燃气管道.......l .上修建一个泵站,分别向...........A .,.B .两城镇供气泵站修在什..........么地方,可使所用的输气管线最短...............?.(2)如图1-2,公园内两条小河汇合,两河形成的半岛上有一处古迹P ,现计划在两条小河上各修建一座小桥(垂直于河岸),并在半岛上修三条小路,连通两座小桥与古迹,这两座小桥应建在何处,使修路的费用最少?(3)如图1-3,公园中有两处古迹P 和Q ,现计划在两条小河上各修建一座小桥(垂直于河岸),并在半岛上修四条小路,连通两座小桥与古迹,这两座小桥应建在何处,才能使修路的费用最少?(4)如图1-4,现有一条地铁线路l ,小区A 和小区B 在l 的同侧,已知地铁站两入口C 、D 间的长度为a 米,现设计两条路AC 、BD 连接入口和两小区地铁站入口C 、D 设计在何处,能使得修建公路AC 与BD 的费用和最少?A 档(巩固专练)1.试分别作出已知图形关于给定直线l 的对称图形.2. 如图,已知△ABC与△111A B C是轴对称图形,画出它们的对称轴.CA AC3. 如图,画出△ABC关于直线l对称的△DEF.4. 如图,在直线AB上找一点P,使PC=PD.A ADC ADC5. 如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间建一个购物超市,使超市到这三个小区的距离相等,画出表示超市的点P.,使得货运站到三条公路的路程一样长,请问如何确定货运站P 的位置?7. 如图,要在公路MN 旁修建一个货物中转站,分别向A,B 两个开发区运货. (1)若要求货物中转站到A,B 两个开发区的距离相等,那么货物中转站应建在哪里? (2)若要求货物中转站到A ,B 两个开发区的距离和最小,那么货物中转站应建在哪里?M NABM NAB8. 如图,E ,F 分别是△ABC 的边AB ,AC 上的两个定点,在BC 上求一点M ,使△MEF 周长最短.9. 在旷野上,一个人骑马从A 处出发,他先到河边N 饮水,再到草场M 出放马,然后返回A 地,如图,请问他应该怎样走才能使总路程最短?AN M10. 如图,∠AOB=30°,角内有一点P ,PO=10cm,两边上各有一点Q 、R (均不同于点O )则△PQR 的周长的最小值是__。
人教版八年级数学上册教学设计13.2 画轴对称图形一. 教材分析人教版八年级数学上册“画轴对称图形”这一节,主要让学生掌握轴对称图形的概念,学会如何寻找对称轴,并能够运用这个概念解决一些实际问题。
教材通过引入生活中的实例,激发学生的学习兴趣,接着引导学生通过观察、操作、猜想、推理等过程,体会轴对称图形的特征,最后通过一些练习题,巩固学生对知识的理解和运用。
二. 学情分析学生在七年级时已经学习了图形的变换,对图形的平移、旋转等概念有了一定的了解。
但轴对称图形与这些变换有所不同,它需要学生能够从图形中抽象出对称轴,并理解对称轴是将图形分成两个完全相同的部分。
因此,在教学过程中,需要关注学生对抽象概念的理解,以及他们能否将理论知识应用到实际问题中。
三. 教学目标1.了解轴对称图形的概念,理解轴对称图形的特征。
2.学会寻找对称轴,并能运用轴对称图形的知识解决一些实际问题。
3.培养学生的观察能力、操作能力以及抽象思维能力。
四. 教学重难点1.重点:轴对称图形的概念,对称轴的寻找。
2.难点:理解轴对称图形的特征,将理论知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,让学生在解决问题的过程中,逐渐理解并掌握轴对称图形的知识。
同时,运用观察、操作、猜想、推理等方法,引导学生主动探索,提高他们的抽象思维能力。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备一些练习题,包括基础题和拓展题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形实例,如剪纸、图片等,让学生观察并说出它们的特点。
引导学生发现这些图形都具有对称性,从而引入本节课的主题——轴对称图形。
2.呈现(10分钟)讲解轴对称图形的概念,让学生理解什么是对称轴,如何判断一个图形是否是轴对称图形。
通过一些具体例子,让学生学会寻找对称轴,并理解对称轴是将图形分成两个完全相同的部分。
人教版八年级数学上册13.2.1《画轴对称图形》说课稿一. 教材分析《画轴对称图形》是人教版八年级数学上册第13章《轴对称》的第一节内容。
本节课主要让学生掌握轴对称图形的概念,学会如何寻找对称轴,并能够运用这一概念解决实际问题。
教材通过丰富的例题和练习题,引导学生探索、发现、总结轴对称图形的性质和特点,培养学生动手操作能力和空间想象能力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的空间想象能力和逻辑思维能力。
但他们在面对抽象的轴对称概念时,可能还有一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从实际问题中抽象出轴对称图形,并通过动手操作和小组讨论,深化对轴对称图形概念的理解。
三. 说教学目标1.知识与技能目标:让学生掌握轴对称图形的概念,学会寻找对称轴,能运用轴对称图形解决实际问题。
2.过程与方法目标:通过观察、操作、讨论等环节,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:轴对称图形的概念及其性质。
2.教学难点:如何引导学生从实际问题中发现轴对称图形,并运用其解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、小组合作教学法和动手操作教学法。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学。
六. 说教学过程1.导入新课:通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生发现轴对称图形的魅力,激发学生的学习兴趣。
2.探究新知:让学生通过观察、操作、讨论等方式,探索轴对称图形的性质和特点,总结对称轴的寻找方法。
3.巩固新知:通过一系列的练习题,让学生巩固轴对称图形的概念,并能运用其解决实际问题。
4.拓展与应用:让学生运用轴对称图形解决一些实际问题,如设计轴对称图案、计算轴对称图形的面积等。
5.课堂小结:对本节课的内容进行总结,强调轴对称图形的重要性质和应用价值。
13.2 画轴对称图形第1课时作轴对称图形1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.4.通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.5.通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题 1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.第2课时用坐标表示轴对称1.能在直角坐标系中画出已知点关于坐标轴对称的点.2.能求出已知点关于坐标轴对称的点的坐标,求出已知点关于平行于坐标轴的直线对称的点的坐标.3.在找关于坐标轴对称的点的坐标之间规律并检验其正确性的过程中,培养学生的语言表达能力、归纳能力.4.在找点,绘图的过程中使学生体验数形结合思想、体验学习乐趣,养成良好的科学研究方法.【教学重点】能求出已知点关于坐标轴对称的点的坐标.【教学难点】找对称点的坐标之间的关系,规律.一、情境导入,初步认识用多媒体展示北京城风光图片,及北京城形象地图.问题1 老北京的地图(教材图13.2-3)中,西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如教材图13.2-3所示的东直门的坐标,你能找到西直门的位置和坐标吗?学生指出西直门的位置或坐标,由此指出用坐标表示轴对称,很方便确定一个地方的位置.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2(1)在直角坐标系中画出下列已知点:A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).(2)画出这些点分别关于x轴、y轴对称的点,并填写表格.(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.【归纳结论】点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.二、典例精析,掌握新知例1 已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2012的值为( ).A.0B.-1C.1D.(-3)2012出示新问题:1.如图,分别作出△PQR关于直线x=1和直线y=1对称的图形.2.试找出它们对应点的坐标.3.猜想:如果作关于直线x=3和直线y=-4对称的图形,试找出它们对应点的坐标,并总结出一般性规律.点(x,y)关于直线x=m对称点的坐标是(2m-x,y),即若两点(x1,y1),(x2,y2)关于直线x=m 对称,则m=221x x +,y 1=y 2. 点(x,y)关于直线y=n 对称点的坐标是(x,2n-y),即若两点(x 1,y 1),(x 2,y 2)关于直线y=n 对称,则x 1=x 2,n=221y y +. 例2 如图,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0),试写出点C 和点D 的坐标,并求出梯形ABCD 的面积.【分析】已知点D 与点A 关于y 轴对称,点B 和点C 关于y 轴对称,由此可推知点D,点C 的坐标.解:∵点D 与点A(-3,3)关于y 轴对称,∴点D 的坐标为(3,3).同理点C 的坐标为(2,0).故AD=|3-(-3)|=6,BC=|2-(-2)|=4,∴S 梯形=21 (AD+BC)·OE=21×(6+4)×3=15. 【教学说明】由以上例题,应让学生掌握:1.平行于x 轴的两点之间的距离等于两点横坐标差的绝对值.2.求规则图形的面积应选用平行于x 轴(或y 轴)的边为底边,求面积较方便.三、运用新知,深化理解1.说出下列各点关于x 轴,y 轴对称的点的坐标.(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出与四边形关于x 轴和y 轴对称的图形.3.在坐标系中描出点A(-1,3),B(5,-4),C(-3,-1),D(-1,1),E(-3,5),F(5,8),连接AB,BC,AC,DE,EF,DF,请你判断所得图形是轴对称图形吗?如果不是,请你说明理由;如果是,请说出对称轴.【教学说明】教师指导学生完成上述问题的解答,提示学生解题过程中注重画图找答案,体验数形结合的作用.同时,鼓励学生从实际解题中总结题中所隐含的规律.【答案】1.2.略3.图略.所得图形是轴对称图形,对称轴是y=2.四、师生互动,课堂小结教师引导学生总结本节课用坐标表示轴对称的主要解题方法和解题思路.1.已知点关于某条直线对称的点的坐标可以通过寻找线段间关系来求.2.学生表述关于x轴,y轴对称的点的坐标规律.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时采用探究、发现式的教学方法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,可培养学生观察、归纳、分析问题解决问题的能力,并通过研究线段之间关系发现对称点的坐标之间的关系,从中体验数形结合思想,教学中应让学生认识到寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤.。
13.2画轴对称图形知识要点:1.找特殊点对画轴对称图形极为重要,除线段的端点外,线与线的交点也是画图过程中的特殊点.2.对称轴上任一点的对称点是它本身.3.关于谁对称谁不变,即若关于x轴对称,则横坐标x的值不变,简记为“横同纵反”;若关于y轴对称,则纵坐标y的值不变,简记为“纵同横反”.4.在坐标系中画关于坐标轴对称的图形的“四字诀”(1)找:在直角坐标系中,找出已知图形中的一些特殊点(如多边形的顶点)的坐标.(2)求:求出其对应点的坐标.(3)描:根据所求坐标,描出对应点.(4)连:根据原图形的连接方式顺次连接这些对应点,就可以得到与这个图形关于坐标轴对称的图形.一、单选题1.如图,在3×2的正方形网格中,已有两个小正方形被涂上了阴影,再将图中其余小正方形任意一个涂上阴影,使整个阴影部分构成一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种【答案】C2.如图所示是由同样大小的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上,在网格上画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A.5个B.4个C.3个D.2个【答案】A3.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个【答案】C4.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.3【答案】A5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有( )A.2个B.3个C.4个D.5个【答案】C6.如图,给出了一个轴对称图形的一半,其中虚线是这个图形的对称轴,请你猜想整个图形是( )A.三角形B.长方形C.五边形D.六边形【答案】D7.如图,△COB是由△AOB经过某种变换后得到的图形,请同学们观察A与C两点的坐标之间的关系,若△AOB内任意一点P的坐标是(a,b),则它的对应点Q的坐标是( ).A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)【答案】D8.点(4,3)与点(4,-3)的关系是A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系【答案】B9.下列所示的四个银行的行标图案中,不是利用轴对称设计的图案是【】A.A B.B C.C D.D【答案】A10.已知点A的坐标为(-2,3),点B的坐标为(0,1),则点A关于点B的坐标为()A.(-2,2 )B.(2,-3 )C.(2,-1 )D.(2,3 )【答案】C11.下列图形中,线段AB和A’B’ (AB=A’B’)不关于直线l对称的是()A.B.C.D.【答案】A12.已知xy≠0,则坐标平面内四个点A(x,y),B(x,-y),C(-x,y),D(-x,-y)中关于y轴对称的是( )A.A与C,B与D B.A与B,C与DC.A与D,B与C D.A与B,B与C【答案】A二、填空题13.点A(-1,-3)关于x轴对称点的坐标是_______ ;关于原点对称的点坐标是__________.【答案】(-1,3)(1,3)14.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是______.【答案】(16,1+√3).15.已知点M(-12,3m)关于原点对称的点在第一象限,那么m的取值范围是____________.【答案】m<016.已知点P(a,3)和P’(-4,b)关于原点对称,则(a+b)的值为__________.【答案】117.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.【答案】318.如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),则点M和点N的坐标分别为M__________,N _________.【答案】(-1,-3)、(1,-3)19.如果点P(-2,b)和点Q(a,-3)关于x轴对称,则a+b的值为_____.【答案】1三、解答题20.如图,是一个轴对称图形,请画出它的对称轴.解:所作对称轴如图所示.21.在图中分别以△AOB的两边所在直线为对称轴,画出点P的对称点.如图所示,点P′,P″即为所求.22.如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.【答案】A′(8,3),B′(8,5),C′(2,5)小红旗关于y轴的轴对称图形如图所示:()()(),,,'83,'85,'25.A B C23.如图,在正方形网格上有一个△ABC.(1)画出△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.(1)如图所示:(2)S=6×4-12×4×2-12×4×1-12×6×3=9.24.已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若△BAC=2△MPC,请你判断△F与△MCD的数量关系,并说明理由.解:(1)证明:∵∵ABM与∵ACM关于直线AF成轴对称,∵∵ABM∵∵ACM,∵AB=AC,又∵∵ABE与∵DCE关于点E成中心对称,∵∵ABE∵∵DCE,∵AB=CD,∵AC=CD;(2)∵F=∵MCD.理由:由(1)可得∵BAE=∵CAE=∵CDE,∵CMA=∵BMA,∵∵BAC=2∵MPC,∵BMA=∵PMF,∵设∵MPC=α,则∵BAE=∵CAE=∵CDE=α,设∵BMA=β,则∵PMF=∵CMA=β,∵∵F=∵CPM−∵PMF=α−β,∵MCD=∵CDE−∵DMC=α−β,∵∵F=∵MCD.。