中考总复习专题--折叠问题
- 格式:ppt
- 大小:353.54 KB
- 文档页数:23
DC E FD 'C 'B 'D A B C M EF 中考数学中的折叠问题 为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。
几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等。
有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。
由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。
例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。
已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。
根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。
专题08 折叠问题平面直角坐标系中的折叠问题,蕴含了丰富的数形结合思想和转化思想.解决这类问题的关键,是利用对称性将问题转化到直角三角形中,然后用勾股定理或相似三角形的知识求解.平面直角坐标系中的折叠问题是正在悄然兴起的一个中考热点,因为在平面直角坐标系中,几何图形的位置和大小都可以用"数"来表示,折叠问题又涉及全等变换和轴对称问题.而对于折叠问题,学生并不陌生,但在直角坐标系中,必然涉及直线的解析式和点的坐标,难度加大了,综合性增强了,数形结合思想更加显现,因而更加受到中考出题者的青睐。
本专题主要从折叠入手,经过学生的强化训练受到更多的启发。
一、单选题1.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,则B ’点的坐标为( ).A .(2,) B .(,) C .(2,) D .(,)2.如图,在平面直角坐标系中,四边形OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB=60°,沿CP 折叠正方形,折叠后,点B 落在平面内点'B 处,则'B 点的坐标为( )A .(2,2)B .(32,3)C .(2,4-D .(32,4-) 3.在平面直角坐标系中,将点P (-2,0)沿直线y x =折叠得到点Q,则点Q 的坐标为( )A .(2(0(B .(0(2(C .(-2(-2(D .(0(-2(4.如图,把长方形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将纸片OABC 沿AC 折叠,使点B 落在点D 的位置,AD 与y 轴交于点E ,若()1,2B ,则OE 的长为( ) A .1 B .34 C .23 D .45二、填空题5.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,已知AD=3,当点F 为线段OC 的三等分点时,点E 的坐标为_____.7.如图,在平面直角坐标系中,长方形OABC 各顶点的坐标分别为(0,0)O ,(5,0)A ,(0,3)C .将长方形OABC 沿CE 折叠,使B 点落在x 轴上B '处,则点E 的坐标为__________.8.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.9.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若8OA =,4CF =,则点E 的坐标是__________.10.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 、y 轴上,连接AC ,将纸片OABC 沿AC 折叠,使点B 落在点D 的位置.若点B 的坐标为(2,4),则点D 的横坐标是___________.11.如图平面直角坐标系中,((B(8(0).将(OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处,若OE=3211,则CE(DE 的值是 (12.把一张两边长分别为2、1的矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴正半轴上,将纸片OABC 沿对角线OB 折叠,使点A 落在A '的位置上,则点A '的坐标为_______. 13.如图,将矩形纸片ABCD 放入以BC 所在直线为x 轴,BC 边上一点O 为坐标原点的直角坐标系中,连结OD ,将纸片ABCD 沿OD 折叠,使得点C 落在AB 边上点C'处,若AB 5=,BC 3=,则点C 的坐标为______.14.如图,有一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA =6,OC =10,如图,在OA 上取一点E ,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点处,则点E 的坐标为_______。
年中考数学专题复习:折叠题1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将∠DEF 沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF∠EN;③∠BEN是等边三角形;④S∠BEF=3S∠DEF.其中,将正确结论的序号全部选对的是()A.①②③B.①②④C.②③④D.①②③④解答:解:∠四边形ABCD是矩形,∠∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM∠BE,CF∠BC,∠BF平分∠EBC,∠CF=MF,∠DF=CF;故①正确;∠∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∠∠BFM=∠BFC,∠∠MFE=∠DFE=∠CFN,∠∠BFE=∠BFN,∠∠BFE+∠BFN=180°,∠∠BFE=90°,即BF∠EN,故②正确;∠在∠DEF和∠CNF中,,∠∠DEF∠∠CNF(ASA),∠EF=FN,∠BE=BN,但无法求得∠BEN各角的度数,∠∠BEN不一定是等边三角形;故③错误;∠∠BFM=∠BFC,BM∠FM,BC∠CF,∠BM=BC=AD=2DE=2EM,∠BE=3EM,∠S∠BEF=3S∠EMF=3S∠DEF;故④正确.故选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④∠BEG和∠HEG的面积相等;⑤若,则.A.2个B.3个C.4个D.5个解答:解:①由折叠的性质可知∠DEF=∠GEF,∠EB为∠AEG的平分线,∠∠AEB=∠GEB,∠∠AED=180°,∠∠BEF=90°,故正确;②可证∠EDF∠∠HCF,DF>CF,故DE≠CH,故错误;③只可证∠EDF∠∠BAE,无法证明BE=EF,故错误;④可证∠GEB,∠GEH是等腰三角形,则G是BH边的中线,∠∠BEG和∠HEG的面积相等,故正确;⑤过E点作EK∠BC,垂足为K.设BK=x,AB=y,则有y2+(2y﹣2x)2=(2y﹣x)2,解得x1=y(不合题意舍去),x2=y.则,故正确.故正确的有3个.故选B.点评:本题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.如图,矩形ABCD中,E是AD的中点,将∠ABE沿BE折叠后得到∠GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3B.2C.2D.2解答:解:过点E作EM∠BC于M,交BF于N,∠四边形ABCD是矩形,∠∠A=∠ABC=90°,AD=BC,∠∠EMB=90°,∠四边形ABME是矩形,∠AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∠EG=BM,∠∠ENG=∠BNM,∠∠ENG∠∠BNM(AAS),∠NG=NM,∠CM=DE,∠E是AD的中点,∠AE=ED=BM=CM,∠EM∠CD,∠BN:NF=BM:CM,∠BN=NF,∠NM=CF=,∠NG=,∠BG=AB=CD=CF+DF=3,∠BN=BG﹣NG=3﹣=,∠BF=2BN=5,∠BC===2.故选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN∠BE于N.则下列结论:①BG=DE 且BG∠DE;②∠ADG和∠ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的是()A.③④B.①②③C.①②④D.①②③④解答:解:由两个正方形的性质易证∠AED∠∠AGB,∠BG=DE,∠ADE=∠ABG,∠可得BG与DE相交的角为90°,∠BG∠DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∠四边形ADQG是平行四边形;作CW∠BE于点W,FJ∠BE于点J,∠四边形CWJF是直角梯形;∠AB=DA,AE=DQ,∠BAE=∠ADQ,∠∠ABE∠∠DAQ,∠∠ABE=∠DAQ,∠∠ABE+∠BAH=∠DAQ+∠BAH=90°.∠∠ABH是直角三角形.易证:∠CWB∠∠BHA,∠EJF∠∠AHE;∠WB=AH,AH=EJ,∠WB=EJ,又WN=NJ,∠WN﹣WB=NJ﹣EJ,∠BN=NE,③正确;∠MN是梯形WGFC的中位线,WB=BE=BH+HE,∠MN=(CW+FJ)=WC=(BH+HE)=BE;易证:∠ABE∠∠DAQ(SAS),∠AK=AQ=BE,∠MN∠AK且MN=AK;四边形AKMN为平行四边形,④正确.S∠ABE=S∠ADQ=S∠ADG=S∠ADQG,②正确.所以,①②③④都正确;故选D.点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.如图,在∠ABC中,∠C=90°,将∠ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∠AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.解答:解:连接CD,交MN于E,∠将∠ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∠MN∠CD,且CE=DE,∠CD=2CE,∠MN∠AB,∠CD∠AB,∠∠CMN∠∠CAB,∠,∠在∠CMN中,∠C=90°,MC=6,NC=,∠S∠CMN=CM•CN=×6×2=6,∠S∠CAB=4S∠CMN=4×6=24,∠S四边形MABN=S∠CAB﹣S∠CMN=24﹣6=18.故选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是∠ABC的AC边上一点,AB=AC,BD=BC,将∠BCD沿BD折叠,顶点C 恰好落在AB边的C′处,则∠A′的大小是()A.40°B.36°C.32°D.30°解答:解:连接C'D,∠AB=AC,BD=BC,∠∠ABC=∠ACB=∠BDC,∠∠BCD沿BD折叠,顶点C恰好落在AB边的C′处,∠∠BCD=∠BC'D,∠∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∠四边形BCDC'的内角和为360°,∠∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∠∠A=180°﹣∠ABC﹣∠ACB=36°.故选B.点评:本题考查了折叠的性质,解答本题的关键是掌握翻折前后的对应角相等,注意本题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.如图,已知∠ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把∠ABC沿AD翻折使AB与AC重合,得∠AB′D,则∠ABC与∠AB′D重叠部分的面积为()A.B.C.3﹣D.解答:解:过点D作DE∠AB′于点E,过点C作CF∠AB,∠∠ABC中,∠CAB=∠B=30°,AB=2,∠AC=BC,∠AF=AB=,∠AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∠∠B′CD=∠CAB+∠B=60°,∠∠CDB′=90°,∠B′C=AB′﹣AC=2﹣2,∠CD=B′C=﹣1,B′D=B′C•cos∠B′=(2﹣2)×=3﹣,∠DE===,∠S阴影=AC•DE=×2×=.故选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.如图,已知∠ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把∠ABC沿AD翻折,使AB与AC重合,得∠AED,则BD的长度为()A.B.C.D.解答:解:作CF∠AB于点F.∠∠CA B=∠B∠AC=BC,∠BF=AB=,在直角∠BCF中,BC==2,在∠CD E中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∠∠CDE=90°,设BD=x,则CD=DE=2﹣x,在直角∠CDE中,tanE===tan30°=,解得:x=3﹣.故选B.点评:本题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.如图,在Rt∠ABC中,∠C=90°,AC=,BC=1,D在AC上,将∠ADB沿直线BD翻折后,点A落在点E处,如果AD∠ED,那么∠ABE的面积是()A.1B.C.D.解答:解:∠∠C=90°,AC=,BC=1,∠AB==2,∠∠BAC=30°∠∠ADB沿直线BD翻折后,点A落在点E处,∠BE=BA=2,∠BED=∠BAD=30°,DA=DE,∠AD∠ED,∠BC∠DE,∠∠CBF=∠BED=30°,在Rt∠BCF中,CF==,BF=2CF=,∠EF=2﹣,在Rt∠DEF中,FD=EF=1﹣,ED=FD=﹣1,∠S∠ABE=S∠ABD+S∠BED+S∠ADE=2S∠ABD+S∠ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选A.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。
中考专题折叠题型25道一.试题(共25小题)1.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.2.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是()A.6﹣2B.3C.2D.6+23.如图,点E是矩形ABCD的边BC上的点,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C1、D1处,且点C1、D1、B在同一条直线上,折痕与边AD交于点F,D1F与BE 交于点G.若AB=,那么△EFG的周长为()A.4B.2+2C.D.64.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,则tan∠ECF=()A.B.C.D.5.如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.6.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN =1,则OD的长为()A.B.C.D.7.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A.6B.5C.4D.38.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,把它沿CE折叠,使点B落在AD上的B′处,点F 在折痕CE上且F到AD的距离与F到点B的距离相等.则点F到AD的距离是()A.3B.4C.D.59.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.10.如图,在边长为4的正方形ABCD中,E为AB边的中点,F是BC边上的动点,将△EBF沿EF所在直线折叠得到△EB'F,连接B'D.则当B'D取得最小值时,tan∠BEF的值为.11.已知矩形ABCD中,AB=4,AD=7,点E是边AD上的点,点F是边DC上的点,分别沿BE,EF折叠得到点A1,D1,恰好使D1落在BC上,且E,A1,D1同线,AE>2,则AE=()A.B.C.D.12.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A,折痕为DE.若将∠B 沿EA'向内翻折,点B落在DE上,记为B',则AB的长为()A.B.1C.2D.13.如图,正方形纸片ABCD的边长为15,E、F分别是CD、AD边上的点,连接AE,把正方形纸片沿BF 折叠,使点A落在AE上的一点G,若CE=7,则GE的长为.14.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为.15.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+216.如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()A.B.C.D.217.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E为AC、BC上两个动点,若将∠C沿DE 折叠,使点C的对应点C′落在AB上,且△ADC′恰好为直角三角形,则此时CD的长为()A.B.C.或D.或18.如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为.19.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD 沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为.20.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.421.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是.22.如图,在边长为8的正方形纸片ABCD中,E是边BC上的一点,BE=6,连结AE,将正方形纸片折叠,使点D落在线段AE上的点G处,折痕为AF,则DF的长为()A.2B.3C.4D.523.如图,已知△ABC中,∠A=90°,AB=AC,AB=3+3,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.24.如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA’,则△CGA'的周长的最小值为.25.如图,矩形ABCD中,AB=6,BC=8.点E、F分别为边BC、AD上一点,连接EF,将矩形ABCD 沿着EF折叠,使得点A落到边CD上的点A'处,且DA'=2A'C,则折痕EF的长度为()A.3B.2C.D.中考专题折叠题型25道参考答案与试题解析一.试题(共25小题)1.【解答】解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt△A'CB中,A'C8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x,在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2,在Rt△ABE中,根据勾股定理得,BE2,∴sin∠ABE,故答案为:.2.【解答】解:如图,连接EC,∵四边形ABCD为矩形,∴∠A=∠D=90°,BC=AD=12,DC=AB=3,∵E为AD中点,∴AE=DE AD=6,由翻折知,△AEF≌△GEF,∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,∴GE=DE,∴EC平分∠DCG,∴∠DCE=∠GCE,∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,∴∠GEC=∠DEC,∴∠FEC=∠FEG+∠GEC180°=90°,∴∠FEC=∠D=90°,又∵∠DCE=∠GCE,∴△FEC∽△EDC,∴,∵EC3,∴,∴FE=2,方法二:易得△EDC≌△EGC(HL),∴CD=CG=3,由勾股定理可得:(FG+GC)2=FB2+BC2,解得:FG=2,∴AF=2,∴EF2,故选:C.3.【解答】解:如图,过点F作FH⊥BC于H,∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠D=90°,且FH⊥BC,∴四边形ABHF是矩形,∴AB=FH∵将矩形沿着过点E的直线翻折后,∴EC=EC1,∠C=∠C1=90°,∠FEC=∠FEC1,∠D=∠FD1C1=90°,∵BE=2CE,∴BE=2C1E,∴sin∠EBC1,∴∠EBC1=30°,∴∠BGD1=60°=∠BEC1,∴∠FGE=60°,∠FEC120°,∴∠FEG=60°=∠FGE,∴△FEG是等边三角形,∴EF=GF=GE,∵FH,FH⊥GE,∠FEG=60°,∴HE=1,EF=2EH=2,∴△EFG的周长=3×2=6,故选:D.4.【解答】解:∵BC=12,点E是BC的中点,∴EC=BE=6,由翻折变换的性质可知,BE=FE,∠BEA=∠FEA,∴EF=EC,∴∠EFC=∠ECF,∵∠BEA+∠FEA=∠EFC+∠ECF,∴∠BEA=∠ECF,∵tan∠BEA,∴tan∠ECF,故选:B.5.【解答】解:设A′B=x,∵△ABC是等边三角形,∴∠B=60°,∵DA′⊥BC,∴∠BDA′=90°﹣60°=30°,∴BD=2A′B=2x,由勾股定理得,A′D x,由翻折的性质得,AD=A′D x,所以,AB=BD+AD=2x x=4+2,解得x=2,即A′B=2.故答案为:2.6.【解答】解一:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG,∴BE=DF=MG,∴OF:BE=2:3,解得OF,∴OD.故选:B.解二:连接AA'.∵EN=1,∴由中位线定理得AM=2,∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴A'A=A'B,∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,∴A'B=AB,∠ABM=∠A'BM,∴△ABA'为等边三角形,∴∠ABA′=∠BA′A=∠A′AB=60°,又∵∠ABC=∠BAM=90°,∴∠ABM=∠A'BM=∠A'BC=30°,∴BM=2AM=4,AB AM=2CD.在直角△OBC中,∵∠C=90°,∠OBC=30°,∴OC=BC•tan∠OBC=5,∴OD=CD﹣OC=2.故选:B.方法3:∵N是BM中点,∴BN=NA′,∴∠NBA′=∠NA′B,又∵∠ABN=∠A′BN,又∵∠BEN=90°,∴∠ABN=∠NBA′=∠A′BN=30°,又∵EN=1,∴AM=A′M=2=A′N,∴BE,AB=DC=2,∠OBC=30°,BC=5,∴OC,∴DO=2.故选:B.7.【解答】解:设CD=x,则AE=x﹣1,由折叠得:CF=BC=3,∵四边形ABCD是矩形,∴AD=BC=3,∠A=90°,AB∥CD,∴∠AED=∠CDF,∵∠A=∠CFD=90°,AD=CF=3,∴△ADE≌△FCD,∴ED=CD=x,Rt△AED中,AE2+AD2=ED2,(x﹣1)2+32=x2,x=5,∴CD=5,故选:B.8.【解答】解:过B′点作B′H⊥BC于H点,交CE于F点,∵矩形纸片ABCD沿CE折叠,使点B落在AD上的B′处,∴∠BCE=∠B′CE,CB=CB′=10,EB=EB′,在Rt△DCB′中,DB′8,∴AB′=AD﹣DB′=10﹣8=2,在Rt△AEB′中,设EB′=x,则BE=x,AE=6﹣x,∵AE2+AB′2=EB′2,∴(6﹣x)2+22=x2,∴x,在△BCF和△B′CF中,∴△BCF≌△B′CF,∴FB=FB′,设B′F=y,在Rt△BHF中,FH=6﹣y,BH=AB′=2,BF=y,∴y2=22+(6﹣y)2,∴y,∴点F到AD的距离是.故选:C.9.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE.根据折叠的性质可知AG=AB=4,所以GE4.在Rt△GEF中,利用勾股定理可得EF2=(4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(4)2+x2=(4﹣x)2+22,解得x2.则FC=4﹣x=6.故答案为:(6).10.【解答】解:如图,连接ED,则Rt△ADE中,DE2,当B'在ED上时,B'D最小,在ED上截取EB'=EB=2,连接B'F,FD,则B'D=ED﹣EB'=22,设BF=x,则B'F=x,CF=4﹣x,在Rt△B'FD和Rt△FCD中,利用勾股定理,可得DB'2+B'F2=DF2=CF2+DC2,即(22)2+x2=(4﹣x)2+42,解得x,∴Rt△BEF中,tan∠BEF.故答案为:.11.【解答】解:设AE=x,由折叠的性质得到;BA1=AB=4,D1E=DE=7﹣x,A1E=AE=x,∠AEB=∠BEA1,∠BA1E=∠A=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠EBC,∴∠EBD1=∠BED1,∴BD1=ED1=7﹣x,∴A1D1=7﹣2x,在R t△A1BD1中,A1B2+A1D12=BD12,即:42+(7﹣2x)2=(7﹣x)2,解得:x,∴AE.故选:B.12.【解答】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE,设AB=DC=x,则BE=B'E=x,∵AE2+AD2=DE2,∴()2+22=(x+x)2,解得,x1(负值舍去),x2,故选:A.13.【解答】解:∵四边形ABCD为正方形,∴AB=AD=15,∠BAD=∠D=90°,∵CE=7,∴DE=15﹣7=8,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠F AH+∠BAH=90°,∴∠ABH=∠F AH,在△ABF与△DAE中∴△ABF≌△DAE(ASA),∴AF=DE=8,BF=AE,在Rt△ABF中,BF17,S△ABF AB•AF BF•AH,∴15×8=17AH,∴AH,∴AG=2AH,∵AE=BF=17,∴GE=AE﹣AG=17,故答案为:.14.【解答】解:设AB=a,AD=b,则ab=32,由△ABE∽△DAB可得:,∴b a2,∴a3=64,∴a=4,b=8,设P A交BD于O.在Rt△ABD中,BD12,∴OP=OA,∴AP.故答案为.15.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE2,∴GE=BE﹣BG=21,在Rt△DGE中,DG GE=2,∴EF=DE=2,在Rt△DEF中,DF DE=21,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2)+2(21)=32,故选:D.16.【解答】解:如图延长CD交AE于点H,作CF⊥AB,垂足为F.∵在Rt△ABC中,AC=4,BC=3,∴AB=5.∵D为AB的中点,∴AD=BD=DC.∵AC•BC AB•CF,∴3×45×CF,解得CF.由翻折的性质可知AC=CE,AD=DE,∴CH⊥AE,AH=HE.∵DC=DB,BD•CF DC•HE,∴HE=CF.∴AE.∵AD=DE=DB,∴△ABE为直角三角形.∴BE.故选:A.17.【解答】解:①如图,当∠ADC'=90°时,∠ADC'=∠C,∴DC'∥CB,∴△ADC'∽△ACB,又∵AC=3,BC=4,∴,设CD=C'D=x,则AD=3﹣x,∴,解得x,经检验:x是所列方程的解,∴CD;②如图,当∠DC'A=90°时,∠DCB=90°,由折叠可得,∠C=∠DC'E=90°,∴C'B与CE重合,由∠C=∠AC'D=90°,∠A=∠A,可得△ADC'∽△ABC,Rt△ABC中,AB=5,∴,设CD=C'D=x,则AD=3﹣x,∴,解得x,∴CD;综上所述,CD的长为或.故选:C.18.【解答】解:①如图,当∠NC'B=90°时,C'落在AB边上,则AC'=AC=8,∴BC'=2,由△ACB∽△NC'B可得,,∴CN=CN';②如图,当∠NBC'=90°时,过A作AD⊥BC'于D,由AC'=AC=8,AD=BC=6,可得C'D=2,BC'=8﹣2,由△ADC'∽△C'BN,可得,∴CN=C'N(8﹣2);综上所述,当△NC'B是直角三角形时,CN的长为或.故答案为:或.19.【解答】解:①如图1中,当∠EDB=90°,四边形ACDE是正方形,此时CD=AC=6,∵BC8,∴BD=BC﹣CD=8﹣6=2,∵tan∠ABC,∴,∴DF.②如图2中,当∠DEB=90°时,AC=AE=6,则BE=4,设CD=DE=x,在Rt△BDE中,(8﹣x)2=x2+42,∴x=3,综上所述,满足条件的DF的值为3或.故答案为3或.20.【解答】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH AC,AH CH,∴AE=2,∵AB=BE,∠ABE=90°,∴BE2,故选:C.21.【解答】解:如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE2,∴B′D=22.22.【解答】解:∵四边形ABCD是边长为8的正方形纸片,BE=6,∴AB=BC=CD=DA=8,∠B=∠D=∠C=90°,∴AE10,CE=BC﹣BE=8﹣6=2,由翻折可知:DF=FG,AG=AD=8,∠AGF=∠D=90°,∴EG=AE﹣AG=10﹣8=2,∵FC=DC﹣DF=8﹣DF,在Rt△FGE和Rt△FCE中,FG2+GE2=FC2+EC2,∴DF2+22=(8﹣DF)2+22,解得DF=4.故选:C.23.【解答】解:设A′B=x,∵△ABC是等腰直角三角形,∴∠B=45°,∵DA′⊥BC,∴∠BDA′=90°﹣45°=45°,∴BD A′B x,∴A′D=A′B=x,由翻折的性质得,AD=A′D=x,所以,AB=BD+AD x+x=3+3,解得x=3,即A′B=3.故答案为:3.24.【解答】解:如图,当点F固定时,连接AC交EF于G,连接A′G,此时△A′GC的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四边形ABCD是矩形,∴∠D=90°,AD=BC=6,CD=AB=8,∴AC10,∴△A′CG的周长的最小值=10+CA′,当CA′最小时,△CGA′的周长最小,∵AE=DE=EA′=3,∴CE,∵CA′≥EC﹣EA′,∴CA′3,∴CA′的最小值为3,∴△CGA′的周长的最小值为7,故答案为:7.25.【解答】解:如图,过点E作EM⊥AD,垂足为M,∵DA'=2A'C,DC=6,∵DA'DC=4,A'C DC=2,由折叠得,AF=F A′,AB=A′B′=6,设DF=x,则F A=F A′=8﹣x,在Rt△DF A′中,由勾股定理得,x2+42=(8﹣x)2,解得x=3,即DF=3,∴F A=F A′=8﹣3=5,∵∠NA′C+∠DA′F=180°﹣90°=90°,∠NA′C+∠A′NC=90°,∴∠DA′F=∠A′NC,∴∠C=∠D=90°,∴△A′NC∽△F A′D,∴,即,解得NC,A′N,∴B′N=A′B′﹣A′N=6NC,∴△A′CN≌△ENB′(AAS),∴EN=A′N,∴EC=EN+NC6=MD,∴MF=6﹣3=3,在Rt△EFM中,EF3,故选:A.。
中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。
初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
专题 折叠问题一、选择题1、.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=75°,则∠1+∠2=【 】A .150°B .210°C .105°D .75°2.、如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD分别和AE 、AF 折叠,点B 、D 恰好都将在点G 处,已知BE=1,则EF 的长为【 】A .32B .52C .94D .33、如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 的点F 处.若AE =5,BF =3,则CD 的长是【 】A .7B .8C .9D .104、如图所示,矩形纸片ABCD 中,AB=6cm ,BC=8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为【 】 A.25cm 8 B. 25cm 4 C. 25cm 2 D. 8cm5、 如图,已知正方形ABCD 的对角线长为2,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为【 】A . 8B . 4C . 8D . 66、如图,在△ABC 中,∠C=90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN∥AB,MC =6,NC =,则四边形MABN 的面积是【 】A .B .C .D .7、.如图,矩形ABCD 边AD 沿拆痕AE 折叠,使点D 落在BC 上的F 处,已知AB=6,△ABF 的面积是24,则FC 等于【 】A .1B .2C .3D .48、.如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为【 】A .B .C .D .9、.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将ΔABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=【 】.A B .2 10、. 如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连结CN .若△CDN 的面积与△CMN 的面积比为1︰4,则MN BM 的值为【 】A .2B .4C ..【分析】过点N 作NG⊥BC 于G ,由四边形ABCD 是矩形,易得四边形CDNG 是矩形,又由折叠的性质,可得四边形AMCN 是菱形,由△CDN 的面积与△CMN 的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN :CM=1:4,然后设DN=x ,由勾股定理可求得MN 的长,从而求得答案:过点N 作NG⊥BC 于G ,∵四边形ABCD 是矩形,∴四边形CDNG 是矩形,AD∥BC。
图 (2) 中考数学专题复习——折叠剪切问题折叠剪切问题是考察学生地动手操作问题,学生应充分理解操作要求方可解答出此类问题.一、折叠后求度数【1】将一张长方形纸片按如图所示地方式折叠,BC 、BD 为折痕,则∠CBD 地度数为( )A .600 B .750 C .900 D .950答案:C【2】如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′地位置,若∠EFB=65°,则∠AED ′等于( )A .50° B .55° C .60° D .65° 答案:A【3】 用一条宽相等地足够长地纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示地正五边形ABCDE,其中∠BAC=度.答案:36°二、折叠后求面积【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 地面积为( )A .4B .6 C .8 D .10图(1)第3题图答案:C【5】如图,正方形硬纸片ABCD 地边长是4,点E 、F 分别是AB 、BC 地中点,若沿左图中地虚线剪开,拼成如下右图地一座“小别墅”,则图中阴影部分地面积是A .2 B .4 C .8 D .10答案:B【6】如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm.操作:(1)将AB 向AE 折过去,使AB 与AE 重合,得折痕AF ,如图b ;(2)将△AFB 以BF 为折痕向右折过去,得图c.则△GFC 地面积是( )E A A A B B C C C GD D D F F 图a 图b 图c 第6题图A.1cm 2B.2 cm 2C.3 c m 2D.4 cm 2答案:B三、折叠后求长度【7】如图,已知边长为5地等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上地点D 地位置,且ED BC ⊥,则CE 地长是( )(A)15 (B)10-(C)5 (D)20-答案:D 四、折叠后得图形【8】将一张矩形纸对折再对折(如图),然后沿着图中地虚线剪下,得到①、②两部分,将①展开后得到地平面图形是( )A .矩形B .三角形C .梯形D .菱形答案:D【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形地是( )A. B. C. D.答案:D【10】小强拿了张正方形地纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中地虚线(虚线与底边平行)剪去一个角,再打开后地形状应是( )第7题图第8题图第9题图第10题图答案:D 【11】将一圆形纸片对折后再对折,得到图1,然后沿着图中地虚线剪开,得到两部分,其中一部分展开后地平面图形是( )答案:C【12】如图1所示,把一个正方形三次对折后沿虚线剪下,则所得地图形是( )答案:C【13】 如图,已知BC 为等腰三角形纸片ABC 地底边,AD ⊥BC ,AD=BC. 将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等地四边形地个数是( )A.1B.2A B CD 图3图1第12题图C.3D.4答案:D五、折叠后得结论【14】亲爱地同学们,在我们地生活中处处有数学地身影.请看图,折叠一张三角形纸片,把三角形地三个角拼在一起,就得到一个著名地几何定理,请你写出这一定理地结论:“三角形地三个内角和等于_______°.”答案:180【15】从边长为a 地正方形内去掉一个边长为b 地小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证地等式是(A.a 2–b 2 =(a+b)(a-b) B.(a –b)2 = a 2–2ab+b 2C.(a+b)2 =a 2+2ab+ b 2 D.a 2+ ab = a (a+b) 答案:A【16】如图,一张矩形报纸ABCD 地长AB =a cm ,宽BC =b cm ,E 、F 分别是AB 、CD 地中点,将这张报纸沿着直线EF 对折后,矩形AEFD 地长与宽之比等于矩形ABCD 地长与宽之比,则a ∶b 等于( ). A .1:2B .2:1C .1:3D .3:1答案:A六、折叠和剪切地应用【17】将正方形ABCD 折叠,使顶点A 与CD 边上地点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图).(1)如果M 为CD 边地中点,求证:DE ∶DM ∶EM=3∶4∶5;第15题图(1)第17题图 (2)ABCDEF MG第19题图(2)如果M 为CD 边上地任意一点,设AB=2a ,问△CMG 地周长是否与点M 地位置有关?若有关,请把△CMG 地周长用含DM 地长x 地代数式表示;若无关,请说明理由.答案:(1)先求出DE=AD 83,AD DM 21=,AD EM 85=后证之. (2)注意到△DEM ∽△CMG ,求出△CMG 地周长等于4a ,从而它与点M 在CD 边上地位置无关.【18】同学们肯定天天阅读报纸吧?我国地报纸一般都有一个共同地特征:每次对折后,所得地长方形和原长方形相似,问这些报纸地长和宽地比值是多少?答案:2∶1.【19】用剪刀将形状如图1所示地矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 地中点.用这两部分纸片可以拼成一些新图形,例如图2中地Rt △BCE 就是拼成地一个图形.(1)用这两部分纸片除了可以拼成图2中地Rt △BCE外,还可以拼成一些四边形.请你试一试,把拼好地四边形分别画在图3、图4地虚框内.(2)若利用这两部分纸片拼成地Rt △BCE 是等腰直角三角形,设原矩形纸片中地边AB 和BC 地长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 地方程01)1(2=++--m x m x 地两个实数根,试求出原矩形纸片地面积.答案:(1)如图(2)由题可知AB =CD =AE ,又BC =BE =AB +AE∴BC =2AB , 即a b 2=由题意知 a a 2,是方程01)1(2=++--m x m x 地两根E B A C B A M C D M 图3 图4 图1 图2 第21题图 BACBAMCE M图3图4E第21题答案图∴⎩⎨⎧+=⋅-=+1212m a a m a a消去a ,得 071322=--m m 解得 7=m 或21-=m 经检验:由于当21-=m ,0232<-=+a a ,知21-=m 不符合题意,舍去. 7=m 符合题意.∴81=+==m ab S 矩形答:原矩形纸片地面积为8c m 2.【20】电脑CPU 蕊片由一种叫“单晶硅”地材料制成,未切割前地单晶硅材料是一种薄型圆片,叫“晶圆片”.现为了生产某种CPU 蕊片,需要长、宽都是1cm 地正方形小硅片若干.如果晶圆片地直径为10.05cm.问一张这种晶圆片能否切割出所需尺寸地小硅片66张?请说明你地方法和理由.(不计切割损耗)答案:可以切割出66个小正方形. 方法一:(1)我们把10个小正方形排成一排,看成一个长条形地矩形,这个矩形刚好能放入直径为10.05cm 地圆内,如图中矩形ABCD.∵AB =1 BC =10∴对角线2AC =100+1=101<205.10(2)我们在矩形ABCD 地上方和下方可以分别放入9个小正方形.GFH E D C B A∵新加入地两排小正方形连同ABCD 地一部分可看成矩形EFGH ,矩形EFGH 地长为9,高为3,对角线9098139222=+=+=EG <205.10.但是新加入地这两排小正方形不能是每排10个,因为:109910031022=+=+>205.10(3)同理:8925645822=+=+<205.1010625815922=+=+>205.10∴可以在矩形EFGH 地上面和下面分别再排下8个小正方形,那么现在小正方形已有了5层.(4)再在原来地基础上,上下再加一层,共7层,新矩形地高可以看成是7,那么新加入地这两排,每排都可以是7个但不能是8个.∵9849497722=+=+<205.1011349647822=+=+>205.10(5)在7层地基础上,上下再加入一层,新矩形地高可以看成是9,这两层,每排可以是4个但不能是5个.∵9781169422=+=+<205.1010681259522=+=+>205.10现在总共排了9层,高度达到了9,上下各剩下约0.5cm 地空间,因为矩形ABCD 地位置不能调整,故再也放不下一个小正方形了.∴10+2×9+2×8+2×7+2×4=66(个) 方法二:学生也可能按下面地方法排列,只要说理清楚,评分标准参考方法一. 可以按9个正方形排成一排,叠4层,先放入圆内,然后: (1)上下再加一层,每层8个,现在共有6层.(2)在前面地基础上,上下各加6个,现在共有8层. (3)最后上下还可加一层,但每层只能是一个,共10层. 这样共有:4×9+2×8+2×6+2×1=66(个)【21】在一张长12cm 、宽5cm 地矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点地方法折出菱形EFGH (见方案一),张丰同学沿矩形地对角线AC 折出∠CAE=∠DAC ,∠ACF=∠ACB 地方法得到菱形AECF (见方案二),请你通过计算,比较李颖同学和张丰同学地折法中,哪种菱形面积较大?答案:(方案一)4151254622AEHS S S=-=⨯-⨯⨯⨯矩形菱形230(cm )=(方案二)设BE=x ,则CE=12-xAE ∴由AECF 是菱形,则AE 2=CE 22225(12)x x ∴+=-11924x ∴=2ABES S S-矩形菱形=111912525224=⨯-⨯⨯⨯35.21(m)≈比较可知,方案二张丰同学所折地菱形面积较大.【22】正方形提供剪切可以拼成三角形.方法如下:(方案一)ADEFBC (方案二)第23题图仿上面图示地方法,及韦达下列问题: 操作设计:(1)如图(2),对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积地矩形.(2)如图(3)对于任意三角形,设计一种方案,将它分成若干块,再拼成一个原三角形等面积地矩形.答案:(1)(2)略.【23】如图,⊙O 表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面,操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到地扇形面中地一个再等分成4个扇形;以后按第2次剪裁地作法进行下去.(1)请你在⊙O 中,用尺规作出第2次剪裁后得到地7个扇形(保留痕迹,不写作法). (2)请你通过操作和猜想,将第3、第4和第n 次裁剪后所得扇形地总个数(S)填入下表第24题图(2) 第24题图(3) 方法一: 方法二:第24题答案图(1) 第24题答案图(2)第25题图 O(3)请你推断,能不能按上述操作过程,将原来地圆形纸板剪成33个扇形?为什么? 答案:(1)由图知六边形各内角相等. (2) 七边形是正七边形.(3)猜想:当边数是奇数时(或当边数是3,5,7,9,…时),各内角相等地圆内接多边形是正多边形.【24】如图,若把边长为1地正方形ABCD 地四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1.试问怎样剪,才能使剩下地图形仍为正方形,且剩下图形地面积为原正方形面积地95,请说明理由(写出证明及计算过程).答案:剪法是:当AA 1=BB 1=CC 1=DD 1=31或32时, 四边形A 1B 1C 1D 1为正方形,且S=95.在正方形ABCD 中, AB=BC=CD=DA=1,∠A=∠B=∠C=∠D=90°. ∵AA 1=BB 1=CC 1=DD 1, ∴A 1B=B 1C=C 1D=D 1A.∴△D 1AA 1≌△A 1BB 1≌△B 1CC 1≌△C 1DD 1. ∴D 1A 1=A 1B 1=B 1C 1=C 1D 1,∴∠AD 1A 1=∠BA 1B 1=∠CB 1C 1=∠DC 1D 1. ∴∠AA 1D+∠BA 1B 1=90°,即∠D 1A 1B 1=90°. ∴四边形A 1B 1C 1D 1为正方形.设AA 1=x , 则AD 1=1-x.∵正方形A 1B 1C 1D 1地面积=95, ∴S △AA1D1=91 即21x(1-x)=91, 整理得9x 2-9x+2=0.解得x 1=31,x 2=32. 当AA 1=31时,AD 1=32,当AA 1=32时,AD 1=31.∴当AA 1=BB 1=CC 1=DD 1=31或32时, 四边形A 1B 1C 1D 1仍为正方形且面积是原面积地95.折叠问题专题研究上虞市滨江中学 潘建德一、教学目标:1、理解折叠问题地本质2、了解折叠问题解题策略,学会应用这些策略解决折叠问题3、渗透方程思想及中考复习以“本”为本地导向 二、教学重点:通过动手操作、应用轴对称性解决折叠问题 三、教学难点:折叠型综合题地分析 四、教学过程:1、引入:出示08绍兴8题:将一张纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ(如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1地形状,则CPD ∠地大小是( )A .120 B .90 C .60 D .45此题凸显地主题是图形地折叠,折叠问题在近几年地中考中越来越常见,据统计,在08年我省11个地区地中考卷中有7个地区都出现了折叠型考题,其中有5个地区中考卷地压轴题是折叠型问题,包括绍兴地区,折叠问题已成为中考地热门问题之一.点出课题.2、解题策略(一)——重过程“折”(1)如何迅速且准确地解决08绍兴卷第8题?(学生:动手折一折)学生动手操作,后教师归纳:题型一:考察空间想象能力与动手操作能力地实践操作题.解题策略:重过程——“折”.(2)学生进一步尝试.题2:(2008山东东营)将一正方形纸片按下列顺序折叠,然A.B.C.D.AB CDFE 后将最后折叠地纸片沿虚线剪去上方地小三角形.将纸片展开,得到地图形是()3、解题策略(二)——重本质“叠”(1)本质探究:题3:如图,长方形ABCD沿AE折叠,使D落在边BC上地F点处,如果∠BAF=30°,AD=2,则∠DAE=___,EF=_______.学生解决后讲解方法,教师:显然,折叠问题不能只靠动手操作来解决,我们必须透过现象看本质.那么折叠地本质是什么呢?学生讨论后教师归纳:折叠问题地实质是图形地轴对称变换,所以在解决折叠问题时可以充分运用轴对称地思想和轴对称地性质.根据轴对称地性质可以得到:(1)轴对称是全等变换:折叠重合部分一定全等(有边、角地相等);(2)点地轴对称性:互相重合两点(对称点)之间地连线必被折痕(对称轴)垂直平分(有Rt△,可应用勾股定理得方程).(2)初步应用:题4:08丽水8:如图,在三角形ABC中,AB>AC,D、E分别是AB、AC上地点,△ADE沿线段DE翻折,使点A落在边BC上,记为A'.若四边形ADA E'是菱形,则下列说法正确地是()A.DE是△ABC地中位线B.AA'是BC边上地中线C.AA'是BC边上地高D.AA'是△ABC地角平分线分析:此题虽有多种说明方法,即可应用折叠地全等性得到,也可根据折叠地点轴对称性得到.(3)题5:09绍兴市属期末23.(本题满分12分)课堂上,老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题:在一张长方形ABCD纸片中,AD=25cm, AB=20cm.现将这张纸片按如下列图示方式折叠,分别求折痕地长.(1) 如图1, 折痕为AE;(2) 如图2, P,Q分别为AB,CD地中点,折痕为AE;(3) 如图3, 折痕为EF.ACDEA'(第8题)分析:题(1)题(2)主要应用折叠地全等性,题(3)连结对称点地连线BD ,根据折叠中点地轴对称性得EF 是BD 地中垂线,BO=4125,同时根据矩形地中心对 称性知,EF=2E0,在Rt △CDE 中,根据勾股定理可解得DE=241,根据折叠全等性得BE=DE=241,在Rt △BOE 中根据勾股定理得EO=412,故EF=414.由此题得心得:在解决折叠类计算题时,根据Rt △地勾股定理应用方程思想是常用方法. 题后说明:此题(2)是课本习题原题,(1)、(3)都根据课本原题改变而成.根据课本原题改变成中考题,是中考卷出题地一个新地方向,所以我们在中考复习中仍应以“本”为本,不断对课本习题进行探索和挖掘.(4)题6:08绍兴24题(2)(3)(简述):将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.6OP t =-,23OQ t =+. (1)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上地点D 处,求点D地坐标;(2)连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PE 与AC 能否垂直?此题(1)让学生自己解决,教师适当点拨.题(2)根据情况可留作课后解决,教师点透解题地着眼点.4、反思小结:折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力地实践操作题,到直接运用折叠相关性质地说理计算题,发展到基于折叠操作地综合题,甚至是压轴题.其中“折”是过程,“叠”是结果.折叠问题地实质是图形地轴对称变换,所以在解决有关地折叠问题时可以充分运用轴对称地思想和轴对称地性质.借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.图1 (第24题图)初中几何综合复习(讲稿)—矩形折叠问题同学们好,今天我和大家一起研究平面图形地折叠问题.首先,在最近几年地中考中题折叠问题中频频出现,这对于我们识别和理解几何图形地能力、空间思维能力和综合解决问题地能力都提出了比以往更高地要求.希望通过今天地讨论,使同学们对折叠问题中有关地几何图形之间地位置关系和数量关系有进一步认识;在问题分析和解决地过程中巩固头脑中已有地有关几何图形地性质以及解决有关问题地方法;并在观察图形和探索解决问题地方法地过程中提高分析问题和解决问题地能力.那么,什么是折叠问题呢?这个问题应分两个方面,首先什么是折叠,其次是和折叠有关地问题.下面我们将对它们分别进行讨论一. 折叠地意义1.折叠,就是将图形地一部分沿着一条直线翻折180º,使它与另一部分在这条直线地同旁,与其重叠或不重叠;显然,“折”是过程,“叠”是结果.如图(1)是线段AB沿直线l折叠后地图形,其中OB'是OB在折叠前地位置;图(2)是平行四边形ABCD沿着对角线AC折叠后地图形,△ABC是△AB'C在折叠前地位置,它们地重叠部分是三角形;(2)图形在折叠前和折叠后翻折部分地形状、大小不变,是全等形如图(1)中OB'=OB;如图(2),△AB'C≌△ABC;(3) 图形地翻折部分在折叠前和折叠后地位置关于折痕成轴对称如图(1)OB'和OB关于直线l成轴对称;如图(2)△AB'C和△ABC关于直线AC成轴对称.二.和折叠有关地问题图形经过折叠,其翻折地部分折叠前地图形组合成新地图形,新地图形中有关地线段和角地位置、数量都有哪些具体地关系呢?这就是我们今天要重点讨论地问题.下面,我们以矩形地折叠为例,一同来探讨这个问题.问题1:将宽度为a地长方形纸片折叠成如图所示地形状,观察图中被覆盖地部分△A'EF.(a)△A'EF是什么三角形?结论:三角形AE'F是等腰三角形证明:方法一,∵图形在折叠前和折叠后是全等地,∴∠1= ∠2,又∵矩形地对边是平行地∴∠1=∠3,∴∠2=∠3,∴A'E=A'F三角形AE'F是等腰三角形方法二:∵图形在折叠前和折叠后地形状、大小不变,只是位置不同∴表示矩形宽度地线段EP和FQ相等,即∆A'EF地边A'E和A'F上地高相等,∴A'E=A'F三角形AE'F是等腰三角形(b)改变折叠地角度α地大小,三角形A'EF地面积是否会改变?为什么?答:不会改变.分析:α地改变影响了A'E地长度,但却不能改变边A'E上地高,三角形A'EF地面积会随着α地确定而确定.例一:在上面地图中,标出点A'在折叠前对应地位置A,四边形A'EAF是什么四边形?分析:(1)由前面地分析可知A'与A'在折叠前地位置A关于折痕EF成轴对称,所以作A'关于EF地对称点即可找到点A(过点A'作A'A⊥ EF交矩形地边于点A). 同学们还可以动手折叠一下,用作记号地方法找到点A.(2)四边形AEA'F是菱形证法一:∵ A是A'在折叠前对应地位置,∴A和A'关于直线EF轴对称,∴AA'⊥EF,且AO=A'O,又∵AE∥A'F,∴EO∶OF=AO∶OA',∴EO=OF∴四边形AEA'F是菱形证法二:A是A'在折叠前对应地位置,∴∆AEF≌∆A'EF,A'E=A'E,AF=AF,又∵∆AEF是等腰三角形(已证),A'E=A'F,∴A E=AF=A'E=A'F,∴四边形AEA'F是菱形.例2.在上题地图中,若翻折地角度α=30°,a=2,求图中被覆盖地部分△A'EF.地面积..分析:图中被覆盖地部分△A'EF是等腰三角形,其腰上地高就是原矩形地宽度2,所以,本题地解题关键就是要求出腰A'F 或A'E地长.答:S四边形AEA'F=2S△A'EF=(8/3)√3(解答过程略)练一练:当α地大小分别45°、60°时,图中被覆盖地部分△A'EF.地面积是多少?例题3. 如图:将矩形ABCD对折,折痕为MN,再沿AE折叠,把B点叠在MN 上,(如图中1地点P),若AB=√3,则折痕AE地长为多少?分析:折痕AE为直角三角形ABE地斜边,故解决本题地关键是求PE(或BE)地长.解法一:由折叠地意义可知,AP⊥EP,延长EP交AD于F, 则FE=FA(在问题一中已证)∵ M、N分别是矩形地边AB和CD地中点,∴MN∥AD∥BC且EP∶PF=BN∶NA=1∶1,又∠APE= ∠D=90°, ∴AE=AF∴AE=AF=EF,∴ ∠1= ∠2=30°,∠1=30°∴AE=2.∵ M、N分别是矩形地边AB和CD地中点,∴MN∥AD ∥BC且AN是AP地一半∴ MN⊥AN∴AE=AF又FE=FA(问题1地结论)∴AE=AF=EF, ∴ ∠1=∠2=30°,∠1=30°∴AE=2.由BC∥MN∥DA且M、N分别为CD和AB地中点可得EP=PF,EO=AO∴PO=AF,又PO=AE,∴AE=AF∴AE=AF=EF,∠EAF=60°(其余同上)例题4.在例3中,若M、N分别为CD、AB地三等分点(如图),AB=√5,其他条件不变,折痕AE地长为多少?分析:本题与上一题略有不同,MN由原来地二等分线变为三等分线,其他条件不变.所以本题地解题关键还是求出EB(或EP)地长解:延长EP交AD于F, 则FE=FA(已证)∵ M、N分别是矩形地边AB和CD地三等分点∴MN∥AD∥BC且EP∶PF=BN∶NA=1∶2,设EP=x, 则PF=2x, AF=EF=3x,在直角三角形APF中有AP²+PF²=AF²∴5+(2x)²=(3x)²,∴x=1, ∴AE²=1+5=6,∴AE=√6例4 如图3,有一张边长为3地正方形纸片(ABCD),将其对折,折痕为MN,再将点B折至折痕MN上,落在P点地位置,折痕为AE.(1)求MP地长;(2)求以PE为边长地正方形地面积.分析:将本题与例题2比较,不难看出它们地共同之处,显然,解决本题地关键是求PE和PN地长解法一:延长EP交AD地延长线于F, 则FE=FA(已证)M、N分别是矩形地边AB和CD地中点,∴ MN∥AD ∥B C且AN是AP地一半∴MN⊥AN∴AE=AF∴AE=AF=EF, ∴ ∠1=∠2=30°,∠1=30°∴PN=(3/2)√3,(1)∴MP=1-PN=3-(3/2)√3,又AP=3,∴EP=√3,(2)∴以EP为边长地正方形地面积为3.其他解法请同学们思考.例5.如图,将矩形ABCD折叠,使C点落在边AB上,(如图中地M点),若AB=10,BC=6,求四边形CNMD地面积分析:本题与上一题区别在于点C折叠后落在矩形地边AB上,由折叠地意义可以知道,ΔACN和ΔAMN是全等地,所以,求四边形CNMD地面积地关键就是求ΔDCN或ΔDMN地面积,所以本题地解题关键还是求出NC(或BN)地长.解:在直角三角形ADM中,AD=6,DM=DC=10,由勾股定理可以求得AM=8.BM=10-8=2. 设NC=x,则MN=x,BN=6-x,在Rt△BMN中,MN2=BN2+BM2∴x2=(6-x)2+4∴x=10/3S四边形CNMD =2S△DCN=(10/3)*10=100/3例6.将长为8,宽为6地矩形ABCD折叠,使B、D重合,(1)求折痕EF地长.(2)求三角形DEF地面积分析:由矩形折叠地意义可知,EF垂直平分BD(O为BD地中点由AB//DC可得EO:FO=BO:DO=1:1 ∴O为EF地中点,所以可设法先求出EO地长,或直接求EF地长,进而求三角形DEF面积.解(法一):∵D、B关于EF成轴对称∴EF垂直平分DB,又DC⊥CB,∴△DOE∽△DCB在Rt△DCB中,由勾股定理可得BD=10又AB∥DC∴EO:OF=DO:OB∴DO=5(1)由△DOE∽△DCB得DO:DC=DE:BC∴EO:6=5:8∴EO=15/4∴EF=15/2=(1/2)EF•DO=(1/2)×(15/2)×5=75/4(2)S△DEF解(法二):(1)过C作CP∥EF,交AB于P∵EF⊥DB∴CP⊥DB易得△CBP∽△DCB∴CP:BD=CB:DC∴CP=10*6/28=15/2∴EF=15/2=(1/2)EF•DO=(1/2)×(15/2)×5=(2)S△DEF75/4同学们,图形折叠问题中题型地变化比较多,但是经过研究之后不难发现其中地规律,从今天我们对矩形折叠情况地讨论中可以得到以下几点经验:1.图形地翻折部分在折叠前和折叠后地形状、大小不变,是全等形;2图形地翻折部分在折叠前和折叠后地位置关于折痕成轴对称;3.将长方形纸片折叠成如图所示地形状,图中重叠地部分△AE'F是等腰三角形;4.解决折叠问题时,要抓住图形之间最本质地位置关系,从而进一步发现其中地数量关系;5.充分挖掘图形地几何性质,将其中地基本地数量关系,用方程地形式表达出来,并迅速求解,这是解题时常用地方法之一.今天地讨论就到这里,最后祝同学们在中考中取得好地成绩.中考专题复习——折叠问题动手折一折,并思考:(1)用一张矩形地纸,通过折叠,使较短地边AB 落在较长地边AD 上,分析重叠部分展开后地形状.(2)将一张正方形纸,通过两次对折,成为一个正方形,再折叠一次,分析折痕所围成地图形.题组一:(1)如图(1),点E 是矩形ABCD 地边CD 上地点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上地F 点处,如果∠BAF =60o ,则∠DEA =____________.(2)如图(2),已知:点E 是正方形ABCD 地BC 边上地点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB ∶CE =_________.(3)如图(3),AD 是△ABC 地中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C ´地位置,若BC =2,则BC ´=_________. 图(1)图(2)题组二: 图(3)(4)如图(4),已知矩形ABCD 中,AD =8,AB =4.沿着对角线BD 将矩形ABCD 折叠,使点C 落在C ´处,BC ´交AD 于E .求出未知地线段. A BCDEABCDA BCD(5)如图(5),矩形ABCD 地长、宽分别为5和3,将顶点C 折过来,使它落在AB 上地C ´点(DE 为折痕),那么阴影部分地面积是________.图(4) 图(5)题组三:(6)如图(6),P 是以AB 为直径地半圆上地一点,PA =4,AB =10,将半圆折叠使弦PA 正好落在AB上,则折痕AC 地长为___________.图(6)(7)如图(7),把正三角形ABC 地外接圆对折,使点A 落在弧BC 地中点A ´,若BC =6,则折痕在△ABC 内地部分DE 地长为_____.提高题:(1)一张宽为3、长为4地矩形纸片ABCD ,先沿对角线BD 对折,点C 落在C ´地位置,BC ´交AD 于G (如图8).再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M (如图9),则ME 地长为__________.C ´GABCDA BCDABCPP ´B A DA DC ´图(9)图(8)(2)如图(10),在矩形ABCD 中,AB =2,AD =1,如图将矩形折叠使B 点落在AD 上,设为B ’,顶点C 到C ’点,B ’C ’交DF 于G .(1) 求证:△AB ’E ∽△C ’GF ;(2)若AB ’=x ,S B ’EFC ’=y ,求y 关于x 之间地函数解析式; (3)当B ’在何处时,y 地值最小,y 地最小值是多少?图(10)折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质.轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上. 压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠地选择题填空题,很有必要.1、(2009年浙江省绍兴市)如图,D E ,分别为ABC △地AC ,BC 边地中点,将此三角形沿DE 折叠,使点C 落在AB 边上地点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°C ´A BC D EFB ´G图(7)(第18题图)AC B2、(2009湖北省荆门市)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=()A .40° B .30°C .20°D .10°3、(2009年日照市)将三角形纸片(△ABC )按如图所示地方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点地三角形与△ABC 相似,那么BF 地长度是.4、(2009年衢州)在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上地高.将△ABC 按如图所示地方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 地周长为A .9.5B .10.5C .11D .15.55、(2009泰安)如图,在Rt △ABC 中, ∠ACB=90°,∠A <∠B ,沿△ABC 地中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 地值为.6、(2009年上海市)在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上地点,联结AM(如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 地中点处,那么点M 到AC 地距离是.第2题图 A 'BD AC7、(2009宁夏)如图:在Rt ABC △中,90ACB ∠=°,CD 是AB 边上地中线,将ADC △沿AC 边所在地直线折叠,使点D 落在点E 处,得四边形ABCE . 求证:EC AB ∥.8、(2009年清远)如图,已知一个三角形纸片ABC ,BC 边地长为8,BC 边上地高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 地长为x ,MN 上地高为h .(1)请你用含x 地代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面地点为1A ,1A MN △与四边形BCNM 重叠部分地面积为y ,当x 为何值时,y 最大,最大值为多少?A图3BM C BC NM AE C B A D。
专题33 中考几何折叠翻折类问题1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。