转录因子DREB1A和DREB2A调控机制的比较分析
- 格式:pdf
- 大小:149.48 KB
- 文档页数:2
沙冬青AmDREB3基因的克隆及植物表达载体构建张锋;王学峰;董博;王茅雁【期刊名称】《内蒙古农业大学学报:自然科学版》【年(卷),期】2012(0)Z1【摘要】脱水应答元件结合蛋白(Dehydration-responsive element/DRE binding proteins,DREBs)属于植物AP2/EREBP(APETALA2/Ethylene-responsive element binding protein)转录因子大家族中的一个亚族,在植物对低温、干旱和盐碱等非生物胁迫的适应中起重要作用。
本论文从强耐寒耐旱植物蒙古沙冬青(Ammopiptanthus mongolicus)中克隆到AmDREB3基因的编码区cDNA,对其编码蛋白的结构域和系统进化关系进行了分析,并将其成功构建到分别由CaMV35S和拟南芥rd29A启动子驱动的植物表达载体pCAMBIA3301上,为进一步通过转基因植物等方法验证该基因在耐逆性中的功能奠定了基础。
【总页数】5页(P133-137)【关键词】沙冬青;DREB;基因克隆;序列分析;载体构建【作者】张锋;王学峰;董博;王茅雁【作者单位】内蒙古农业大学生命科学学院【正文语种】中文【中图分类】S793.9【相关文献】1.强旱生植物沙冬青AmERF基因的克隆及生物信息学研究 [J], 李晓东;白晨;郭九峰;于卓;孙国琴;张惠忠2.沙冬青脱水素基因的克隆及表达载体的构建 [J], 乔慧蕾;王瑞刚;郭九峰;孙国琴;李国婧3.蒙古沙冬青AmDREB2.2基因的克隆与植物表达载体构建 [J], 张至玮;李章磊;高飞;曹玉震;夏波林;周宜君4.转录因子DREB1A基因的克隆与Gateway克隆技术构建植物表达载体 [J], 佟友丽;赵飞;冯君伟;李玉花5.蒙古沙冬青AmWRKY53基因表达分析及表达载体构建 [J], 夏波林;邢怡德;高飞;姜承勇;周宜君因版权原因,仅展示原文概要,查看原文内容请购买。
抗旱相关基因及其遗传工程王瑞云;杨阳;李润植;郭红媛【摘要】干旱是影响全球生态的重要因子,文章综述了转录调控因子和转录后RNA/蛋白修饰因子两类抗旱相关基因及其在耐旱性遗传改良中的应用.其中,胁迫应答的转录调控因子包括脱水响应因子(DRE)、锌指蛋白(ZFP)、核因子(NF-Y)和WRKY转录因子;转录后RNA/蛋白修饰因子包括蛋白的法尼基化、蛋白磷酸化和蛋白的聚ADP核糖基化作用.这些基因中有的已克隆并通过生物技术手段转入作物中,靶基因的表达提高了作物的抗旱性及产量.【期刊名称】《山西农业大学学报(自然科学版)》【年(卷),期】2014(034)004【总页数】7页(P289-295)【关键词】抗旱性;转录调控因子;转录后修饰因子【作者】王瑞云;杨阳;李润植;郭红媛【作者单位】山西农业大学农学院,山西太谷030801;农业部黄土高原作物基因资源与种质创制重点实验室,山西太原030031;山西农业大学农学院,山西太谷030801;山西农业大学农学院,山西太谷030801;山西农业大学农学院,山西太谷030801【正文语种】中文【中图分类】S503由于人口骤增及气候变暖引起的水资源短缺是当前世界范围内农业面临的极大挑战。
到本世纪末,高浓度温室气体引发的全球性干旱将成为农作物生存面临的巨大威胁[1]。
全球性水资源缺乏影响种植业的可持续性,农业用水约占人类消费水资源的75%,在许多发展中国家,灌溉用水则占到90%以上[2]。
水稻是世界上最重要的粮食作物之一,养活着超过全球一半的人口,局域性干旱甚至可使水稻减产超过80%[3]。
因其物种自身对水分缺失的敏感性,水稻的种植模式将会随地下水资源的枯竭发生改变[4]。
与水稻相比,玉米则比较耐旱,但在传粉和胚胎发育期对干旱同样敏感[5]。
与动物可以通过运动寻找易居处所不同,植物由根系固着在土壤中,不能自主更换位置,但是经过亿万年的进化,其可以通过改变形态及生理代谢来适应环境。
Arabidopsis thaliana ERF FamilylERF Family Introduction lDownload Sequences lMultiple Sequences Alignment lPhylogenetic TreePlant Transcription Factor Databasev3.0Center for Bioinformatics , Peking University , ChinaPrevious versions:v1.0v2.0Home | Blast | Search | Download | Prediction | Help | About |LinksLFY)Species TF IDDescription AT1G01250.1Integrase-type DNA-binding superfamily proteinAT1G03800.1ERF domain protein 10AT1G04370.1Ethylene-responsive element binding factor 14AT1G06160.1octadecanoid-responsive Arabidopsis AP2/ERF 59AT1G12610.1Integrase-type DNA-binding superfamily protein AT1G12630.1Integrase-type DNA-binding superfamily protein AT1G12890.1Integrase-type DNA-binding superfamily protein AT1G12980.1Integrase-type DNA-binding superfamily protein AT1G15360.1Integrase-type DNA-binding superfamily protein AT1G19210.1Integrase-type DNA-binding superfamily protein AT1G21910.1Integrase-type DNA-binding superfamily protein AT1G22190.1Integrase-type DNA-binding superfamily protein AT1G22810.1Integrase-type DNA-binding superfamily protein AT1G22985.1Integrase-type DNA-binding superfamily protein AT1G24590.1DORNROSCHEN-like AT1G25470.1AP2 domain-containing transcription factor family protein AT1G25470.2AP2 domain-containing transcription factor family protein AT1G28160.1Integrase-type DNA-binding superfamily protein AT1G28360.1ERF domain protein 12AT1G28370.1ERF domain protein 11AT1G33760.1Integrase-type DNA-binding superfamily protein AT1G36060.1Integrase-type DNA-binding superfamily protein AT1G43160.1related to AP2 6AT1G44830.1Integrase-type DNA-binding superfamily protein AT1G46768.1related to AP2 1AT1G49120.1Integrase-type DNA-binding superfamily protein AT1G50640.1ethylene responsive element binding factor 3AT1G53170.1ethylene response factor 8AT1G53910.1related to AP2 12AT1G53910.2related to AP2 12AT1G53910.3related to AP2 12AT1G63030.1Integrase-type DNA-binding superfamily protein AT1G63030.2Integrase-type DNA-binding superfamily protein AT1G64380.1Integrase-type DNA-binding superfamily protein AT1G68550.1Integrase-type DNA-binding superfamily protein AT1G68550.2Integrase-type DNA-binding superfamily protein AT1G71130.1Integrase-type DNA-binding superfamily protein AT1G71450.1Integrase-type DNA-binding superfamily protein AT1G71520.1Integrase-type DNA-binding superfamily protein AT1G72360.1Integrase-type DNA-binding superfamily protein AT1G72360.2Integrase-type DNA-binding superfamily protein AT1G72360.3Integrase-type DNA-binding superfamily protein AT1G74930.1Integrase-type DNA-binding superfamily protein AT1G75490.1Integrase-type DNA-binding superfamily protein AT1G77200.1Integrase-type DNA-binding superfamily proteinAT1G78080.1related to AP2 4AT1G80580.1Integrase-type DNA-binding superfamily proteinAT2G20350.1Integrase-type DNA-binding superfamily proteinAT2G20880.1Integrase-type DNA-binding superfamily proteinAT2G22200.1Integrase-type DNA-binding superfamily proteinAT2G23340.1DREB and EAR motif protein 3AT2G25820.1Integrase-type DNA-binding superfamily proteinAT2G31230.1ethylene-responsive element binding factor 15AT2G33710.1Integrase-type DNA-binding superfamily proteinAT2G33710.2Integrase-type DNA-binding superfamily proteinAT2G35700.1ERF family protein 38AT2G36450.1Integrase-type DNA-binding superfamily proteinAT2G38340.1Integrase-type DNA-binding superfamily proteinAT2G40220.1Integrase-type DNA-binding superfamily proteinAT2G40340.1Integrase-type DNA-binding superfamily proteinAT2G40350.1Integrase-type DNA-binding superfamily proteinAT2G44840.1ethylene-responsive element binding factor 13AT2G44940.1Integrase-type DNA-binding superfamily proteinAT2G46310.1cytokinin response factor 5AT2G47520.1Integrase-type DNA-binding superfamily proteinAT3G11020.1DRE/CRT-binding protein 2BAT3G14230.1related to AP2 2AT3G14230.2related to AP2 2AT3G14230.3related to AP2 2AT3G15210.1ethylene responsive element binding factor 4AT3G16280.1Integrase-type DNA-binding superfamily proteinAT3G16770.1ethylene-responsive element binding proteinAT3G20310.1ethylene response factor 7AT3G23220.1Integrase-type DNA-binding superfamily proteinAT3G23230.1Integrase-type DNA-binding superfamily proteinAT3G23240.1ethylene response factor 1AT3G25890.1Integrase-type DNA-binding superfamily proteinAT3G25890.2Integrase-type DNA-binding superfamily proteinAT3G50260.1cooperatively regulated by ethylene and jasmonate 1AT3G54320.2Integrase-type DNA-binding superfamily proteinAT3G57600.1Integrase-type DNA-binding superfamily proteinAT3G60490.1Integrase-type DNA-binding superfamily proteinAT3G61630.1cytokinin response factor 6AT4G06746.1related to AP2 9AT4G11140.1cytokinin response factor 1AT4G13040.1Integrase-type DNA-binding superfamily proteinAT4G13040.2Integrase-type DNA-binding superfamily proteinAT4G13040.3Integrase-type DNA-binding superfamily proteinAT4G13620.1Integrase-type DNA-binding superfamily proteinAT4G16750.1Integrase-type DNA-binding superfamily proteinAT4G17490.1ethylene responsive element binding factor 6AT4G17500.1ethylene responsive element binding factor 1AT4G18450.1Integrase-type DNA-binding superfamily proteinAT4G23750.1cytokinin response factor 2AT4G23750.2cytokinin response factor 2AT4G25470.1C-repeat/DRE binding factor 2AT4G25480.1dehydration response element B1AAT4G25490.1C-repeat/DRE binding factor 1AT4G27950.1cytokinin response factor 4AT4G28140.1Integrase-type DNA-binding superfamily proteinAT4G31060.1Integrase-type DNA-binding superfamily proteinAT4G32800.1Integrase-type DNA-binding superfamily proteinArabidopsis thaliana(139)AT4G34410.1redox responsive transcription factor 1AT4G36900.1related to AP2 10AT4G39780.1Integrase-type DNA-binding superfamily proteinAT5G05410.1DRE-binding protein 2AAT5G05410.2DRE-binding protein 2AAT5G07310.1Integrase-type DNA-binding superfamily proteinAT5G07580.1Integrase-type DNA-binding superfamily proteinAT5G11190.1Integrase-type DNA-binding superfamily proteinAT5G11590.1Integrase-type DNA-binding superfamily proteinAT5G13330.1related to AP2 6lAT5G13910.1Integrase-type DNA-binding superfamily proteinAT5G18450.1Integrase-type DNA-binding superfamily proteinAT5G18560.1Integrase-type DNA-binding superfamily proteinAT5G19790.1related to AP2 11AT5G21960.1Integrase-type DNA-binding superfamily proteinAT5G25190.1Integrase-type DNA-binding superfamily proteinAT5G25390.1Integrase-type DNA-binding superfamily proteinAT5G25390.2Integrase-type DNA-binding superfamily proteinAT5G25810.1Integrase-type DNA-binding superfamily proteinAT5G43410.1Integrase-type DNA-binding superfamily proteinAT5G44210.1erf domain protein 9AT5G47220.1ethylene responsive element binding factor 2AT5G47230.1ethylene responsive element binding factor 5AT5G50080.1ethylene response factor 110AT5G51190.1Integrase-type DNA-binding superfamily proteinAT5G51990.1C-repeat-binding factor 4AT5G52020.1Integrase-type DNA-binding superfamily proteinAT5G53290.1cytokinin response factor 3AT5G61590.1Integrase-type DNA-binding superfamily proteinAT5G61600.1ethylene response factor 104AT5G61890.1Integrase-type DNA-binding superfamily proteinAT5G64750.1Integrase-type DNA-binding superfamily proteinAT5G65130.1Integrase-type DNA-binding superfamily proteinAT5G67000.1Integrase-type DNA-binding superfamily proteinAT5G67010.1Integrase-type DNA-binding superfamily proteinAT5G67190.1DREB and EAR motif protein 2ERF Family IntroductionThe AP2/ERF superfamily is defined by the AP2/ERF domain, which consists of about 60 to 70 amino acids and is involved in DNA binding. These three families have been defined as follows. The AP2 family proteins contain two repeated AP2/ERF domains, the ERF family proteins contain a single AP2/ERF domain, and the RAV family proteins contain a B3 domain, which is a DNA-binding domain conserved in other plant-specific transcription factors, in addition to the single AP2/ERF domain.It has been demonstrated that the AP2/ERF proteins have important functions in the transcriptional regulation of a variety of biological processes related to growth and development, as well as various responses to environmental stimuli.After finding the tobacco ERFs, many proteins in the ERF family were identified and implicated in many diverse functions in cellular processes, such as hormonal signal transduction, response to biotic and abiotic stresses, regulation of metabolism, and in developmental processes in various plant species.Toshitsugu Nakano, Kaoru Suzuki, Tatsuhito Fujimura, and Hideaki Shinshi.Genome-wide analysis of the ERF gene family in Arabidopsis and rice.Plant Physiol, 2006. 140(2): p. 411-32.PMID: 16407444The first class are proteins which bind to ethylene response elements (ERE) or GCC boxes (tobacco EREBPs, Arabidopsis AtEBP and AtERF1-5, and tomato Pti4-6) found in the promoters of ethylene-inducible pathogenesis related genes. The GCC box is an 11 bp sequence (TAAGAGCCGCC) with a core GCCGCC sequence that is required for binding.The second class includes proteins that bind to the C-repeat or dehydration response element (DRE) in the promoters of genes that are turned on in response to low temperatures and/or water deficit (CBF1, CBF2, CBF3/DREB1A andDREB2A). The C-repeat/DREs contain the core sequence CCGAC.Nole-Wilson S, Krizek BA.DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA.Nucleic Acids Res. 2000 Nov 1;28(21):4076-82. Erratum in: Nucleic Acids Res 2001 Mar 1;29(5):1261.PMID: 11058102©2010-2013, Center for Bioinformatics, Peking UniversitySupported ByLast Modified: 2013-8-23。
转录因子DREB的研究进展及其在水稻抗逆中的应用柯亚光;余舜武;罗利军【摘要】The paper reviewed the advances in researching into DREB transcription factors' structure,classification,function,and expression and controlling pattern as well as their application to rice stress resistance.%综述了DREB类转录因子的结构、分类、功能、逆境下表达调控模式以及在水稻抗逆应用方面的研究进展.【期刊名称】《上海农业学报》【年(卷),期】2013(029)004【总页数】6页(P122-127)【关键词】转录因子;DREB;非生物胁迫;抗性;信号转导途径【作者】柯亚光;余舜武;罗利军【作者单位】华中农业大学植物科学技术学院,武汉430070;上海市农业生物基因中心,上海201106;上海市农业生物基因中心,上海201106;上海市农业生物基因中心,上海201106【正文语种】中文【中图分类】S511;Q78植物直接暴露在多变的自然环境条件下生长,经常会遭遇到各类恶劣的环境,比如干旱、盐胁迫、极端的气温、病虫害等。
为了适应这些不利的生长环境条件,植物会激活一系列的基因表达,这些相关基因在正常情况下是不表达或者是低表达的[1]。
随着越来越多胁迫诱导基因被鉴定出来,人们发现在这些基因当中,许多是与干旱、高盐、低温胁迫相关的转录因子,它们与下游目标基因启动子区域的顺式作用元件特异性结合来调节相应基因的表达(图1)。
这些转录因子(基因)可分成几个大的基因家族,包括AP2、b ZIP、NAC、MYB、MYC、zinc-figer和W RKY等[2]。
其中AP2类转录因子是一个超大基因家族,在植物的生长发育和逆境胁迫方面均发挥着重要作用。
ERFs转录因子及其在植物胁迫应答中的作用卢丞文;潘晓琪;朱本忠【摘要】ERFs(ethylene-responsive factors)是植物特有的一类转录因子,位于乙烯信号转导途径的下游,具有一个高度保守的含58或59个氨基酸的DNA结合域,通过结合相关基因的启动子顺式作用元件调控植物生物和非生物胁迫反应.综述ERF转录因子的结构特征和分类及其在植物抗逆作用中的研究进展.【期刊名称】《生物技术通报》【年(卷),期】2012(000)003【总页数】6页(P22-27)【关键词】ERFs;转录因子;乙烯;胁迫应答【作者】卢丞文;潘晓琪;朱本忠【作者单位】长春师范学院生命科学学院,长春130032;吉林大学农业与生物工程学院,长春130022;中国农业大学食品科学与营养工程学院,北京100083;中国农业大学食品科学与营养工程学院,北京100083【正文语种】中文植物体内与生长发育有关的信号传递,以及外界环境激活的信号传递,如感受外界干旱、高盐、激素、病害及体内细胞发育等信号,都通过一系列传递激发转录因子,当转录因子与顺式作用元件相互作用后,激活RNA聚合酶II转录复合物,从而启动特定基因的转录表达,最后通过基因产物的作用对内、外界信号作出调节反应[1]。
因此,转录因子在基因的表达调控中起关键作用。
转录因子(transcription factors,TF),又称反式作用因子,是指能够与真核基因启动子区域中顺式作用元件发生特异性相互作用的DNA结合蛋白,通过它们之间以及与其它相关蛋白之间的相互作用,激活或抑制转录。
植物许多基因的表达都是由特定的转录因子与特定的顺式作用元件相互作用调控的。
乙烯是重要内源性植物激素,它调节着植物生长发育和许多生理过程,如种子萌芽、植物细胞发育、植物开花、果实成熟、器官衰老与脱落、根表皮细胞程序性死亡、对生物和非生物胁迫反应的应答等[2-5]。
乙烯生物合成途径现在已经研究清楚,它是通过杨氏循环来实现的。
植物非生物胁迫的研究进展作者:于新海李濛周红昕来源:《农业与技术》2016年第09期摘要:植物生长的自然环境是由一系列复杂的生物胁迫和非生物胁迫构成。
且植物对这些胁迫的反应同样复杂,其中干旱、水淹、冷、高盐等非生物胁迫对植物的危害尤为严重。
文章对国内外近年来植物非生物胁迫响应机制、转录因子在非生物胁迫过程中的作用和基因工程对培育具有非生物胁迫耐受性作物的应用进行讨论。
关键词:非生物胁迫;转录因子;基因工程中图分类号:Q789 文献标识码:A DOI:10.11974/nyyjs.20160532020在植物生长过程中会受到各种各样的非生物胁迫或生物胁迫,其中非生物胁迫包括盐碱胁迫、干旱胁迫、冷胁迫、热胁迫等等因素。
为了适应在各种不同胁迫条件下的生存环境,植物进化出了响应不同胁迫信号刺激的调控途径。
当植物受到这些胁迫条件胁迫后,将会激活植物体内响应该胁迫的调控途径,使植物能够抵抗该胁迫,从而生存下去。
因此,研究植物的耐非生物胁迫可以帮助科学家们了解植物是如何抵御外界环境胁迫及通过哪些关键途径来进行调节。
目前,随着全测序成本的降低,已经完成了拟南芥(Arabidopsis thaliana L.)、玉米(Zea mays L.)、大豆(Giycine Max L.)、水稻(Oryza sativa L.)、苹果(Malus domestica.)等许多物种的全基因组测序[1]。
结合全基因组测序结果、差异转录组分析结果和大量基因的功能分析,发现转录因子在这一过程中起着重要作用,其中转录因子包括MYB和AP2/ERF等家族。
当植物受到生物或非生物胁迫刺激后,会激活脱落酸、乙烯等信号途径,从而激活转录因子的表达,再通过转录因子结构域内的反式作用元件特异性结合到下游靶基因启动子区域的顺式作用元件上,来激活或者抑制下游功能基因的表达来完成调节作用。
这一过程中,最终需要通过基因来行使功能,因此本文重点讨论植物非生物胁迫反应中主要的可能机制。
植物耐盐生理及耐盐基因的研究进展李敏;张健;李玉娟;谈峰;丛小丽【摘要】@@%植物对盐分胁迫的反应和适应是一个复杂的过程.本文就植物耐盐生理和耐盐基因两个方面近年来的研究进行了综述,这对植物抗逆育种研究有重要的指导意义.【期刊名称】《江苏农业科学》【年(卷),期】2012(040)010【总页数】4页(P45-48)【关键词】植物;耐盐生理;耐盐基因【作者】李敏;张健;李玉娟;谈峰;丛小丽【作者单位】江苏沿江地区农业科学研究所,江苏如皋226541;江苏沿江地区农业科学研究所,江苏如皋226541;江苏沿江地区农业科学研究所,江苏如皋226541;江苏沿江地区农业科学研究所,江苏如皋226541;江苏沿江地区农业科学研究所,江苏如皋226541【正文语种】中文【中图分类】Q945.78土壤盐碱化是一个世界性的问题,据统计我国盐碱地面积约1亿hm2[1],占国土总面积的10.3%,主要分布在沿海和三北地区。
沿海滩涂作为重要的土地资源,在农林生产上备受重视。
同时,沿海滩涂作为全球湿地系统组成部分,对于维护生态系统平衡和稳定也有重要意义。
但由于滨海盐碱地理化性状差,植物生长不良甚至不能成活,难于建立植被,严重制约了农业生产、农林绿化,影响了生态环境。
因此选育和开发利用耐盐碱植物越来越引起人们的重视。
植物耐盐性的提高通过传统育种方法获得的效果是有限的,这主要由于植物的耐盐性在分子及生理水平上都是由复杂的机制来调控的。
在生理水平上,盐土植物和具低耐盐性的植物也显示出很大范围的适应性,这给传统育种工作者带来很大的困难;在分子水平上,植物的耐盐性通常具有多基因性状的特点,基因工程技术通过改变一个或几个基因的表达量来提高植物的耐盐性,更具有精确性和稳定性,可极大地提高育种的效率,加快育种速度。
随着分子生物学与基因工程技术的日趋成熟和迅猛发展,通过基因工程手段改良作物的耐盐性已受到越来越广泛的关注和重视。
本文拟就植物耐盐生理、盐分胁迫的信号传递机制及耐盐基因的功能与作用进行综述,对进一步推动耐盐植物选育研究,加快盐碱地开发具有重要的意义。