10-3 基尔霍夫定律的相量形式
- 格式:ppt
- 大小:317.00 KB
- 文档页数:17
图3-1 t rad f /3145014.322=⨯⨯==πωAt i Vt u )90314sin(2)45314sin(310︒-=︒+=︒=︒--︒=-=135)90(45i u ψψϕs T x 0075.0501360135360135=⨯︒︒=︒︒=25A t i i t A t t i f )(,时,)(︒+=∴︒=∴===+=+⨯===3040sin 10305sin 10040sin 10)40sin(225402πψψψπψπππω︒∠=∠︒∠=︒∠=︒∠⨯︒∠=⋅+=+-+=-+=+++=+1.877.145657.51.53101.9857.5645657.51.531042)44()86(1210)44()86(21212121A A A A j j j A A j j j A A 2121)2(;)60sin(10,)sin(5)1(i i i A t i A t i +=︒+==ωω︒∠=︒∠+︒∠=+=︒∠=︒∠=∙∙∙∙∙89.4023.13601005)2(;6010,05)1(2121m m m m m I I I A I A I A I A I V U 25,10,22021===第三章习题3-1 已知正弦电压和正弦电流的波形如图3-1所示,频率为50Hz ,试指出它们的最大值、初相位以及它们之间的相位差,并说明哪个正弦量超前,超前多少度?超前多少时间?解: u 、i 的表达式为即:u 比i 超前135°,超前2-1 某正弦电流的频率为20Hz ,有效值为 A ,在t =0时,电流的瞬时值为5A ,且此时刻电流在增加,求该电流的瞬时值表达式。
解:3-3 已知复数A 1=6+j8Ω,A 2=4+j4Ω,试求它们的和、差、积、商。
解:3-4 试将下列各时间函数用对应的相量来表示。
解:3-5 在图3-2所示的相量图中,已知 ,它们的角频率是ω,试写出各正弦量的瞬时值表达式及其相量。
1.电压电流电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。
2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3.全电路欧姆定律:U=E-RI4.负载大小的意义:电路的电流越大,负载越大。
电路的电阻越大,负载越小。
5.电路的断路与短路电路的断路处:I=0,U≠0 电路的短路处:U=0,I≠0 。
基尔霍夫定律:1.几个概念:支路:是电路的一个分支。
结点:三条(或三条以上)支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。
网孔:电路中无其他支路穿过的回路称为网孔。
2.基尔霍夫电流定律:(1)定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。
(2)表达式:i进总和=0 或:i进=i出(3)可以推广到一个闭合面。
3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
电位的概念(1)定义:某点的电位等于该点到电路参考点的电压。
(2)规定参考点的电位为零。
称为接地。
(3)电压用符号U表示,电位用符号V表示(4)两点间的电压等于两点的电位的差。
(5)注意电源的简化画法。
四.理想电压源与理想电流源1.理想电压源(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。
理想电压源的输出功率可达无穷大。
(2)理想电压源不允许短路。
2.理想电流源(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。
理想电流源的输出功率可达无穷大。
(2)理想电流源不允许开路。
3.理想电压源与理想电流源的串并联(1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。
基尔霍夫定律的相量形式
电阻、电容和电感中电压电流的时域关系式,以及相应的相量表达式。
对于简洁电路,我们已知电路中电压和电流均为与所施加的激励源同频率的正弦量。
此结论可推广到线性稳态的简单正弦沟通电路中去。
对于简单的线性电路,假如全部激励源均为同一频率的正弦函数,则各支路的电流和电压都为和激励源有相同频率的正弦函数,都可以表示为相量形式,在电路计算中可采纳相量计算的方法。
基尔霍夫节点电流定律的时域表达式为
(1)
由于全部电流均为相同频率的正弦函数,依据本章第三节内容推导,可把时域求和的表达式转化为相量求和形式
(2)
此式表明,对于任一节点,流出节点的电流相量之和等于零。
此即为相量形式的基尔霍夫节点电流定律。
基尔霍夫电压定律指出,电路中任一闭合回路的各支路电压降之和为零,即
(3)
可得相量形式的基尔霍夫电压定律
(4)
把节点电流或回路电压的相量作成相量图,可得到一个闭合的相量多边形。
在计算分析正弦沟通电路中,可利用上述两个定律及相量关
系。
下面举几个例子加以说明。
例1 图1a的电路中,已知,,求的值。
解:由基尔霍夫电压定律,得:
,图1b中画出了电压的相量图。
图1。