【学练优】2016年秋九年级数学上册 24.4 圆锥的侧面积和全面积(第2课时)教案2 (新版)新人教版
- 格式:doc
- 大小:203.50 KB
- 文档页数:3
基础知识反馈卡·24.4.2
时间:10分钟满分:25分
一、选择题(每小题3分,共6分)
1.已知一个扇形的半径为60 cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()
A.12.5 cm B.25 cm C.50 cm D.75 cm
2.如图J24-4-4小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,则该扇形薄纸板的圆心角为()
A.150°B.180°C.216°D.270°
图J24-4-4 图J24-4-5 图J24-4-6
二、填空题(每小题4分,共12分)
3.如图J24-4-5,小刚制作了一个高12 cm,底面直径为10 cm的圆锥,这个圆锥的侧面积是________cm2.
4.如图J24-4-6,Rt△ABC分别绕直角边AB,BC旋转一周,旋转后得到的两个圆锥的母线长分别为____________.
5.圆锥母线为8 cm,底面半径为5 cm,则其侧面展开图的圆心角大小为______.
三、解答题(共7分)
6.一个圆锥的高为3 3 cm,侧面展开图为半圆,求:
(1)圆锥的母线与底面半径之比;
(2)圆锥的全面积.。
24.4.2圆锥的侧面积和全面积一、课题内容本节课学习内容涉及人民教育出版社义务教育教科书《数学》九年级上册第二十四章《圆》中的24.4《弧长和扇形面积》。
二、教学分析1、内容分析本节课内容是在学习了弧长和扇形的面积公式的基础上学习圆锥的侧面积和全面积。
本堂课是本章的教学难点,难点在于公式的推导和扇形圆锥的相互转化,能应用公式解决一些实际问题。
(1)重点:1.理解圆锥侧面积和全面积的公式及其有关计算。
2.培养学生空间观念及空间图形与平面图形相互转化的思想。
(2)难点:1.利用圆锥的侧面积和全面积的公式解决实际问题。
2.圆锥侧面展开图(扇形)中各元素与圆锥各元素之间的关系。
2、学情分析1.九年级学生在新课的学习中已掌握弧长和扇形面积公式的基本知识。
2.学生的分析、理解能力在学习新课时有明显提高。
3.学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
三、教学目标知识与技能:掌握圆锥的特征,弄清圆锥侧面展开图中各元素与圆锥中各元素之间的对应关系;会推导、计算圆锥的侧面积和全面积。
过程与方法:通过对圆锥侧面积的推导,体会空间图形平面化的数学方法;发展类比和转化的数学思想;进一步培养空间观念。
情感与态度:通过对实际问题的分析,体会数学的实用价值;在小组活动中培养合作交流能力和探究精神。
四、教学过程设计一、创设情境,引入新课由于学生刚上完体育课,问他们现在想吃什么?然后出示冰淇淋的图片。
思考厂家怎么制作冰淇淋的包装纸?二、组织活动,讲授新课(1)活动一1、以小组为单位利用课前准备好的圆形纸片制作一个扇形;2、带领学生回忆弧长和扇形公式。
(三个公式:重点强调弧长和扇形公式的转化及关系)。
3、如果将你们手中的扇形卷起来能得到什么?(扇形构成圆锥的侧面)要构成个完整的圆锥还差什么?怎样获取?(圆锥由一个侧面和一个底面都成)。
此活动主要让学生感受扇形和圆锥的关系,为活动二推圆锥的侧面积和全面积公式做准备。
九年级数学上册第二十四章24.4 弧长和扇形面积24.4.2 圆锥的侧面积和全面积备课资料教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章24.4 弧长和扇形面积24.4.2 圆锥的侧面积和全面积备课资料教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章24.4 弧长和扇形面积24.4.2 圆锥的侧面积和全面积备课资料教案(新版)新人教版的全部内容。
第二十四章 24。
4。
2圆锥的侧面积和全面积知识点1:圆锥的基本概念圆锥的组成:圆锥可以看成由一个直角三角形绕一条直角边所在直线旋转一周而成的图形,这条直线叫做圆锥的轴,垂直于轴的边旋转而成的面叫做圆锥的底面,它的底面是一个圆形,斜边旋转而成的面叫做圆锥的侧面.圆锥的母线:连接圆锥的顶点和底面圆周上任意一点的线段叫做圆锥的母线。
圆锥的高:圆锥的顶点和底面圆心的距离叫做圆锥的高。
圆锥的基本特征:①圆锥的轴通过底面的圆心,并且垂直于底面;②圆锥的母线长都相等;③经过圆锥的轴的平面被圆锥截得的图形是等腰三角形。
知识点2:圆锥的侧面展开图沿一条母线将圆锥的侧面剪开并展平,其侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,弧长等于圆锥的底面圆周长。
知识点3:圆锥的全面积设圆锥的底面半径为r,母线长为l,则它的侧面积和全面积分别为S侧= l·2πr=πrl;S全=S侧+S底=πrl+πr2=πr(l+r).关键提醒:(1)圆锥的面积计算,只要分清底面半径和母线,就可直接计算,但要看清是侧面积还是全面积;(2)圆锥的侧面展开图的圆心角的度数n°,可由L==2πr求得,即n=或n=。
第2课时圆锥的侧面积和全面积;知识点圆锥的侧面积以及全面积;1.若设圆锥的母线长为4,底面圆的半径为2,那么圆锥的侧面展开图(扇形)的弧长是________,圆锥的侧面积S侧=________,圆锥的全面积S全=________.2.2016·宁波如图24-4-11,圆锥的底面圆半径r为6 cm,高h为8 cm,则圆锥的侧面积为();图24-4-11A.30πcm2B.48πcm2C.60πcm2D.80πcm23.已知圆锥底面圆的半径为3,母线长为5,则它的全面积为;()A.9πB.15πC.24πD.39π4.2016·贺州已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.85.2017·宿迁若将半径为12 cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2 cm B.3 cm C.4 cm D.6 cm6.有一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝处忽略不计),若圆锥的底面圆的直径是80 cm,则这块扇形铁皮的半径是()A.24 cm B.48 cmC.96 cm D.192 cm7.2017·泰安工人师傅用一张半径为24 cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为________.8.2017·自贡圆锥的底面圆周长为6πcm,高为4 cm,则该圆锥的全面积是________,侧面展开扇形的圆心角是________.9.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角是________°.10.如图24-4-12,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2 cm,扇形的圆心角θ=120°,求该圆锥的高h的长.图24-4-1211.如果圆锥的底面圆的周长是20π,侧面展开后所得的扇形的圆心角为120°,求该圆锥的侧面积和全面积.12.2017·齐齐哈尔一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是()A.120°B.180°C.240°D.300°13.如图24-4-13所示,圆锥的底面圆半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A的最短路程是()图24-4-13A.8B.10 2C.15 2 D.20 214.2016·十堰如图24-4-14,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪下一个最大的扇形OCD,用此扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()图24-4-14A.10 cm B.15 cmC.10 3cm D.20 2cm15.如图24-4-15,将半径为3 cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()图24-4-15A.2 2cm B.2cmC.10cmD.32cm16.如图24-4-16,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,则圆锥的高是()图24-4-16A.4 2m B.5 mC.30m D.2 15m17.2017·南充如图24-4-17,在Rt△ABC中,AC=5 cm,BC=12 cm,∠ACB=90°,把Rt△ABC绕BC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()图24-4-17A.60πcm2B.65πcm2C.120πcm2D.130πcm218.2017·苏州如图24-4-18,AB是⊙Ο的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形AOC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是________.图24-4-1819.如图24-4-19,Rt△ABC中,∠ACB=90°,AC=BC=2 2,若把Rt△ABC绕边AB所在的直线旋转一周,则所得几何体的表面积为________.(结果保留π)图24-4-1920.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面(轴截面是指以底面圆的直径为底,圆锥的高为高的三角形)的面积为多少?21.如图24-4-20所示,一个圆锥的高为3 3cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面圆的半径之比;(2)∠BAC的度数;(3)圆锥的侧面积(结果保留π).图24-4-20教师详解详析1.4π 8π 12π2.C [解析] 因为圆锥的母线长为62+82=10(cm),圆锥的底面圆周长为2×π×6=12π(cm),所以圆锥的侧面积为12×10×12π=60π(cm 2).3.C [解析] 圆锥底面圆的周长是2×3π=6π,所以侧面积是12×6π×5=15π.又因为圆锥底面积是π×32=9π,所以它的全面积是15π+9π=24π.故选C.4.D [解析] 设圆锥的底面圆半径为r .已知圆锥的侧面展开图的半径为12, 又∵它的侧面展开图的圆心角是120°,∴弧长=120π×12180=8π,即圆锥底面圆的周长是8π,∴8π=2πr ,解得r =4,∴底面圆的直径为8.5.D [解析] 根据圆锥底面圆周长=扇形弧长,得12π=2πr ,所以r =6(cm).6.B [解析]∵用扇形铁皮围成圆锥后,扇形的弧长与圆锥的底面圆的周长相等,∴弧长l =80π.又l =πr 180·300,∴r =180l 300π=180×80π300π=48(cm).故选B.7.2 119cm [解析] 由题意可得圆锥的母线长为24 cm ,设圆锥的底面圆的半径为r cm ,则2πr =150π×24180,解得r =10,所以圆锥的高为242-102=2 119(cm).8.24π cm 2 216° [解析]∵圆锥的底面圆周长为6π cm ,∴底面圆半径为r =6π÷2π=3(cm),根据勾股定理,得圆锥的母线R =r 2+h 2=32+42=5(cm),侧面展开扇形的弧长l =2πr =6π cm ,∴侧面展开扇形的面积S 侧=12lR =12×6π×5=15π(cm 2),圆锥底面积S =πr 2=9π(cm 2),∴该圆锥的全面积S 全=15π+9π=24π(cm 2);设侧面展开扇形的圆心角为n °,则n πR 180=l ,即n π×5180=6π,解得n =216,∴侧面展开扇形的圆心角为216°.9.180 [解析] 设母线长为R ,底面圆半径为r ,则底面圆周长=2πr ,底面积=πr 2,侧面积=12·2πr ·R =πrR .∵侧面积是底面积的2倍,∴2πr 2=πrR ,∴R =2r .设侧面展开图的圆心角为n °,则n πR180=2πr =πR ,∴n =180. 10.解:由题意,得2πr =120π·l180,而r =2 cm ,∴l =6 cm , ∴由勾股定理,得h =l 2-r 2=62-22=4 2(cm), 即该圆锥的高h 的长为4 2cm.11.[全品导学号:82642186]解:设圆锥底面圆的半径为r ,母线长为l ,则有2πr =20π,120πl 180=20π,解得r =10,l =30.∴该圆锥的侧面积为12×20π·30=300π,圆锥的全面积为300π+π·102=400π.12.A [解析] 设圆锥侧面展开图的扇形的圆心角的度数为n °,底面圆半径为r ,由题意得3πr 2=πrl ,∴l =3r .又∵3πr 2=n 360πl 2=n360π(3r )2,∴n =120.故圆锥侧面展开图的扇形的圆心角是120°.13D [解析] 圆锥的侧面展开扇形的弧长为2π×5=10π.设扇形的圆心角为n °,根据弧长公式得10π=n π·20180,解得n =90.所以蜘蛛从点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程为202+202=20 2.故选D.14.D [解析] 过点O 作OE ⊥AB 于点E .∵OA =OB =60 cm ,∠AOB =120°, ∴∠A =∠B =30°,∴OE =12OA =30 cm ,∴CD ︵的长=120×π×30180=20π.设圆锥的底面圆的半径为r cm ,则2πr =20π,解得r =10, ∴圆锥的高=302-102=20 2(cm).15.A [解析] 如图,过点O 作OC ⊥AB ,垂足为D ,交⊙O 于点C .由折叠的性质可知,OD =12OC =12OA =32cm ,由此可得,在Rt △AOD 中,∠OAD =30°.同理可得∠OBD =30°.在△AOB 中,由三角形内角和定理,得∠AOB =180°-∠OAD -∠OBD =120°,∴AB ︵的长为120π×3180=2π(cm).设围成的圆锥的底面圆的半径为r cm ,则2πr =2π,∴r =1,∴圆锥的高为32-12=2 2(cm).故选A.16.C [解析] 依题意,线段BC 是圆的直径.利用勾股定理可得AB =4 2m , ∴lBC ︵=90π·AB 180=2 2π(m),∴圆锥的底面圆的半径=2 2π÷2π=2(m).又圆锥的母线长为42m ,∴圆锥的高为(4 2)2-(2)2=30(m).故选C.17.B [解析] 由勾股定理,得AB =BC 2+AC 2=122+52=13(cm).由题意知得到的这个几何体是圆锥,圆锥的底面圆半径AC =5 cm ,母线AB =13 cm ,所以圆锥的侧面积=πAC ·AB =π×5×13=65π(cm 2).故选B.18.12 [解析] 根据“圆锥的侧面展开图的弧长等于底面圆的周长”求解.∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°,∴OA =3.设围成的圆锥的底面圆的半径是r ,则60π×3180=2πr ,解得r =12.19.8 2π [解析] 过点C 作CD ⊥AB 于点D .在Rt △ABC 中,∠ACB =90°,AC =BC ,利用勾股定理可得AB =2AC =4,CD =2.以CD 为半径的圆的周长是4π,故绕直线AB 旋转一周所得几何体的表面积是2×12×4π×2 2=8 2π.20.[解析] (1)由S 扇形=n πR 2360求出R ,再代入l =n πR180求弧长.(2)若将此扇形卷成一个圆锥,扇形的弧长就是圆锥底面圆的周长,就可求得底面圆的半径,其轴截面是一个以底面直径为底,圆锥母线为腰的等腰三角形.解:(1)设扇形的半径为R cm. 由题意,得300π=120πR 2360,解得R =30,∴弧长l =120×π×30180=20π(cm).因此,扇形的弧长为20π cm. (2)如图所示.∵20π=2πr ,∴r =10. 又∵R =30,∴AD =900-100=20 2(cm),∴S 轴截面=12BC ·AD =12×20×202=200 2(cm 2).因此,这个圆锥的轴截面的面积为200 2cm 2.21.解:(1)设此圆锥的底面圆的半径为r cm ,母线长AC =l cm.∵2πr =πl ,∴lr =2.即圆锥的母线长与底面圆的半径之比为2∶1. (2)∵lr=2,∴圆锥的高与母线的夹角为30°,则∠BAC =60°. (3)由图可知l 2=OA 2+r 2,OA =3 3cm , ∴(2r )2=(3 3)2+r 2,即4r 2=27+r 2, 解得r =3.∴l =2r =6.∴圆锥的侧面积为πl 22=18π cm 2.。
第二十四章圆24.4 弧长和扇形面积第2课时圆锥的侧面积和全面积活动二:实践探究交流新知活动二:老师沿圆锥的一条母线剪开,然后用双面胶粘贴在黑板上,老师引导学生通过观察得出圆锥的侧面展开图是扇形.问题:怎样才能制作出这种圆锥形的小帽子?”老师引导学生观察、分析、比较出展开扇形与圆锥的关系,进行演示,让学生有意识地观察.学生分组讨论,合作探究出展开的扇形半径、弧长与圆锥的母线,底面周长的关系.教师做好总结:①圆锥的侧面展开图是一个扇形;②圆锥的母线是展开图中扇形的半径;③圆锥底面圆的周长是展开图中扇形的弧长;④圆锥的侧面积是展开图中扇形的面积;2.探究面积公式:问题:如果设圆锥的底面半径为r,母线为l,那么圆锥侧面积怎么计算?全面积呢?教师引导学生进行思考后,全班进行交流,最后学生写出认为正确的计算公式,教师给予讲解.圆锥的侧面积就是展开图中扇形的面积,扇形的弧长等于圆锥底面圆的周长2πr,半径为圆锥的母线l,根据扇形面积公式得:122r l rlππ⨯⨯=.圆锥的全面积是由一个底面和一个侧面组成,所以全面积是()2=+=+S S S rl r r l rπππ=+全侧底.教师与学生共同总结,归纳,给予学生充分的时间观察图形,理解公式.面、侧面,尤其是母线、高等概念的理解可能还不是很到位,在此通过实物对这些概念作一简介,既形象又直观,为后面的探究和推导展开扇形的圆心角公式和圆锥的侧面积公式做好了准备。
2让学生通过比较、讨论、合作探索出展开扇形与圆锥间的内在联系,体验探索活动的乐趣和成功的快感,从而树立学习的自信心.活动三:开放训练体现应用【应用举例】(课件展示)例1:蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为12m2,高为3.2m,外围高1.8m的蒙古包,至少需要多少平方米的毛毡?(结果取整数)教师引导学生分析:毛毡的面积是指圆柱的侧面积和圆锥的侧面积之和.先求圆柱的侧面积,根据圆柱侧面积为矩形,所以利用公式2S rhπ=圆柱侧,已知h=1.8,关键求r;要求圆锥的侧面积,根据公式S rlπ=圆锥侧,r已求出,转化为求l,圆锥的高为1.4,所以利用勾股定理即可求解.通过教师引导,学生能够熟知解题思路,独立完成解题过程,教师进行指导.学生完成整理后,教师展示解题过程,学生小组内交流、纠正.在实际生活中,展开图的知识非常常见,将本课知识与实际生活中的问题密切联系,有利于培养学生数学思想、方法和对数学的积极情感.【拓展提升】 (课件展示)例2:请同学们观察“活动一”中我做的底面半径为10cm ,母线长为60cm 的圆锥形纸帽,假设一只蚂蚁要从底面圆周上一点B (设点B 为纸帽底面圆弧的接口处)出发,沿圆锥侧面爬行一圈再回到点B ,问它爬行的最短路线是多少? 教师引导学生分析:蚂蚁所走的最短路线应是直线,所以把圆锥的侧面展开,分析最短路线.【达标测评】1. 圆锥的底面半径为6cm ,母线长为10cm ,则圆锥的侧面积为_________.2.一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为____________.3.已知圆锥的底面直径为20cm ,母线长为90cm ,则圆锥的表面积是 ______.4. 如图,扇形的半径30,圆心角为120°,用它做一个圆锥模型的侧面,求这个圆锥的底面半径和高.5.如图,一个直角三角形两直角边BC 、AC 分别是4cm ,3cm ,以它的一直角边为轴旋转一周得到一个几何体,求这个几何体的全面积. 师生活动:学生进行当堂检测,完成后,教师进行个别提问,并指导学生解释做题理由和做题方法,使学生在个别思考解答的基础上,共同交流、形成共识、确定答案.达标测评是为了加深对所学知识的理解运用,在问题的选择上以基础为主、疑难点突出,增加开放型、探究型问题,使学生思维得到拓展、能力得以提升. 活动四:课堂总结反思1.课堂总结:(1)谈一谈你在本节课中有哪些收获?哪些进步? (2)学习本节课后,还存在哪些困惑?教师强调:熟记圆锥的侧面积和全面积公式,明确公式中各个字母所表示的意义.2.布置作业:教材第115页,习题第1、4题;巩固、梳理所学知识.对学生进行鼓励、进行思想教育.【板书设计】提纲挈领,重点突出【教学反思】 ①A.复习回顾□B.创设情景□C. 探究新知□D.课堂训练 □E. 课堂总结□在探究活动中,以学生动手操作,实际探索圆锥的性质和展开图与圆锥之间的对应关系,使学生在推理和思考中学会交流,进行体验. ②A.重点□B.难点 □C.易错点 □D. □E. □反思教学过程和教师表现,进一步提升操作流程和自身素质.。
概念学习如图,我们把连接圆锥的顶点S和底面圆上任一点的连线SA,SB等叫做圆锥的母线,圆锥有无数条母线,它们都相等.从圆锥的顶点到圆锥底面圆心之间的距离是圆锥的高.要点归纳:如果用r表示圆锥底面的半径,h表示圆锥的高线长,l表示圆锥的母线长,那么r、h、l之间数量关系是:222+=.r h l填一填根据下列条件求值(其中r、h、l分别是圆锥的底面半径、高线、母线长):(1) l= 2,r=1则h= .(2) h =3,r=4则l = .(3) l = 10,h = 8则r= .探究点2:圆锥的侧面展开图问题1 沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?问题2 圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?要点归纳:如图,圆锥侧面展开图扇形的半径等于圆锥母线的长l,侧面展开图扇形的弧长等于圆锥的底面周长2πr,因此,圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).练一练已知一个圆锥的底面半径为12cm,母线长为20cm,则这个圆锥的侧面积为,全面积为.例1 一个圆锥的侧面展开图是一个圆心角为120°,弧长为20π的扇形,试求该圆锥底面的半径及它的母线的长.例2 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面展开图?求出该侧面展开图的圆心角的度数及面积.例3 (教材P114例3)蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为12m2,高为3.2m,外围高为1.8m的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?练一练如图所示的扇形中,半径R=10,圆心角θ=144°,用这个扇形围成一个圆锥的侧面.(1) 则这个圆锥的底面半径r= .(2) 这个圆锥的高h= .三、检测1.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是.2.一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为.3.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积是,全面积是.4.如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少?(2)求出该圆锥的底面半径是多少?5.(1) 在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?(2) 若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径?(3) 能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.四、课堂小结、形成网络(一)小结圆锥的侧面积和全面积重要图形重要结论222r h l+=πS rl=侧π()S r r l=+全①其侧面展开图扇形的半径=母线的长l;①侧面展开图扇形的弧长=底面周长.。
(2)已知一个圆锥的底面半径为12cm ,母线长为20cm ,则这个圆锥的侧面积为______________,全面积为______________2240cm π2384cm π(1)已知一个圆锥的高为6cm ,半径为8cm ,则这个圆锥的母线长为_______________
10cm 做一做
例1、圆锥形烟囱帽(如图)的母线长为80cm ,高为38.7cm,求这个
烟囱帽的面积(取3.14,结果保留2个有效数字)
π解:∵l=80,h=38.7∴r=707.38802
222≈−=−h l ∴S 侧=πrl≈3.14×70×80≈1.8×104(cm 2)
答:烟囱帽的面积约为1.8×104cm 2。
l
h
r
例2:如图所示的扇形中,半径R=10,圆心角θ=144°用这个扇形围成一个圆锥的侧面.
(1)求这个圆锥的底面半径r;
(2)求这个圆锥的高.
A
C
O
B r
r=4
21
2
◼2.扇形的半径为30,圆心角为120°用它做一个圆锥模型的侧面,求这个圆锥的底面半径和高.
◼r=10;h=2
20比一比,看谁做得快
1.圆锥的底面直径为80cm.母线长为90cm,求它的全面积.S 全=5200 cm 2。
做一做
例3、蒙古包可以近似地看成由圆锥和圆柱组成的.如果想在某个牧区搭建
20个底面积为35m 2,高为3.5m,外围高1.5m 的蒙古包.那么至少需要用多少
m 2的帆布?(结果取整数).
·
r
h 1
h 2
小结
本节课我们有什么收获?
本节课我们认识了圆锥的侧面展开图,学会计算圆锥的侧面积和全面积,在认识圆锥的侧面积展开图时,应知道圆锥的底面周长就是其侧面展开图扇形的弧长。
圆锥的母线就是其侧面展开图扇形的半径,这样在计算侧面积和全面积时才能做到熟练、准确。
S 侧=πrl
(r 表示圆锥底面的半径, l 表示圆锥的母线长)
圆锥的侧面积与底面积的和叫做圆锥的全面积(或表面积).2
s s s rl r ππ=+=+侧全底
作业:
•1.课本第114页练习:1、2题.
•2.课本第115---116页习题:4、8、9、10题.。
24.4.2圆锥的侧面积和全面积学习目标认识圆锥,会计算圆柱和圆锥的侧面积和全面积.自主学习阅读教材练习前内容,完成下列问题:1.圆锥的侧面展开图是一个,其半径为圆锥的,弧长是圆锥底面圆的 .2.什么是圆锥的母线、高?3.圆锥的全面积=面积+面积.自学检测1.完成教材练习1、2题.2.已知圆锥底面的半径为3cm,高为4cm.则这个圆锥的侧面积为,全面积为 .3.圆锥底面的半径为3cm,母线长为6cm,则这个圆锥侧面展开图的扇形的圆心角为 .【例】一个几何体由圆锥和圆柱组成,其尺寸如图,求该几何体的全面积(即表面积,结果保留π).归纳:在解决有关圆锥的计算问题时,关键是理清立体图与平面展开图的联系与区别,特别是不要混淆底面圆半径和平面展开扇形的半径.练一练1.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()A.1B.34C.12D.132.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm,•母线长50cm,则制成一顶这样的纸帽所需纸面积至少为()A.250πcm2 B.500πcm2C.750πcm2 D.100πcm23.从一个直径为1的圆形铁皮上剪出一个圆心角为120°的扇形ABC,用所剪的扇形铁皮围成一个圆锥,此圆锥的底面圆半径为()A.23B.13C.16D.434.如图,冰淇淋蛋的下部是圆锥体,则蛋筒圆锥部分包装纸的面积(接头部分忽略不计)为()A.48πcm2B.48cm2C.24πcm2D.24cm25.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.220cm B.220cmπC.210cmπD.25cmπ6.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图),则这个纸帽的高是( )A2B.32cm C.42D.4cm7.已知一个圆锥的母线长为10 cm,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 cm.8.如图,一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.应用拓展1.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角是()A.120° B.180°C.240°D.300°2.如图,在△ABC中,∠C=90°,AB=5,AC=4,将△ABC以直线AB为轴旋转一周,所得几何体的表面积为()A.22.56π B.16.8πC. 9.6π D.7.2π3.如图,在正方形的铁皮上剪下一个圆形和一个扇形,使之恰好围成一个圆锥模型,设圆的半径为r,扇形半径为R,则R和r的关系为 .BA8cm6cm4.如图,一圆锥的底面的半径为10cm,母线长为40cm,一只小甲虫,从点A出发,在圆锥的侧面上绕行至母线SA的中点B,求小甲虫爬行的最短路程.SBA*5.在生产、生活中,我们会经常遇到捆扎圆柱管的问题.下面,我们来探索捆扎时,所需要的绳子的长度(不计接头部分)与圆柱管的半径r之间的关系.(1)当圆柱管的放置方式是“单层平放”时,截面如下图(1)所示:(1)请你完成下表:(2”时,截面如下图(2)所示:(2)请你填写下表:(3方式:画出草图,并计算绳子的长度.。
圆锥的侧面积和全面积
,了解圆锥侧面积计算公式推导,并会应用公式解决问题.
通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应
、通过剪母线变成面的过程.
1一种太空囊的示意图如图所示,
设置问题
出示学习目标:
的侧面积公式;
圆锥的母线、高等概念
、观察、理解立体图到平面图之间的联系:重点圆锥的
、
自主合作
形纸帽,已知纸帽的底面周长为5
顶这样的纸帽至少要用多少平方厘米的纸?(结
0.1
分析:要计算制作
方厘米的纸,只要计算纸帽的侧面积.
长公式即可.
巩固
例题:已知Rt AC=3
C
么?表面积是
表面积是多少
举手展
巩固。