线性代数 前言
- 格式:pdf
- 大小:125.12 KB
- 文档页数:6
高校线性代数教育中的存在问题及解决措施《线性代数》是高校公共数学科目中一门非常重要的基础必修课,在很多学科的应用中都起了很重要的作用。
但在线性代数的整个教学过程当中却出现了诸如知识脱节、课程设计不合理等问题。
线性代数高素质教育存在问题解决措施一、前言线性代数是我国高等院校工科专业中的一门基础的数学学科,通过线性代数的学习,可以培养和提高学生思考问题、解决问题的能力,教育部将其列入重点评估课程,可见线性代数在高等院校数学教育中的重要性。
计算机技术的进一步发展,使得线性代数的重要性更加突出。
随着高等教育规模的不断扩大,如何保证高校人才的教育水平成为了当今高校教育的巨大挑战,而线性代数无疑首当其冲,线性代数面临着各种各样的问题,不仅存在着学生方面的问题,而且在学校方面更存在着非常严重的失误,以下是对高校数学当中非常具有代表性的一科——线性代数,做出了问题分析并提出几点改进的建议。
二、线性代数在高校数学教育中遇到的瓶颈1.传统教学内容的设置不合理目前线性代数教育仍然处于新旧交替的阶段,很多陈旧的教材中的内容仍然是处于应试教育的框架,重点在阶梯方法的传授而不是对数值的计算和对数学本身的现代应用。
同时,教材中很多的问题还处在上世纪七八十年代的水平,其中不仅包含的信息量不多而且也完全与现代生活脱节,更无法使用现代数学的方法提供解题思路,使得学生们无法真正具有学习线性代数的学前基础,进而导致对相应的知识无法牢固掌握。
2.传统教学目的占主导由于长期以来受应试教育的影响,学生的学习成绩被当作是教师教学水平的唯一衡量标准,教学的目的也从教书育人变成了如何让学生在考试中取得好的成绩,忽视了培养学生寻根溯源的学习思想。
而老师在讲解公式的时候也对方法欠缺指导,教学当中重结果、轻过程的做法泯灭了学生的求知欲。
在线性代数的教学过程中,更多的老师习惯通过“用题讲点(知识点)”的方法教育学生以此减少教学压力并且提高教学成绩,不能变通地完成学习计划,其结果只会培养出缺乏个性的学生,进而也就无法适应社会变化发展的需要。
《线性代数》序言我们开设的《线性代数》这门课程属于近代数学范畴。
“线性”一词源于平面解析几何中一次方程是直线方程,在这里意指数学变量之间的关系是以一次形式来表达的。
线性代数起源于处理线性关系问题,它是代数学的一个分支,虽形成于20世纪,但历史却非常久远,部分内容在东汉初年成书的《九章算术》里已有雏形论述。
在18~19世纪期间,随着研究线性方程组和变量线性变换问题的深入,先后产生了行列式和矩阵的概念,为处理线性问题提供了强有力的理论工具,并推动了线性代数的发展。
线性代数是讨论有限维空间的线性理论的课程,由于线性问题广泛存在于自然科学和技术科学的各个领域,且某些非线性问题在一定条件下也可转化为线性问题来处理,因此线性代数知识应用广泛,这也使得线性代数这门课程越来越受到重视,因此也成为考研的热门课程。
线性代数主要内容:行列式、矩阵、n维向量、线性方程组、标准形与二次型,其中行列式与矩阵是其基本理论。
线代以矩阵、n维向量和线性方程组为其三条知识主线,虽然它们抽象源自不同的对象,但对同一事物经常可以用这三种语言从不同的角度给于诠释,三条知识主线关系密切,它们交错前行,相互解释与解决问题,让初学者有错综复杂的感受,初学时常感到混乱从而困惑,随着知识的积累和消化,最后常常豁然开朗,感觉线条清晰简单。
常听到对线代学习截然不同的评价:难学——还在山中;简单——攀至顶峰。
四、如何学好线性代数线性代数的特点是以离散变量为研究对象,具有较强的抽象性、逻辑性和应用性,其抽象度之高使得其学习理解的难度远在微积分之上,性质与结论相当琐碎,常有建立一个概念,立即可得一串结论,且有些结论书上也不逐一点明,需要我们积极思维探索。
授课仍以课堂讲解为主,为减轻学习难度我们十分注重讲解知识的背景、结构与应用,学习的过程中应注意从知识系统的纵向联系和数学思想方法系统的横向联系这两个维度上更好地把握学科的基本结构。
要想学好线性代数,应将强烈的自我学习、自主学习的意念和能力与学习过程紧密配合,这起码要求同学们在学习过程中应做到:(1)提升上课的学习效率;科学研究表明仅自学一般可达15%的效果,听讲可达25%的效果,两者结合起来则可获得60%的效果。
文档第一章 行列式本章说明与要求:行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克莱姆法则).本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。
本章的重点:行列式性质;行列式的计算。
本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。
1.1 二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组 ⎩⎨⎧=+=+22221211112111b x a x a b x a x a(1)用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22 – a 12a 21≠0 时,有⎪⎪⎩⎪⎪⎨⎧--=--=211222112112112211222112122211a a a a a b b a x a a a a b a a b x (2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号2112221122211211a a a a a a a a -=为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.文档根据定义,容易得知(2) 中的两个分子可分别写成222121212221a b a b b a a b =-,221111211211b a b a a b b a =-,如果记 22211211a a a a D =,2221211a b a b D =,2211112b a b a D =则当D ≠0时,方程组(1) 的解(2)可以表示成2221121122212111a a a a a b a b DD x ==, 2221121122111122a a a ab a b a DD x ==, (3)象这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x 1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x 2的分子则是把系数行列式的第2列换成常数项而得到的.例1 用二阶行列式解线性方程组 ⎩⎨⎧=+=+231422121x x x x解:这时 0214323142≠=⨯-⨯==D , 5243132411-=⨯-⨯==D ,3112221122=⨯-⨯==D , 因此,方程组的解是 2511-==D D x ,2322==D D x ,对于三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (4)作类似的讨论,我们引入三阶行列式的概念.我们称符号312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= (5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2 532134212-1062012242301325)4(123223)4(211532=-+--+==⨯⨯-⨯-⨯-⨯⨯-⨯⨯-+⨯⨯+⨯⨯=文档令 333231232221131211a a a a a aa a a D =3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =, 3323122221112113b a a b a a b a a D =. 当 D ≠0时,(4)的解可简单地表示成D D x 11=,D Dx 22=,DD x 33= (6)它的结构与前面二元一次方程组的解类似.例3 解线性方程组 ⎪⎩⎪⎨⎧=-+=-+=+-423152302321321321x x x x x x x x x解:28231523112=---=D ,132345211101=---=D ,472415131022=--=D ,214311230123=-=D .所以,281311==D D x ,284722==D D x ,43282133===D D x . 例4 已知010100=-a bb a,问a ,b 应满足什么条件?(其中a ,b 均为实数).解:2210100b a a b b a +=-,若要a 2+b 2=0,则a 与b 须同时等于零.因此,当a =0且b =0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念,为此,先介绍排列的有关知识.1.2 排列在n 阶行列式的定义中,要用到排列的某些知识,为此先介绍排列的一些基本知识. 定义1由数码1,2,…,n 组成一个有序数组称为一个n 级排列.例如,1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列.由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!=6个.数字由小到大的n 级排列1234…n 称为自然序排列.定义2在一个n 级排列i 1i 2…i n 中,如果有较大的数 i t 排在较小的数 i s 的前面(i s <i t ), 则称i t 与i s 构成一个逆序,一个n 级排列中逆序的总数,称为这个排列的逆序数,记作N (i 1i 2…i n ).文档例如, 在4 级排列3412中, 31,32,41,42,各构成一个逆序数,所以,排列3412的逆序数为N (3412)=4.同样可计算排列52341的逆序数为N (52341)=7.容易看出, 自然序排列的逆序数为0.定义3 如果排列i 1i 2…i n 的逆序数N (i 1i 2…i n )是奇数,则称此排列为奇排列,逆序数是偶数的排列则称为偶排列.例如,排列3412是偶排列.排列52341是奇排列. 自然排列123…n 是偶排列.定义4 在一个n 级排列i 1…i s …i t …i n 中, 如果其中某两个数i s 与i t 对调位置,其余各数位置不变,就得到另一个新的n 级排列i 1…i t …i s …i n ,这样的变换称为一个对换,记作(i s ,i t ).如在排列3412中,将4与2对换, 得到新的排列3214. 并且我们看到:偶排列3412经过4与2的对换后,变成了奇排列3214. 反之,也可以说奇排列3214经过2与4的对换后,变成了偶排列3412.一般地,有以下定理:定理1 任一排列经过一次对换后,其奇偶性改变.定理2 在所有的n 级排列中(n ≥2),奇排列与偶排列的个数相等,各为2!n 个.1.3 n 阶行列式本节我们从观察二阶、三阶行列式的特征入手.引出n 阶行列式的定义. 已知二阶与三阶行列式分别为2112221122211211a a a a a a a a -=111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++--- 其中元素a ij 的第一个下标i 表示这个元素位于第i 行,称为行标,第二个下标j 表示此元素位于第j 列,称为列标.我们可以从中发现以下规律:(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号.作为二、三阶行列式的推广我们给出n 阶行列式的定义.定义1 由排成n 行n 列的n 2个元素a ij (i ,j =1,2,…,n )组成的符号nnn n nn a a a a a a a a a 212222111211文档称为n 阶行列式.它是n !项的代数和,每一项是取自不同行和不同列的n 个元素的乘积,各项的符号是:每一项中各元素的行标排成自然序排列,如果列标的排列为偶排列时,则取正号;为奇排列,则取负号.于是得nnn n nn a a a a a a a a a 212222111211=∑n j j j 21n n nj j j j j j N a a a 212121)()1(- (1)其中∑nj j j 21表示对所有的n 级排列j 1j 2…j n 求和.(1)式称为n 阶行列式按行标自然顺序排列的展开式.)(21)1(n j j j N -n nj j j a a a 2121称为行列式的一般项.当n =2、3时,这样定义的二阶、三阶行列式与上面§1.1中用对角线法则定义的是一致的.当n =1时,一阶行列为|a 11|= a 11.如当n =4时,4阶行列式44342414434241333231232221131211a a a a a a a a a a a a a a a a ,表示4!=24项的代数和,因为取自不同行、不同列4个元素的乘积恰为4!项.根据n 阶行列式的定义,4阶行列式为44342414434241333231232221131211 a a a a a a a a a a a a a a a a ∑-444=j j j j j j j j j j j N a a a a 213214321321)()1( 例如a 14a 23a 31a 42行标排列为1234,元素取自不同的行;列标排列为4312,元素取自不同的列,因为N (4312)=5,所以该项取负号,即–a 14a 23a 31a 42是上述行列式中的一项.为了熟悉n 阶行列式的定义,我们来看下面几个问题. 例1 在5阶行列式中,a 12a 23a 35a 41a 54这一项应取什么符号?解:这一项各元素的行标是按自然顺序排列的,而列标的排列为23514.因 N (23514)=4 故这一项应取正号.例2 写出4阶行列式中,带负号且包含因子a 11a 23的项. 解:包含因子a 11a 23项的一般形式为44j j j j N a a a a 34332311)13()1(-,按定义,j 3可取2或4,j 4可取4或2,因此包含因子a 11a 23的项只能是a 11a 23a 32a 44或a 11a 23a 34a 42 ,但因 N (1324)=1为奇数,N (1342)=2为偶数 所以此项只能是 –a 11a 23a 32a 44.例3 计算行列式hg vu f e y x dc ba 0000文档解 这是一个四阶行列式,按行列式的定义,它应有4!=24项.但只有以下四项adeh ,adfg ,bceh ,bcfg 不为零.与这四项相对应得列标的4级排列分别为1234,1243,2134和2143,而N (1234)=0,N (1243)=1,N (2134)=1和N (2143)=2,所以第一项和第四项应取正号,第二项和第三项应取负号,即hg v u f e y x d c ba 0000= adeh –adfg –bceh +bcfg 例4 计算上三角形行列式 nnnn a a a a a a D 21221211 0=其中a ii ≠0 (i =1, 2,…, n ). 解:由n 阶行列式的定义,应有n !项,其一般项为n nj j j a a a 2121但由于D 中有许多元素为零,只需求出上述一切项中不为零的项即可.在D 中,第n 行元素除a nn 外,其余均为0.所以j n =n ;在第n –1行中,除a n–1n –1和a n –1n 外,其余元素都是零,因而j n –1只取n –1、n 这两个可能,又由于a nn 、a n –1n 位于同一列,而j n =n .所以只有j n –1 = n –1.这样逐步往上推,不难看出,在展开式中只有a 11a 22…a nn 一项不等于零.而这项的列标所组成的排列的逆序数是N (12…n )=0故取正号.因此,由行列式的定义有nnnn a a a a a a D 21221211==a 11a 22…a nn 即上三角形行列式的值等于主对角线上各元素的乘积.同理可求得下三角形行列式nnn n a a a a a a021222111=a 11a 22…a nn 特别地,对角形行列式nna a a 0002211=a 11a 22…a nn 上(下)三角形行列式及对角形行列式的值,均等于主对角线上元素的乘积.例5 计算行列式0000001121n n n a a a -解 这个行列式除了a 1n a 2n –1…a n 1这一项外,其余项均为零,现在来看这一项的符号,列标的n 级排列为n (n –1)…21,N (n (n –1)…21)= (n –1)+ (n –2)+…+2+1=2)1(-⋅n n ,所以文档0000001121n n n a a a -=11212)1()1(n n n n n a a a ---同理可计算出000112222111211n n na a a a a a a -=nnnn n nn na a a a a a 112121000-- =11212)1()1(n n n n n a a a --- 由行列式的定义,行列式中的每一项都是取自不同的行不同的列的n 个元素的乘积,所以可得出:如果行列式有一行(列)的元素全为0,则该行列式等于0.在n 阶行列式中,为了决定每一项的正负号,我们把n 个元素的行标排成自然序排列,即n nj j j a a a 2121.事实上,数的乘法是满足交换律的,因而这n 个元素的次序是可以任意写的,一般地,n 阶行列式的项可以写成n n j i j i j i a a a 2211 其中i 1i 2…i n ,j 1 j 2…j n 是两个n 阶排列,它的符号由下面的定理来决定.1.4 行列式的性质当行列式的阶数较高时,直接根据定义计算n 阶行列式的值是困难的,本节将介绍行列式的性质,以便用这些性质把复杂的行列式转化为较简单的行列式(如上三角形行列式等)来计算.将行列式D 的行列互换后得到的行列式称为行列式D 的转置行列式,记作D T,即若nnn n n n a a a a a a a a a D212222111211=, 则nnnnn n T a a a a a a a a a D212221212111=.反之,行列式D 也是行列式D T的转置行列式,即行列式D 与行列式D T互为转置行列式.性质1 行列式D 与它的转置行列式D T的值相等. 性质2 交换行列式的两行(列),行列式变号.例1 计算行列式053704008000051753603924--=D 解:将第一、二行互换,第三、五行互换,得0504008053070392417536)1(2---=D文档推论 若行列式有两行(列)的对应元素相同,则此行列式的值等于零. 性质3 行列式某一行(列)所有元素的公因子可以提到行列式符号的外面.即nnn n in i i n nnn n in i i n a a a a a a a a a k a a a ka ka ka a a a211111211211111211= 此性质也可表述为:用数k 乘行列式的某一行(列)的所有元素,等于用数k 乘此行列式. 推论:如果行列式中有两行(列)的对应元素成比例,则此行列式的值等于零.性质4 如果行列式的某一行 (列)的各元素都是两个数的和,则此行列式等于两个相应的行列式的和,即nnn n in i i n nnn n in i i n nnn n in in i i i i n a a a c c c a a a a a a b b b a a a a a a c b c b c b a a a21211121121211121121221111211+=+++ 性质5 把行列式的某一行 (列)的所有元素乘以数k 加到另一行(列)的相应元素上,行列式的值不变.即nnn n sn s s in i i n a a a a a a a a a a a a D21212111211= nnn n snin s i s i in i i n a a a a ka a ka a ka a a a a a a2122112111211+++作为行列式性质的应用,我们来看下面几个例子.例2 计算行列式 3111131111311113=D 解:这个行列式的特点是各行4个数的和都是6,我们把第2、3、4各列同时加到第1列,把公因子提出,然后把第1行×(–1)加到第2、3、4行上就成为三角形行列式.具体计算如下:i 行×k 加 到第s 行文档例3 计算行列式0112012120112110-----=D 例4 试证明:011=++++=cb a d b a dc da cb dc b a D 11例5 计算n +1阶行列式 xa a a a x a a a a x a a a a xD n n n321212121=例6 解方程0)1(11111)2(111112111111111111=------x n xn x x例7 试证明奇数阶反对称行列式 000021212112=---=nnnna a a a a a D证:D 的转置行列式为00021212112n nnn Ta a a a a a D ---=,从D T中每一行提出一个公因子(–1),于是有D a a a a a a D n nnnnnT )1(000)1(21212112-=----=,但由性质1知道D T =D文档∴ D =(–1)nD 又由n 为奇数,所以有D = –D ,即 2D =0, 因此 D =0.1.5 行列式按一行(列)展开本节我们要研究如何把较高阶的行列式转化为较低阶行列式的问题,从而得到计算行列式的另一种基本方法——降阶法.为此,先介绍代数余子式的概念.定义 在n 阶行列式中,划去元素a ij 所在的第i 行和第j 列后,余下的元素按原来的位置构成一个n –1阶行列式,称为元素a ij 的余子式,记作Mij .元素a ij 的余子式Mij 前面添上符号(–1)i+j称为元素a ij 的代数余子式,记作A ij .即A ij =(–1)i +jM ij .例如:在四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a D =中a 23的余子式是M 23=444241343231141211a a a a a a a a a 而 A 23=(–1)2+3M 23= –444241343231141211a a a a a a a a a 是a 23的代数余子式. 定理1 n 阶行列式D 等于它的任意一行(列)的元素与其对应的代数余子式的乘积之和,即D =a i 1A i 1+a i 2A i 2+…+a in A in (i =1,2,…,n )或 D =a 1j A 1j +a 2j A 2j +…+a nj A nj (j=1,2,…,n ).定理2 n 阶行列式D 中某一行(列)的各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即:a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s )或 a 1j A 1t +a 2j A 2t +…+a nj A nt =0 (j ≠t ).定理1表明,n 阶行列式可以用n –1阶行列式来表示,因此该定理又称行列式的降阶展开定理.利用它并结合行列式的性质,可以大大简化行列式的计算.计算行列式时,一般利用性质将某一行(列)化简为仅有一个非零元素,再按定理1展开,变为低一阶行列式,如此继续下去,直到将行列式化为三阶或二阶.这在行列式的计算中是一种常用的方法.例1 计算行列式 5101242170131312-----=D文档例3 计算yy x x D -+-+=1111111111111111,其中 xy ≠0.例4 试证 ∏≤<≤-----=ni j j in nn n n n n a aa a a a a a a a a a a a 111312112232221321)(1111(1)式中左端叫范德蒙行列式.结论说明,n 阶范德蒙行列式之值等于a 1, a 2, …, a n ,这n 个数的所有可能的差a i –a j (1≤j<i ≤n )的乘积.例5 计算n 阶行列式1232110000010000010000001n nn n n x x x D x a a a a a a x------=-+例6 证明22211211222112112221222112111211222112110000b b b b a a a a b b c c b b c c a a a a ⋅=(拉普拉斯展开) 本例题的结论对一般情况也是成立的,即mmm m mk m m mk kk k k k b b b c c c b b b c c c a a a a a a212111211112112111211000000mmm m m kk k k k b b b b b b a a a a a a21112112111211⋅=文档1.6 克莱姆法则前面我们已经介绍了n 阶行列式的定义和计算方法,作为行列式的应用,本节介绍用行列式解n 元线性方程组的方法——克莱姆法则.它是§1中二、三元线性方程组求解公式的推广.设含有n 个未知量n 个方程的线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********(1)它的系数a ij 构成的行列式 nnn n nna a a a a a a a a D212222111211=称为方程组(1)的系数行列式.定理1 (克莱姆法则) 如果线性方程组(1)的系数行列式D ≠0,则方程组(1)有唯一解:, , , ,2211DD x D Dx D D x n n ===(2) 其中D j (j=1,2,…,n ,)是D 中第j 列换成常数项b 1,b 2,…,b n ,其余各列不变而得到的行列式.这个法则包含着两个结论:方程组(1)有解,解唯一.下面分两步来证明. 第一步:在D ≠0的条件下,方程组(1)有解,我们将验证由(2)式给出的数组 , , ,21DD D D D D n 确实是方程组(1)的解.第二步:若方程组有解,必由(2)式给出,从而解是唯一的.例1 解线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=-++-=+-+=+-+24664284333521234321432143214321x x x x x x x x x x x x x x x x解:因为0172130011500011012312619012130011012314616284323521231≠=----=----=------=D所以方程组有唯一解,又,04626284323321211 ,34461228442353123121=-----=-=-----=D D852616484333521231 ,17421624432352113143=-----==---=D D .文档即得唯一解:51785,11717 ,0170 ,217344321======-=-=x x x x . 注意:用克莱姆法则解线性方程组时,必须满足两个条件:一是方程的个数与未知量的个数相等;二是系数行列式D ≠0.当方程组(1)中的常数项都等于0时,称为齐次线性方程组.即⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a称为齐次线性方程组.显然,齐次线性方程组(3)总是有解的,因为x 1=0, x 2=0,…, x n =0必定满足(3),这组解称为零解,也就是说:齐次线性方程组必有零解.在解x 1=k 1, x 2=k 2,…, x n =k n 不全为零时,称这组解为方程组(3)的非零解. 定理2 如果齐次线性方程组(3)的系数行列式D ≠0,则它只有零解. 推论 如果齐次线性方程组(3)有非零解,那么它的系数行列式D =0.例2 若方程组:⎪⎩⎪⎨⎧=++=++=++02003213213211x bx x x bx x x x x a 只有零解,则a 、b 应取何值?解:由定理2知,当系数行列式D ≠0时,方程组只有零解,)1(1211111a b bb aD -==所以,当a ≠1且b ≠0时,方程组只有零解.第二章矩阵说明与要求:矩阵是一个表格,作为表格的运算与数的运算既有联系又有区别.要熟练掌握矩阵的加法、乘法与数量乘法的运算规则,并熟练掌握矩阵行列式的有关性质.线性方程组的一些重要性质都反映在它的系数矩阵和增广矩阵上,所以我们可以通过矩阵来求解线性方程组,通过矩阵来判断解的情况等.但是矩阵的应用不仅限于线性方程组,而是多方面的.因此矩阵在线性代数中是一个重要而且应用广泛的概念正确理解逆矩阵的概念,掌握逆矩阵的性质及矩阵可逆的充要条件.会用伴随矩阵求矩阵的逆.熟练掌握用初等变换求逆矩阵的方法.。
前言我很高兴以下三点能清晰地表现在前言部分:1. 线性代数的美丽多变,以及它极其的实用性。
2. 本书的宗旨,和第四版的新属性。
3. 从我们线性代数网站和视频讲课得到的坚定支持。
请允许我先介绍这两个经常使用的网站和另一个新网站。
它是一个公共课件网站,有来自许许多多学生和教员提供的关于线性代数的信息。
18.06课程包括一整个学期的视频讲课。
这门课独立地讲述了本教材的全部课题——教授的时间不受限制,而学生亦可选上午3点作为上课时间。
(读者不再需要出席课堂了。
) 全球已有一百万用户观看了该视频(惊讶)。
我希望对你们也有所帮助。
W /18.06本站包含了自1996年来,所教该课程的课后作业和考题(附答案)。
还有问题讲述,Java演示,教学代码和小论文(以及视频讲课)。
我的目标是让本书经尽可能的实用,从而提供一切可用的课程资料。
/linearalgebra 这是为本书第四版而特别新建的网站。
它将长期保留各种意见,代码,好的习题和解答等记录。
本书的一些章节也可直接在网上查看了,另外还有线性代数的教学笔记。
内容正在迅速丰富中,同时欢迎每个人参与贡献。
第四版数千万读者已看过线性代数导论的前期版本。
新的封面展示了四个基本空间——左边是行空间和零空间,右边是列空间和TA的零空间。
如此展示这个课题的中心思想尚未普遍! 你们会在第3章接触那四个空间,并理解为何此图对于线性代数如此重要。
在我第一本书中定义的四个基本空间,是基于一个矩阵A的。
A的每行是一个n维空间的向量。
当它含有m行时,则每列是一个m维空间的向量。
线性代数的主要运算是处理这些向量的线性组合。
(那种思想从本书第一页就开始了,并且从未停止。
) 而且,所有列向量的线性组合即构成列空间。
如果向量b包含于这个子空间,那么我们Ax 。
就可以求解等式b为使本书更易阅读,请允许我不得不在此停下。
望读者特别注意新的1.3节,那里有两个特殊的例子,很早就介绍了这些思想。
另外也无需冀望一下就掌握向量空间的每个细节! 但是你会认识本书最重要的矩阵,及它们列空间的描述,甚至一个逆矩阵。