独立性检验的基本思想及其初步应用第一课时教学设计
- 格式:doc
- 大小:108.00 KB
- 文档页数:6
《独立性检验的基本思想及其初步应用》第一课时教学设计东莞市厚街中学姚卫一、教学内容与内容解析1.内容:独立性检验的基本思想及其初步应用2.内容解析:本节课是人教A版(选修)1—2第一章第二单元第一课时的内容.在本课之前,学生已经在必修3中学习了第二章统计(随即抽样、用样本估计总体、变量间的相关关系)和本册第一章统计案例中的回归分析的基本思想及初步应用。
本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要部分。
在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。
在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。
独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。
因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。
学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。
这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。
教学重点:理解独立性检验的基本思想及实施步骤.二、教学目标与目标解析1.目标:(1)通过典型案例的探究,了解独立性检验(只要求2×2 列联表)的基本思想、方法及初步应用。
(2)通过典型案例的探究,让学生经历由实际问题建立数学模型的过程,体会其基本方法。
(3)通过本节课的学习,加强数学与现实生活的联系。
以科学的态度评价两个分类变量有关系的可能性。
培养学生运用所学知识,解决实际问题的能力和提高数据分析能力。
1. 2 獨立性檢驗的基本思想及其初步應用課前預習學案一、預習目標:能用所學的知識對實際問題進行回歸分析,體會回歸分析的實際價值與基本思想;瞭解判斷刻畫回歸模型擬合好壞的方法――相關指數和殘差分析。
二、預習內容1. 給出例3:一隻紅鈴蟲的產卵數y 和溫度x 有關,現收集了7組觀測資料列於下表中,試建立y 與x 之間的回歸方程.溫度/x C21 23 25 27 29 3235 產卵數/y 個 7 1121 24 66 115325(學生描述步驟,教師演示)2. 討論:觀察右圖中的散點圖,發現樣本點並沒有分佈在某個帶狀區域內,即兩個變數不呈線性相關關係,所以不能直接用線性回歸方程來建立兩個變數之間的關係. 課內探究學案一、學習要求:通過對典型案例的探究,瞭解獨立性檢驗的基本思想、方法及初步應用學習重點:對獨立性檢驗的基本思想的理解.學習難點:獨立性檢驗的基本思想的應用.二、學習過程:知識點詳解知識點一:分類變數對於性別變數,其取值為男和女兩種.這種變數的不同“值”表示個體所屬的不同類別,像這樣的變數稱為分類變數.知識點二:列聯表 為調查吸煙是否對患肺癌有影響,某腫瘤研究所隨機調查了9965人,得到如下結果(單位:人):吸煙與患肺癌列聯表不患肺癌 患肺癌 總計 不吸煙 7775 42 7817 吸煙 2099492148 總計9874 919965像上表這樣列出的兩個分類變數的頻數表,稱為列聯表. 知識點三:獨立性檢驗這種利用隨機變數K 2來確定在多大程度上可以認為“兩個分類變數有關係”的方法稱為兩個分類變數的獨立性檢驗.知識點四:判斷結論成立的可能性的步驟一般地,假設有兩個分類變數X 和Y ,它們的值域分別為{x 1,x 2}和{y 1,y 2},其樣5010015020025030035010203040温度产卵数本頻數列聯表(稱為2×2列聯表)為:2×2列聯表H1:“X與Y有關係”,可以按如下步驟判斷結論H1成立的可能性:(1)通過立體直條圖和二維橫條圖,可以粗略地判斷兩個分類變數是否有關係,但是這種判斷無法精確地給出所得結論的可靠程度.①在立體直條圖中,主對角線上兩個柱形高度的乘積xd與副對角線上的兩個柱形高度的乘積bc相差越大,H1成立的可能性就越大.②在二維橫條圖中,可以估計滿足條件X=x1的個體中具有Y=y1的個體所占的比例a a+b ,也可以估計滿足條件X=x2的個體中具有Y=y1的個體所占的比例cc+d.兩個比例的值相差越大,H1成立的可能性就越大.(2)可以利用獨立性檢驗來考察兩個分類變數是否有關係,並且能較精確地給出這種判斷的可靠程度.具體做法是:根據觀測資料計算由K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)給出的檢驗隨機變數K2的值k,其值越大,說明“X 與Y有關係”成立的可能性越大.當得到的觀測資料x,b,c,d都不小於5時,可以通過查說明:當觀測資料,,,中有小於5時,需採用很複雜的精確的檢驗方法.五、幾個典型例題:例1立體直條圖中柱的高度表示的是(A)A.各分類變數的頻數B.分類變數的百分比C.分類變數的樣本數D.分類變數的具體值例2則下列說法正確的是()X.xd-bc越小,說明X和Y關係越弱B.xd-bc越大,說明X和Y關係越強C.(xd-bc)2越大,說明X和Y關係越強D.(xd-bc)2越接近於0 ,說明X和Y關係越強例3研究人員選取170名青年男女大學生的樣本,對他們進行一種心理測驗,發現有60名女生對該心理測驗中的最後一個題目的反應是:作肯定的18名,不定的42名;男生110名在相同的項目上作肯定的有22名,否定的有88名.問:性別與態度之間是否存在某種關係?分別用圖形和獨立性檢驗的方法判斷.解:根據題目所給資料建立如下列聯表根據列聯表中的資料得到K 2=170×(22×42-18×88)110×60×40×130≈2.158<2.706因此沒有充分的證據顯示“性別與態度有關”.例4 打鼾不僅影響別人休息,而且可能與患某種病症有關.下表是一次調查所得的資K 2=1633×(30×1355-224×24)21379×254×54×1579=68.033.因為68.033>6.635,所以有99%的把握說,每一晚都打鼾與患心臟病有關課後練習與提高(1(2)試求出預報變數對解釋變數的回歸方程.(答案:所求非線性回歸方程為0.69 1.112ˆy =e x .)。
《1.2独立性检验的基本思想及其初步应用(一)》教学案3 教学目标(一)知识与技能:通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断.明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验.(二)过程与方法:在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义.从中得出判断“X与Y有关系”的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小.最后介绍了独立性检验思想的综合运用(三)情感、态度与价值观:通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质.加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系.明确数学在现实生活中的重要作用和实际价值.教学中,应多给学生提供自主学习、独立探究、合作交流的机会.养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题. 教学重难点教学重点:理解独立性检验的基本思想及实施步骤.K的含义.教学难点:了解独立性检验的基本思想、了解随机变量2教学方法:诱思探究教学法学习方法:自主探究、观察发现、合作交流、归纳总结.教学过程一、复习准备:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.二、讲授新课:1. 教学与列联表相关的概念:①分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”.②列联表:分类变量的汇总统计表(频数表).一般我们只研究每个分类变量只取两个值,这样的列联表称为22⨯. 如吸烟与患肺癌的列联表:2. 教学三维柱形图和二维条形图的概念:由列联表可以粗略估计出吸烟者和不吸烟者患肺癌的可能性存在差异.(教师在课堂上用EXCEL软件演示三维柱形图和二维条形图,引导学生观察这两类图形的特征,并分析由图形得出的结论)3. 独立性检验的基本思想:①独立性检验的必要性(为什么中能只凭列联表的数据和图形下结论?):列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体.②独立性检验的步骤(略)及原理(与反证法类似):第一步:提出假设检验问题H0:吸烟与患肺癌没有关系↔H1:吸烟与患肺癌有关系第二步:选择检验的指标22()K()()()()n ad bca b c d a c b d-=++++(它越小,原假设“H:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H1:吸烟与患肺癌有关系”成立的可能性越大.第三步:查表得出结论1.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值解析: 三维柱形图中柱的高度表示图中各个频数的相对大小.选A2. 统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的.解析:当841.3>k 时,就有95 %的把握说事件A 与B 有关,当076.2≤k 时认为没有充分的证据显示事件A 与B 是有关的.3.为了探究患慢性气管炎与吸烟有无关系,调查了却339名50岁以上的人,结果如下表所示,据此数据请问:50岁以上的人患慢性气管炎与吸烟习惯有关系吗?分析:有表中所给的数据来计算2K 的观测值k ,再确定其中的具体关系. 解:设患慢性气管炎与吸烟无关.a=43,b=162,c=13,d=121,a+b=205,c+d=134, a+c=56,b+d=283,n=339 所以2K 的观测值为469.7))()()(()(2==+++-=d b c a d c b a bc ad n k .因此635.6>k ,故有99%的把握认为患慢性气管炎与吸烟有关.四,课后练习:1. 在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( )A.越大B.越小C.无法判断D.以上都不对 2.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是() A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大4. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确.5.若由一个2*2列联表中的数据计算得k 2=4.013,那么有 把握认为两个变量有关系6.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为23.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 ____;7.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表; (2)判断性别与休闲方式是否有关系. 参考答案1.A2.C3.B4.C5. 95%6. 5%7.解:(1)2×2的列联表计算2124(43332721) 6.20170546460k ⨯⨯-⨯=≈⨯⨯⨯因为 5.024k ≥,所以有理由认为假设“休闲方式与性别无关”是不合理的, 即有97.5%的把握认为“休闲方式与性别有关”五,课时小结你能根据上例“吸烟与患肺癌的案例探究”总结“独立性检验”的具体做法步骤第一步:根据实际问题需要的可信程度确定临界值;第二步:利用公式计算随机变量K 2的观测值k ;第三步:查对临界值表得出结论. 六,布置作业:。
§1.2独立性检验的基本思想及其应用(一)【学情分析】:在实际的问题中,经常会面临需要推断的问题,比如研制一种新药,需要推断此药是否有效?有人怀疑吸烟的人更容易患肺癌,那么吸烟是否与患肺癌有关呢?等等。
在对类似的问题作出推断时,我们不能仅凭主观意愿作出结论,需要通过试验来收集数据,并依据独立性检验的原理作出合理的分析推断.在本节的学习中,通过案例分析,使学生学会用假设检验的思想方法解决对于两个分类变量是否有关系的判断问题,并理解统计思维与确定性思维的差异。
【教学目标】:(1)知识与技能:理解分类变量的含义;会根据收集的数据列出2×2列联表,并会阅读三维柱形图和二维条形图,并粗略判断两个分类变量是否有关系;理解假设检验思想,会利用独立性检验精确判断两个分类变量是否有关系;(2)过程与方法:利用学生身边熟悉的问题引入分类变量是否相关的问题;运用统计学解决问题的一般思路引导学生;让学生经历假设检验思想的形成及运用过程,领会分析、总结的方法; (3)情感态度与价值观:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对问题的解决,可提高学生应用数学能力。
【教学重点】:理解独立性检验的基本思想及实施步骤。
【教学难点】:.(1)了解独立性检验的基本思想;(2)了解随机变量2K 的含义,2K 太大认为两个分类变量是有关系的。
【课前准备】:课件【教学过程设计】:同步练习与测试:(基础题) 1、根据下表计算:计算随机变量的观测值k= 。
解:把表格补充完整≈⨯⨯⨯⨯-⨯=17812222872)358514337(3002k 4.512、独立性检验常作的图形是 和 。
答案 :三维柱形图 ,二维条形图3、两个临界值为3.841与6.635。
当23.841k ≤时,认为事件A 与B 是 (填“有关的”或“无关的”);当26.635k >时,有99%的把握说事件A 与B 是 (填“有关的”或“无关的”)。
独立性检验的基本思想及初步应用教学目标:1. 了解独立性检验的基本思想及其在实际问题中的应用。
2. 学会使用假设检验方法判断两个分类变量之间是否具有独立性。
3. 掌握利用独立性检验解决实际问题的基本步骤。
教学内容:第一章:独立性检验的基本思想1.1 独立性检验的定义1.2 独立性检验的基本原理1.3 独立性检验的应用场景第二章:列联表与卡方检验2.1 列联表的定义及制作2.2 卡方检验的原理及计算2.3 卡方检验的判断标准第三章:假设检验方法3.1 假设检验的定义及类型3.2 独立性检验的假设条件3.3 独立性检验的步骤及注意事项第四章:实际问题中的应用4.1 案例一:产品质量检验4.2 案例二:消费者偏好调查4.3 案例三:疾病与性别关系的分析第五章:总结与拓展5.1 独立性检验在实际问题中的应用范围5.2 独立性检验的局限性5.3 独立性检验与其他统计方法的比较教学方法:1. 讲授:讲解独立性检验的基本思想、原理及应用。
2. 案例分析:分析实际问题,引导学生运用独立性检验解决问题。
3. 小组讨论:分组讨论案例,培养学生的合作与交流能力。
4. 练习与反馈:布置课后习题,及时了解学生掌握情况,给予针对性的指导。
教学评估:1. 课后习题:检验学生对课堂内容的掌握程度。
2. 案例分析报告:评估学生在实际问题中运用独立性检验的能力。
3. 课堂表现:观察学生在课堂讨论、提问等方面的参与度。
教学资源:1. 教材:独立性检验相关章节。
2. 案例材料:产品质量检验、消费者偏好调查、疾病与性别关系等实际问题。
3. 计算器:用于计算卡方值及概率。
教学时数:1. 共计4课时,每课时45分钟。
2. 分配如下:第一章1课时,第二章1课时,第三章1课时,第四章1课时。
第六章:多组独立性检验6.1 多组独立性检验的定义6.2 多组独立性检验的方法6.3 多组独立性检验的应用案例第七章:非参数检验7.1 非参数检验的定义及意义7.2 非参数检验方法简介7.3 独立性检验与非参数检验的比较第八章:独立性检验的软件操作8.1 统计软件的选择与操作8.2 独立性检验的软件实现8.3 结果解读与分析第九章:独立性检验在实际问题中的应用案例分析9.1 案例一:市场调查与分析9.2 案例二:教育公平性研究9.3 案例三:医学研究中的应用第十章:总结与展望10.1 独立性检验在统计学中的地位与作用10.2 独立性检验的发展趋势10.3 独立性检验在未来的挑战与机遇教学方法:1. 讲授:讲解多组独立性检验、非参数检验及软件操作相关知识。
3. 2.1独立性检验的基本思想及其初步应用教学目标(1)通过对典型案例的探究,了解独立性检验(只要求22列联表)的基本思想、方法及初步应用;(2)经历由实际问题建立数学模型的过程,体会其基本方法。
教学重点:独立性检验的基本方法教学难点:基本思想的领会及方法应用教学过程一、问题情境5月31日是世界无烟日。
有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢我们看一下问题:某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。
调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。
问题:根据这些数据能否断定“患肺癌与吸烟有关”二、学生活动(1)引导学生将上述数据用下表(一)来表示:(即列联表)不患肺癌患肺癌总计不吸烟7775 42 7817吸烟2099 49 2148总计9874 91 9965(2)估计吸烟者与不吸烟者患肺癌的可能性差异:在不吸烟者中,有427817≈0.54%的人患肺癌;在吸烟的人中,有492148≈2.28%的人患肺癌。
问题:由上述结论能否得出患肺癌与吸烟有关把握有多大三、建构数学1、从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,借助样本数据的列联表,柱形图和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。
但这种结论能否推广到总体呢要回答这个问题,就必须借助于统计理论来分析。
2、独立性检验:(1)假设H:患肺癌与吸烟没有关系。
即:“吸烟与患肺癌相互独立”。
用A表示不吸烟,B表示不患肺癌,则有P(AB)=P(A)P(B)若将表中“观测值”用字母代替,则得下表(二):患肺癌未患肺癌合计吸烟 不吸烟 合计学生活动:让学生利用上述字母来表示对应概率,并化简整理。
《独立性检验的基本思想及其初步应用》教学设计邹晓利两当一中《独立性检验的基本思想及其初步应用》教学设计两当一中邹晓利【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】K的含义。
独立性检验的基本思想;随机变量2【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题5月31日是世界无烟日,有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、肺病等都与吸烟有关,吸烟已经成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢?[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。
二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。
这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775 42 7817吸烟2099 49 2148总计9874 91 9965 这样列出的两个分类变量的频数表,称为列联表(一般我们只研究每个分类变量只取两2 列联表)。
《独立性检验的基本思想及其初步应用》教学设计邹晓利两当一中《独立性检验的基本思想及其初步应用》教学设计两当一中邹晓利【教学目标】1.知识与技能:通过对典型案例的探究, 了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】独立性检验的基本思想;随机变量K 2的含义。
【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题5 月 31 日是世界无烟日,有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、肺病等都与吸烟有关,吸烟已经成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢?[ 设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[ 意明]提出,引学生自主探究,指明方向,步步深入。
二、教材,探究新知1.分量于性量,其取男和女两种:[ 意明]利用像向学生展示量的不同取,更加形象的表示分量的概念。
种量的不同“ ”表示个体所属的不同,像的量称分量。
生活中有很多的分量如:是否吸烟宗教信仰国籍民族⋯⋯2. 列表研究吸烟是否患肺癌有影响,某瘤研究所随机地了9965 人,得到如下果:表 3—7吸烟与患肺癌列表位:人不患肺癌患肺癌不吸烟7775427817吸烟20994921489874919965列出的两个分量的数表,称列表(一般我只研究每个分量只取两个,的列表称 2 2 列表)。
1.2独立性检验的基本思想及其初步应用(第一课时)。
教学目标:1了解独立性检验的基本思想及实施步骤。
2、会从列联表、柱形图、条形图直观判断吸烟与患癌有关。
教学重点:理解独立性检验的基本思想。
教学难点;1、了解独立性检验的基本思想、独立性检验的步骤。
教学过程:一、引入:从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表,柱形图,和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。
但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。
二、独立性检验就是检验两个分类变量是否有关的一种统计方法:用字母表示吸烟与患肺癌的列联表:不患肺癌患肺癌 合计 不吸烟 a b a+b 吸烟 c d c+d 合计a+cb+da+b+c+d样本容量 n=a+b+c+d假设H 0 : 吸烟与患肺癌没有关系。
则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a ca c d c ab ad bc a b c dad bc n ad bc k a b c d a c b d n a b c d≈⇒+≈+⇒-≈++--=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱.构造随机变量 其中()()2781721489874916.635⨯⨯≈⨯⨯⨯≥≈≥f 2020220202若H 成立,则K 应该很小. 把表中数据代入公式9965777549-422099K =56.632在H 成立的情况下.统计学家估算出如下概率P K 0.01即在H 成立的情况下,K 的值大于6.635的概率非常小.如果K 6.635,就断定H 不成立,出错的可能性有多大?出现K =56.632 6.635 的概率不超过1% .因此,我们有99%的把握认为"吸烟与患肺癌有关系."三、 独立性检验的步骤。
P71、若要推断的论述为H 1:“X 与Y 有关系”。
独立性检验的基本思想及初步应用一、教学目标1. 让学生理解独立性检验的基本思想,掌握独立性检验的步骤和应用。
2. 培养学生运用独立性检验解决实际问题的能力,提高学生的数据分析素养。
3. 引导学生运用数学软件或计算器进行独立性检验,培养学生的操作能力。
二、教学内容1. 独立性检验的基本思想(1)理解独立性检验的定义和作用。
(2)掌握独立性检验的基本步骤:提出假设、构造检验统计量、确定显著性水平、计算临界值、做出结论。
2. 独立性检验的初步应用(1)学会运用独立性检验解决实际问题,如判断两个分类变量是否独立。
(2)学会运用数学软件或计算器进行独立性检验,提高数据分析能力。
三、教学重点与难点1. 教学重点:(1)独立性检验的基本思想及步骤。
(2)独立性检验在实际问题中的应用。
(3)运用数学软件或计算器进行独立性检验。
2. 教学难点:(1)独立性检验步骤中构造检验统计量的方法。
(2)如何正确选择显著性水平。
四、教学方法与手段1. 教学方法:(1)讲授法:讲解独立性检验的基本思想和步骤。
(2)案例教学法:分析实际问题,引导学生运用独立性检验。
(3)实践操作法:让学生运用数学软件或计算器进行独立性检验。
2. 教学手段:(1)多媒体课件:展示独立性检验的基本思想和步骤。
(2)数学软件或计算器:让学生进行实际操作。
五、教学过程1. 导入新课:通过一个实际问题引入独立性检验的概念,激发学生的兴趣。
2. 讲解独立性检验的基本思想:讲解独立性检验的定义、作用和基本步骤,让学生理解独立性检验的基本思想。
3. 案例分析:分析一个实际问题,引导学生运用独立性检验,体会独立性检验在解决实际问题中的应用。
4. 实践操作:让学生运用数学软件或计算器进行独立性检验,培养学生的操作能力。
5. 总结与反思:总结本节课的主要内容,让学生巩固所学知识,并思考如何更好地运用独立性检验解决实际问题。
六、教学拓展1. 引导学生探讨独立性检验在实际应用中的局限性,如样本量对检验结果的影响。
独立性检验的基本思想及初步应用教案教学目标:1. 了解独立性检验的基本思想及应用;2. 学会使用独立性检验进行数据分析;3. 能够解释独立性检验的结果及意义。
教学内容:一、独立性检验的基本思想1. 引入独立性检验的概念;2. 解释独立性检验的目的;3. 阐述独立性检验的基本步骤。
二、独立性检验的初步应用1. 介绍独立性检验的应用场景;2. 展示独立性检验的实际案例;3. 引导学生通过独立性检验分析数据。
三、独立性检验的计算方法1. 介绍独立性检验的计算方法;2. 解释卡方统计量的含义;3. 演示如何计算卡方统计量及p值。
四、独立性检验的结果解释1. 解释独立性检验的结果;2. 讲解如何判断假设检验的结果;3. 强调独立性检验的局限性。
五、独立性检验的实践操作1. 引导学生使用统计软件进行独立性检验;2. 分析实际数据,展示独立性检验的操作过程;教学方法:1. 采用案例教学法,结合实际数据进行分析;2. 利用统计软件进行独立性检验的演示;3. 引导学生进行小组讨论,分享学习心得。
教学评估:1. 课后作业:要求学生独立完成独立性检验的练习题;2. 课堂问答:提问学生关于独立性检验的概念及应用;3. 小组报告:评估学生在小组讨论中的表现及成果。
教学资源:1. 独立性检验的教学案例及数据;2. 统计软件及相关教学视频;3. 独立性检验的练习题及答案。
六、独立性检验的拓展应用1. 介绍独立性检验在其他领域的应用;2. 分析不同领域中独立性检验的实际案例;3. 引导学生探讨独立性检验的潜在拓展方向。
七、独立性检验的优缺点分析1. 阐述独立性检验的优点;2. 讨论独立性检验的局限性;3. 比较独立性检验与其他统计方法的差异。
八、独立性检验在实际研究中的应用案例1. 分享独立性检验在实际研究中的经典案例;2. 分析案例中独立性检验的使用方法和结果;3. 引导学生从案例中学习独立性检验的应用技巧。
九、独立性检验的敏感性分析1. 介绍独立性检验的敏感性分析概念;2. 解释敏感性分析在独立性检验中的作用;3. 演示如何进行独立性检验的敏感性分析。
1.1.2 独立性检验的基本思想及其初步应用第一课时(谷杨华)一、教学目标1.核心素养通过学习独立性检验的基本思想及其初步应用,初步形成基本的数据分析能力,培养数学运算能力.2.学习目标(1)1.1.1.1 了解分类变量的概念(2)1.1.1.2 了解等高条形图、列联表概念,学会用列联表、等高条形图直观判断分类变量的关系(3)1.1.1.3 了解独立性检验基本思想,初步学会用独立性检验的基本思想判断分类变量的关系3.学习重点了解独立性检验基本思想,初步学会用独立性检验的基本思想判断分类变量的关系4.学习难点了解独立性检验基本思想,初步学会用独立性检验的基本思想判断分类变量的关系二、教学设计(一)课前设计1.预习任务任务1阅读教材P10-P12,思考什么是分类变量,列联表如何画?任务2有哪些方法可以直观判断两个分类变量是否有关系?2.预习自测1.下列不是分类变量的是()A.近视B.身高C.血压D.药物反应解:B.判断一个量是否是分类变量,只需看变量的不同值是否表示个体的不同类别,A,C,D选项的不同值都可以表示个体的不同类别,只有B选项的不同值不表示个体的不同类别.2.下面是一个22⨯列联表则表中a,b A. 94,96 B. 52,50 C. 52,54 D. 54,52 解:C(二)课堂设计 1.知识回顾(1)线性回归方程:∧∧∧+=a x b y ,其中:1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx∧====---==--∑∑∑∑,a ∧=x b ∧-y(2)回归分析:是对具有相关关系的两个变量进行的统计分析的一种常用方法. (3)线性回归模型:y bx a e =++其中a 和b 为模型的未知参数,e 称为随机误差. 2.问题探究问题探究一 什么是分类变量?●活动一 理论研究,概念学习—分类变量在现实生活中,会遇到各种各样的变量,如果要研究它们之间的关系,观察下面两组变量,分析在取不同的值时表示的个体有何差异?变量的不同“值”表示个体所属的不同类别,像这样的变量成为分类变量. (1) 分类变量也称为属性变量或定性变量,它的不同值表示个体所属的不同类别. (2) 分类变量的取值一定是离散的,如性别只取男、女两个值.(3) 可以把分类变量的不同取值用数字表示,如用0表示男,1表示女,这是性别变量就成了取值为0和1的随机变量,但这些数字的大小没有意义. 分类变量是大量存在的,例如是否吸烟,宗教信仰,国籍等问题探究二 如何研究两个分类变量之间是否有关系?在日常生活中,我们常常关心两个分类变量之间是否有关系.例如,吸烟与患肺癌是否有关系?性别是否对喜欢数学课程有影响? ●活动一 实例探究,引出问题例1 为调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表格 1那么吸烟是否对患肺癌有影响?估计吸烟者与不吸烟者患病的可能性差异?●活动二 实例探究,引出概念 1.列联表类似于上面的表格这样列出两个分类变量的频数表,称为列联表.即列联表是两个或者两个以上分类变量的频数表,书中仅限于研究两个分类变量的列联表,并且每个分类变量只取两个值,这样的列联表成为2×2列联表.一般的,假设有两个分类变量X 和Y ,它们的取值分别为{}21,x x 和{}21,y y ,其样本频数列联表为:1y 2y总计1x a bb a + 2xcd d c + 总计c a +b d +d c b a +++其中d c b a +++是样本容量. ●活动三 利用旧知,研究问题 利用频率分布表判断;由患肺癌在吸烟者与不吸烟者中的频率差异可粗略估计吸烟对患肺癌有影响; ●活动四 学习新知,对比研究与表格相比,图形更能直观的反映出两个分类变量间是否相互影响,我们常用等高条形图展示列联表数据的频率特征. 2.等高条形图利用等高条形图来分析两个分类变量之间是否具有相关关系,可以形象、直观地反映两个分类变量之间的总体状态和差异大小,进而判断它们之间是否具有相关关系.(1)绘制等高条形图时,列联表的行对应的是高度,两行的数据不相等,但对应的条形图的高度是相同的;两行的数据对应不同的颜色.(2)等高条形图中由两个高度相同的矩形,每一个矩形中都有两种颜色,观察下方颜色区域的高度,如果两个高度相差比较明显,就判断两个分类变量之间有关系.下图是吸烟与是否患肺癌的等高条形图0%10%20%30%40%50%60%70%80%90%100%不吸烟吸烟患肺癌不患肺癌由条形图可以发现,在吸烟样本中,患肺癌的频率要高些,因此直观上可以认为吸烟更容易引发肺癌.例2 在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关? 【知识点:分类变量,等高条形图】详解根据题目给出的数据作出如下的列联表:色盲不色盲总计男38442480女6514520总计44956 1 000根据列联表作出相应的等高条形图:从等高条形图来看在男人中患色盲的比例要比在女人中患色盲的比例大得多,因而,我们认为性别与患色盲是有关系的.点拨:利用数形结合的思想,借助等高条形图来判断两个分类变量是否相关是判断变量相关的常见方法之一.一般地,在等高条形图中,aa+b 与cc+d相差越大,两个分类变量有关系的可能性就越大.问题探究三如何从统计学方面研究两个分类变量之间是否有关系?重点、难点知识★▲通过数据和图形分析,我们得到的直观判断是“吸烟和患肺癌有关”那么这种判断是否可靠?我们通过统计分析回答这个问题.为研究的一般性,在列联表中用字母代替数字为了回答上述问题,我们先假设H:吸烟与患肺癌没有关系,那么吸烟样本中不患肺癌的比例应该与不吸烟样本中相应的比例差不多,即:dc cb a a +≈+,即bc ad ≈. 因此,bc ad -越小,说明吸烟与患肺癌之间关系越弱;bc ad -越大,说明吸烟与患肺癌之间关系越强.为了使不同样本容量的数据有统一的评判标准,构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ (1) (其中n a b c d =+++为样本容量.)若0H 成立,即“吸烟与患肺癌没有关系”,则2K 应该很小. 根据表1中的数据,利用公式(1)计算得到2K 的观测值为632.5691987421487817)209942497775(99652≈⨯⨯⨯⨯-⨯=k这个值到底能告诉我们什么呢?统计学家经过研究后发现,在0H 成立的情况下, 2( 6.635)0.01P K ≥≈ (2)在0H 成立的情况下,2K 的观测值大于6.635的概率非常小,近似为0.010,是个小概率事件.现在2K 的观测值632.56≈k ,远远大于635.6,所以有理由断定0H 不成立,即认为“吸烟与患肺癌有关系”.但这种判断会犯错误,犯错误的概率不会超过010.0.上面这种利用随机变量2K 来确定是否能以一定把握认为“两个分类变量有关系”的方法,称为两个分类变量的独立性检验. 3.课堂总结【知识梳理】(1)变量的不用“值”表示个体所属的不同类别,像这样的变量成为分类变量. (2)列出两个分类变量的频数表,称为列联表.(3)设0H :吸烟与患肺癌没有关系,那么吸烟样本中不患肺癌的比例应该与不吸烟样本中相应的比例差不多,即:dc cb a a +≈+,即bc ad ≈. 因此,bc ad -越小,说明吸烟与患肺癌之间关系越弱;bc ad -越大,说明吸烟与患肺癌之间关系越强.为了使不同样本容量的数据有统一的评判标准,构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ (1) (其中n a b c d =+++为样本容量.)若0H 成立,即“吸烟与患肺癌没有关系”,则2K 应该很小.【重难点突破】(1)列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系.一般地,在等高条形图中,a a +b 与cc +d 相差越大,两个分类变量有关系的可能性就越大.(2)利用等高条形图判断两个分类变量是否有关的步骤:4.随堂检测1.独立性检验中,可以粗略地判断两个分类变量是否有关的是( ) A. 残差B. 等高条形图C.假设检验的思想D.以上都不对【知识点:独立性检验】 解: B.2.分类变量X 和Y 的列联表如下,则( )A. ad bc -越小,说明X 与Y 的关系越弱B. ad bc -越大,说明X 与Y 的关系越强C. 2()ad bc -越大,说明X 与Y 的关系越强 D. 2()ad bc -越接近于0,说明X 与Y 关系越强【知识点:独立性检验】解:C 2K 越大, 2()ad bc -越大, 犯错误的概率的越小,说明X 与Y 的关系越强. 3..在一次独立性检验中,得出2×2列联表如下:最后发现,两个分类变量x 和y 没有任何关系,则m 的可能值是( ) A.200 B.720 C.100 D.180 【知识点:独立性检验】解:B 分类变量x 和y 没有任何的关系,所以,得到720=m ,故选B. 4.在一个2×2列联表中,由其数据计算得到K 2的观测值k =13.097,则其两个变量间有关系的可能性为( ) A.99.9% B.95% C.90% D.0 附表:【知识点:独立性检验】解:A 因为所求的213.09710.828k ,故可能性为99.9%,所以选A.5.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则至少有 _的把握认为“学生性别与是否支持该活动有关系”. 附:【知识点:独立性检验】 解:99﹪ (三)课后作业基础型 自主突破 1.下面说法正确的是( )A.统计方法的特点是统计推断准确、有效B.独立性检验的基本思想类似于数学上的反证法C.任何两个分类变量有关系的可信度都可以通过查表得到D.不能从等高条形图中看出两个分类变量是否相关 【知识点:独立性检验】 解:B2.观察下列各图,其中两个分类变量x ,y 之间关系最强的是( )【知识点:独立性检验】 解:D3.确定结论“X 与Y 有关系”的可信度为95℅时,则随机变量2k 的观测值k 必须( ) A.大于828.10 B.大于841.3 C.小于635.6 D.大于706.2 【知识点:独立性检验】解:B 通过表中的数据可知可信度为95℅时2 3.841kP (K 2≥k 0) 0.05 0.025 0.010 0.005 0.001 k 03.8415.0246.6357.87910.8284. 想要检验是否喜欢参加体育活动是不是与性别有关,应该检验( ) A.H 0:男性喜欢参加体育活动 B.H 0:女性不喜欢参加体育活动 C.H 0:喜欢参加体育活动与性别有关 D.H 0:喜欢参加体育活动与性别无关 【知识点:独立性检验】 解: D5.对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是( ) A .K 越大," X 与Y 有关系”可信程度越小; B . K 越小," X 与Y 有关系”可信程度越小; C . K 越接近于0," X 与Y 无关”程度越小 D . K 越大," X 与Y 无关”程度越大 【知识点:独立性检验】 解: B能力型 师生共研6.若有%9.99的把握说事件A 与事件B 有关,那么具体算出的2K 的观测值k 一定满足( )A.828.10>kB.828.10<kC.635.6>kD.635.6<k 【知识点:独立性检验】 解: A7.假设有两个分类变量X 和Y ,它们的值域分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:(D ) A.a =5,b =4,c =3,d =2 B.a =5,b =3,c =4,d =2 C.a =2,b =3,c =4,d =5 D.a =3,b =2,c =4,d =5 【知识点:独立性检验】 解: D8.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2⨯2列联表进行独立性检验,经计算K 2=7.069,则所得到的统计学结论为:有 把握认为“学生性别与支持该活动有关系”【知识点:独立性检验】解: 99% 【解析】根据6.6357.06910.828<<,所以犯错误率低于1%,所以应该有99%的把握,认为“学生性别与支持该活动有关系” ,探究型 多维突破9.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少? (2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)【知识点:独立性检验,古典概型】解:(1)积极参加班级工作的学生有24人,总人数为50人,概率为25125024=; 不太主动参加班级工作且学习积极性一般的学生有19人,概率为5019.(2)5.111315026242524)761918(5022≈=⨯⨯⨯⨯-⨯⨯=K , ∵828.102>K ,∴有%9.99的把握说学习积极性与对待班级工作的态度有关系.10.2016年夏季奥运会将在巴西里约热内卢举行,体育频道为了解某地区关于奥运会直播的收视情况,随机抽取了100名观众进行调查,其中40岁以上的观众有55名,下面是根据调查结果绘制的观众准备平均每天收看奥运会直播时间的频率分布表(时间:分钟):将每天准备收看奥运会直播的时间不低于80分钟的观众称为“奥运迷”,已知“奥运迷”中有10名40岁以上的观众.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否有认为“奥运迷”与年龄有关?(2)将每天准备收看奥运会直播不低于100分钟的观众称为“超级奥运迷”,已知“超级奥运迷”中有2名40岁以上的观众,若从“超级奥运迷”中任意选取2人,求至少有1名40岁以上的观众的概率.【知识点:独立性检验,概率统计】解:(1)由频率分布表可知,在轴取的100人中,“奥运迷”有25人,从完成22⨯列联表如下:因为3.030 3.841<,所以没有“奥运迷”与年龄有关.(2)由频率分布表可知,“超级奥运迷”有5人,从而所有可能结果所组成的基本事件空间为:()()()()()()()()()(){}12132311122122313212,,,,,,,,,,,,,,,,,,,a a a a a a a b a b a b a b a b a b b b Ω=其中i a 表示男性,1,2,3,i i b =表示女性,1,2i =.Ω由10个基本事件组成,且是等可能的,用A 表示事件“任意选2人,至少有1名40岁以上观众”,则()()()()()()(){}11122122313212,,,,,,,,,,,,,A a b a b a b a b a b a b b b =,即事件A 包含7个基本事(四)自助餐1.在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( )A.a a +b 与dc +d B.c a +b 与a c +d C.a a +b 与c c +d D.a a +b 与c b +c【知识点:独立性检验】 解: C2.为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A.平均数 B.方差 C.回归分析 D.独立性检验 【知识点:独立性检验】解: D 本例考查学生眼睛的“近视”与“性别”两件事情之间是否存在相关性,从给出的数据可以列出22⨯列联表,所以适合用独立性检验.3.在一个2×2列联表中,由其数据计算得K 2的观测值k =7.097,则这两个变量间有关系的可能性为 ( )A.99%B.99.5%C.99.9%D.无关系 【知识点:独立性检验】解: A 由表格数据可知k =7.097>6.635,所以这两个变量间有关系的可能性为99%4.某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取1000名成年人调查是否抽烟及是否患有肺病得到22⨯列联表,经计算得231.52=K ,已知在假设吸烟与患肺病无关的前提条件下,01.0)635.6(,05.0)841.3(22=≥=≥K P K P .则该研究所可以( )A.有%95以上的把握认为“吸烟与患肺病有关”B.有%95以上的把握认为“吸烟与患肺病无关”C.有%99以上的把握认为“吸烟与患肺病有关”D.有%99以上的把握认为“吸烟与患肺病无关” 【知识点:独立性检验】解: A 因为2 5.231 3.841K =>,而2( 3.841)0.05P K ≥=,故有有%95以上的把握认为“吸烟与患肺病有关”5.2016年3月9日至15日,谷歌人工智能系统“阿尔法”迎战围棋冠军李世石,最终结果“阿尔法”以总比分4比1战胜李世石.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2548名男性中有1560名持反对意见, 2452名女性中有1200名持反对意见,在运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( ) A.茎叶图 B.分层抽样 C.独立性检验 D.回归直线方程 【知识点:独立性检验】解:C 这是独立性检验,因为这里有两个分类变量,一个是性别分为男女,一个是意见分为支持和反对,这样就构成一个22⨯联表,用独立性检验来验证“人机大战是人类的胜利”是否有关系.6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A.成绩B.视力C.智商D.阅读量【知识点:独立性检验】解:D由表中数据可得:表1:()25262210140.00916362032K⨯⨯-⨯=≈⨯⨯⨯;表2:()25242012161.76916362032K⨯⨯-⨯=≈⨯⨯⨯;表3:()2528241281.316362032K⨯⨯-⨯=≈⨯⨯⨯;表4:()25214302623.4816362032K⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.7.如下表是对于喜欢足球与否的统计列联表依据表中的数据,得到2K.【知识点:独立性检验】解:228542122854.77245406817k⨯-⨯==⨯⨯⨯.8.若由一个2×2列联表中的数据计算得K2的观测值k=4.013,那么在犯错误的概率不超过________的前提下认为两个变量之间有关系.【知识点:独立性检验】解:0.05 因随机变量K2的观测值k=4.013>3.841,因此,在犯错误的概率不超过0.05的前提下,认为两个变量之间有关系.9.如果K2的观测值为6.645,可以认为“x与y无关”的可信度是________.【知识点:独立性检验】解:1%10.某学校对该校学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类别是否有关系.【知识点:独立性检验】解:作列联表如下:性格内向性格外向总计考前心情紧张332 213 545考前心情不紧张94 381 475总计426 594 1020 相应的等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的比例,从图中可以看出考前心情紧张的样本中性格内向占的比例比考前心情不紧张样本中性格内向占的比例大,可以认为考前紧张与性格类型有关.11.甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:(1)计算x,y的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;(3)根据以上统计数据完成2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.【知识点:独立性检验,分层抽样,概率统计】解:(1)x=10,y=7;(2)甲乙分别为;25%,40%(3)见解析.试题分析:(1)由题为分层抽样,可确定出甲乙两个学校分别抽取的人数,然后结合频数表,可求出x,y的值;(2)由题给出了优秀的标准,结合给出的表格,可分别求甲乙学校的数学成绩的优秀率,(即由每个学校优秀的人数除以它们的人数);(3)由题为独立性检验;可先做出二列联表,再代入独立性检验的公式,求出2K,对应参考值可下结论.试题解析:(1)甲校抽取人,乙校抽取人,故x=10,y=7,(240%.(3)表格填写如图,k2>2.706又因为1-0.10=0.9,故有90%的把握认为两个学校的数学成绩有差异.。
《3.2独立性检验的基本思想及其初步应用》教学案学习目标1、通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,让学生亲身体验独立性检验的实施步骤与必要性.并了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用;2、能利用统计量2K来分析两个分类变量是否有关系;教学重点:理解独立性检验的基本思想;独立性检验的步骤.教学难点:1、理解独立性检验的基本思想;2、了解随机变量K2的含义;3、独立性检验的步骤.学习过程一、知识建构1、分类变量:对于性别变量,取值为:男、女;这种变量的不同取“值”表示______ _______,这类变量称为分类变量注意:分类变量的取值一定是离散的2、问题探究:为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)在不吸烟者中患肺癌的比重是,在吸烟者中患肺癌的比重是说明:吸烟者和不吸烟者患肺癌的可能性______,吸烟者患肺癌的可能性_______3、完成以下内容.第一步:列联表(用字母表示吸烟与患肺癌的列联表):第二步:0:“ ”.用A 表示不吸烟,B 表示不患肺癌,则AB 表示_________________________ 假设0H ()P AB⇔=__________________________ 所以0H 成立的条件下应该有:an≈ (n =a +b +c +d ) 因此ad -ad -与患肺癌之间关系越强,第三步:构造随机变量2K = (其中 n =a +b +c +d ) 计算随机变量2K 的观测值k .(简称卡方公式) 第四步:查表得出结论K k = ______________________________________因为k ≥_________,就推断“吸烟与患肺癌没有关系”,这种推断犯错误的概率不超过_________;即认为吸烟与患肺癌____________总结:以上这种利用随机变量K 2来判断“两个分类变量有关系”的方法称为______________________二、形成能力在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系?为什么?三、课堂检测1、 分类变量Y X 和的列联表如下:则下列说法正确的是:A .bc ad -越小,说明Y X 和关系越弱B .bc ad -越大,说明Y X 和关系越强C .2()bc ad -越大,说明Y X 和关系越强 D .2()bc ad -越接近于0,说明Y X 和关系越强2、为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:K 数学课程之间有关系?为什么?。
课题:独立性检验的基本思想及其初步应用课型:新课课时:1【学习目标】通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题。
【学习过程】问题的引入:为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)吸烟与肺癌列联表患肺癌不患肺癌总计吸烟49 2099 2148不吸烟42 7775 7817总计91 9874 9965那么吸烟是否对患肺癌有影响?直观上来判断:在不吸烟的样本中,有_______%患肺癌;在吸烟的样本中,则有______%由此,吸烟群体和不吸烟群体患肺癌的可能性存在差异.但,这种“差异”有多大呢?能够有一个评判的标准呢?我们可以通过以下的统计分析回答这个问题。
独立性检验:1、把上表中数字用字母代替,得到如下用字母表示的列联表:吸烟与肺癌列联表 不患肺癌 患肺癌 总计 吸烟 a b a+b 不吸烟 c d c+d 总计 a+cb+da+b+c+d2、假设H :吸烟与患肺癌没有关系那么吸烟样本中不患肺癌的比例应该与不吸烟样本中不患肺癌的比例差不多,即:______________________________________________________ 因此:bcad -越小说明吸烟与患肺癌之间的关系______.反之,则_____3、计算2K为了使不同样本变量的数据有统一的评测标准,构造一个随机变量2K =_________________________________________________________ 其中_______________=n 为样本容量. 从而,若H 成立,即“吸烟与患肺癌没有关系”,则2K 应该_______,反之,2K 应该___________。
上题2K =56.632.这个值到底能告诉我们什么?能从中得到什么结论? 4、查表 P (K2>k0) 0.50 0.40 0.25 0.15 0.10 k00.455 0.7081.3232.0722.706P (K2>k0)0.05 0.0250.0100.0050.001k03.841 5.0246.6357.87910.828上题中2K =56.632>10.828,所以001.0)828.10(2=>K P 该数据表明了在假设H 成立的情况下,2K 的值大于10.828的概率非常小,为0.001,是一个小概率事件。
《独立性检验的基本思想及其初步应用》第一课时教学设计东莞市厚街中学姚卫一、教学内容与内容解析1.内容:独立性检验的基本思想及其初步应用2.内容解析:本节课是人教A版(选修)1—2第一章第二单元第一课时的内容.在本课之前,学生已经在必修3中学习了第二章统计(随即抽样、用样本估计总体、变量间的相关关系)和本册第一章统计案例中的回归分析的基本思想及初步应用。
本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要部分。
在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。
在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。
独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。
因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。
学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。
这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。
教学重点:理解独立性检验的基本思想及实施步骤.二、教学目标与目标解析1.目标:(1)通过典型案例的探究,了解独立性检验(只要求2×2 列联表)的基本思想、方法及初步应用。
(2)通过典型案例的探究,让学生经历由实际问题建立数学模型的过程,体会其基本方法。
(3)通过本节课的学习,加强数学与现实生活的联系。
以科学的态度评价两个分类变量有关系的可能性。
培养学生运用所学知识,解决实际问题的能力和提高数据分析能力。
2.目标解析:独立性检验是考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度的一种重要的统计方法.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.因此,在学习中通过对统计案例的分析,理解和掌握独立性检验的方法,体会独立性检验的基本思想在解决实际问题的应用,以提高我们处理生活和工作中的某些问题的能力.新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。
从心理学的角度看,青少年有一种好奇的心态、探究的心理。
因此,紧紧地抓住学生的这一特征,利用学生身边的问题,设计教学情境,使学生在观察、讨论等活动中,逐步提高数据分析能力。
三、教学问题诊断分析1.文科教材中的反证法出现在本册书的下一单元“推理与证明”中,仅在必修二的第70页中在说明“垂直于同一个平面的两条直线互相平行”时蜻蜓点水般的提到反证法,使得同学理解独立性检验的基本思想是非常困难的。
2.独立性检验的基本思想难于理解还表现在它的必要性上,当然凭空出现一个随机变量等以及对犯错误的概率的解释也是重要原因之一。
对于必要性和检验的科学性的怀疑可能直接导致学生对接下来所谈到的内容会有所怀疑,不一定十分认同。
3.课本的表述涉及的符号与字母较多,对数学思维相对较弱的面上中学的文科学生来说,理解独立性检验思想会产生一定的干扰。
教学难点:①了解独立性检验的基本思想;②了解随机变量的含义,的观测值很大,就认为两个分类变量是有关系的。
四、教学支持条件为了有效实现教学目标,考虑到学生的知识水平、理解能力,通过教师设计的层层推进式的问题,充分调动学生的积极性,让学生在教师指导下的自主学习,让学生逐步领会独立性检验的基本思想,掌握独立性检验的方法。
五、教学过程设计⑴创设情境,提出问题创设情景:前段世间,有一个新闻引发了大家的思考,我们来看看这个新闻(看视频:一人吸烟全家肺癌),那么吸烟与肺癌到底有没有关系呢?下面我们来看看有关的统计数据:像这个表格中的“吸烟”、“不吸烟”是根据样本人群是否吸烟进行分类,而“患肺癌”、“不患肺癌”是根据样本人群是否患肺癌进行分类,向这种变量的不同的“值”表示个体所属的不同类别,像这样的变量称为“分类变量”,还比如,我们可以将全班同学分为“男生”和“女生”这两类。
而这个列出分类变量的频数表我们称为“列联表”。
提出问题1:“请问同学们能否再举一些分类变量的例子?”活动预设:教师根据学生的正确回答给予鼓励,对于不正确的回答让同学们讨论解决。
【设计意图】数学教学只有从问题开始才有其生命力,创设一个实际问题情境,既学习了两个概念,又提出本节课研究的问题。
同时使学生体会数学的应用价值,感受学习数学新知识的必要性.概念难度不大,又给出了学生身边的例子,同学们可以自行解决.⑵探究归纳,解决问题①启发探究提出问题2:请用计算器计算吸烟样本与不吸烟样本中患肺癌的比例,并初步判断吸烟是否对患肺癌有影响?活动预设:学生计算出比例,有学生认为吸烟样本中患肺癌的比例高于不吸烟样本中患肺癌的比例,认为吸烟更容易引发肺癌;但也有学生认为两者比例不同但相差不大,认为吸烟对是否患肺癌没影响,老师可根据吸烟样本中患肺癌的比例是不吸烟样本中患肺癌的比例的4倍多说明可初步判断吸烟对患肺癌有影响。
【设计意图】这里明确让学生利用这两个比例来判断,主要是为后面提出假设后可利用这两个比例来推导0≈-bc ad 埋下伏笔。
对于认为没影响的问题,这恰恰说明了需要通过独立性检验来对直观判断可靠性进行研究的必要性。
为了减少运算时间,提高课堂效率,让学生提前准备计算器是必要的。
引导性语言:除了列联表外,我们在统计学中还可以用一个叫做等高条形图的图形更直观地反映两个分类变量间是否相互影响。
活动预设:教师用EXCEL 软件作出等高条形图并介绍等高条形图中浅色条与深色条的含义。
【设计意图】让学生体会到图形的直观性和利用电脑技术在解决实际研究中的方便性。
引导性语言:要研究吸烟与患肺癌两个分类变量有关系是不容易解决的问题,我们可以借助昨晚复习的反证法的思考模式,本着“正难则反”的思想方法去研究。
提出问题3:我们可以提出什么样的假设?根据我们的假设,在问题2中所提出的吸烟样本与不吸烟样本中患肺癌的比例有着怎样的关系?根据这个关系,能推导出a,b,c,d 有怎样的关系?活动预设:教师给出将原列联表中的数字替换为字母,学生判断出吸烟样本与不吸烟样本中患肺癌的比例差不多,在老师的指导下得出0≈-bc ad【设计意图】独立性检验的思想类似于反证法,基于文科教材中还没有讲到反证法,所以在课前给学生做反证法知识的准备是必不可少的。
课本在推导过程中用吸烟样本和不吸烟样本中不患肺癌的比例,而我是用患肺癌的比例,这样做是没有错的,又可以减少学生思维的障碍。
针对面上中学文科学生的数学基础与思维的实际,所提问题只能梯度小一些,具体一点,不能过于宽泛,否则学生无从下手。
②新知解读提出问题4:通过上述推导得到0≈-bc ad ,为表示其差异性,将其转化成||bc ad -,那么直观上||bc ad -的大小能否说明吸烟与患肺癌之间的关系的强弱?活动预设:||bc ad -值越小,吸烟与患肺癌之间的关系越弱;||bc ad -值越大,越不独立,两个分类变量关系越强。
【设计意图】通过这个问题及其分析可以帮助学生理解统计学家构造的随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=,(d c b a n +++=)的合理性,打消学生的怀疑。
引导性语言:为了使不同样本容量的数据有一个统一而又合理的评判标准,统计学家们经过研究后构造了一个随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=,(d c b a n +++=),并得以635.60=k 为例,01.0)635.6(2≈≥K P ,就是说在假设(吸烟与患肺癌没有关系)成立的条件下,计算出随机变量2K 的观测值k 大于等于6.635这个临界值的概率近似为0.010,是一个小概率事件,若一个小概率事件(很难发生的事件)发生了,说明我们之前的假设不成立。
【设计意图】本环节我没有按照教材的呈现顺序,而是将卡方临界值表提到前面来讲解,利用概率知识解读卡方临界值表中数据的含义,有助于学生体会到如果2K 的观测值很大,就认为两个分类变量是有关系的合理性,为后面引出独立性检验的规则做好铺垫,达到突破难点的目的。
提出问题5:请你利用计算器算出吸烟与患肺癌问题中的随机变量2K 的观测值k 的大小,结合临界值表,请你仿照反正法思考它能告诉我们什么呢?活动预设:学生算出正确的k 的值,根据临界值表,在假设成立的情况下,001.0)828.10(2≈≥K P ,随机变量2K 的观测值k 大于等于10.828的概率近似为0.001,是一个小概率事件,而一个小概率事件(很难发生的事件)发生了,说明我们之前的假设不成立,即可以认为吸烟与患肺癌有关。
【设计意图】让学生自己通过对临界值概率的理解,亲身去体会是接受假设还是拒绝假设,实现教学重点,即理解独立性检验的基本思想,当然也会为由学生来归纳独立性检验的思想做好铺垫。
提出问题6:认为“吸烟与患肺癌有关系”是否指吸烟人一定会患肺癌?这个判断会犯错误吗?如果这个判断会犯错误,那么犯错的概率大约是多少?活动预设:在学生讨论交流的基础上,教师给出正确的回答:这里所说的“患病与吸烟有关系”是一种统计关系,这种关系是指“吸烟的人患病的可能性(风险)更大”,而不是说“吸烟的人一定患病”,要特别注意这两者间的区别。
这个判断会犯错误,但犯错误的概率不会超过0.001,这也是由列联表和等高条形图进行直观判断的不足之处。
需要说明的是:既然推断会犯错误,那么在检验之前首先应给出能容许推断“两个分类变量有关系”犯错误概率的上界。
【设计意图】帮助学生理解“在犯错误的概率不超过a 的前提下认为‘X ’与‘Y ’有关系”,进而强调了独立性检验和给出能容许推断“两个分类变量有关系”犯错误概率的上界的必要性,为后面小结独立性检验的步骤做准备。
③总结提升提出问题7:从整体思路上看,独立性检验的思想与反证法的思想有些类似之处,你能将下列表格补充完整吗?活动预设:要证明两个分类变量有关,在假设两个分类变量无关的情况下,如果出现一个与假设相矛盾的小概率事件,就推断假设不成立,且该推断犯错误的概率不超过这个小概率。
【设计意图】让学生自己去比较反证法原理与独立性检验原理的比较,让学生更好地理解独立性检验的原理。
这里由于课本的表述涉及的字母较多,对数学思维相对较弱的文科学生理解独立性检验思想会产生一定的干扰,故采用相对较通俗的表述。